236
Views
0
CrossRef citations to date
0
Altmetric
Review

Synthetic Toll-like receptor agonists for the development of powerful malaria vaccines: a patent review

, , , & ORCID Icon
Pages 837-847 | Received 27 Jul 2018, Accepted 26 Sep 2018, Published online: 24 Oct 2018

References

  • [cited 2017 May 30]. Available from: http://www.who.int/malaria/publications/
  • Action and Investment to defeat Malaria 2016-2030. For a Malaria-Free World. WHO Library Cataloguing-in-Publication Data. ISBN 978 92 4 150897 1
  • Clyde DF, McCarthy VC, Miller RM, et al. Immunization of Man against Falciparum and Vivax Malaria by Use of Attenuated Sporozoites. Am J Tropical Med Hyg. 1975;24(3):397–401.
  • Arama C, Troye-Blomberg M. The path of malaria vaccine development: challenges and perspectives. J Intern Med. 2014;275:456–466.
  • Malaria Vaccine PATH Initiative
  • Shi YP, Hasnain SE, Sacci JB, et al. Immunogenicity and in vitro protective efficacy of a recombinant multistage Plasmodium falciparum candidate vaccine. Proc Natl Acad Sci USA. 1999;96:1615–1620.
  • Baer K, Klotz C, Kappe SH, et al. Release of hepatic Plasmodium yoelii merozoites into the pulmonary microvasculature. PLoS Pathogens. 2007;3(11):1651–1668.
  • (a) Coler RN, Carter D, Friede M, Reed SG. Adjuvants for malaria vaccines. Parasite Immunol. 2009;31(9): 520–528. (b) Bruder JT, Angov E, Limbach KJ, Richie TL. Molecular vaccines for malaria. Hum Vaccin. 2010; 6(1): 54–77.
  • Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immuno Cell Biol. 2004;82(5):488–496.
  • Reed SG, Orr MT, Fox CB. Key roles of adjuvants in modern vaccines. Nat Med. 2013;19(12):1597–1608.
  • Pasquale AD, Preiss S, Da Silva FT, et al. Vaccine Adjuvants: from 1920 to 2015 and Beyond. Vaccine. 2015;3(2):320–343.
  • Clark R, Kupper T. Old Meets New: the Interaction Between Innate and Adaptive Immunity. J Invest Dermatology. 2005;125(4):629–637.
  • Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637–650.
  • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140(6):805–820.
  • Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunology. 2004;4(7): 499–511. (b) Beutler BA. TLRs and innate immunity. Blood. 2009; 113(7): 1399–1407. (c) Kawasaki T, Kawai T. Toll-Like Receptor Signaling Pathways. Front Immunol. 2014; 5: 461.
  • Db S, Sw C, Nm S, et al. Design and development of stable, water-soluble, wuman toll-like receptor 2 specific monoacyl lipopeptides as candidate vaccine adjuvants. J Med Chem. 2013;56(14):5885−5900. (c) Salunke DB, Sukhla NM, Euna Y, et al. Structure-Activity Relationships in Human Toll-like Receptor 2-Specific Monoacyl Lipopeptides. J Med Chem. 2012; 55(7):3353−3363. (d) Salunke DB, Guo X, David SA. Toll-like receptor 2-agonistic lipopeptides and method of making the same. WO2014113634. 2014. (e) Kaur A, Poonam, Patil MT, Mehta SK, Salunke DB. An efficient and scalable synthesis of potent TLR2 agonistic PAM2CSK4. RSC Adv. 2018; 8(18): 9587–9596.
  • Salunke DB, Yoo E, Shukla NM, et al. Structure-activity relationships in human toll-like receptor 8-active 2,3-diamino-furo[2,3-c]pyridines. J Med Chem. 2012;55(18):8137−8151. (b) David SA, Shukla NM. Toll-like Receptor-7 Modulatory 1H Imidazoquinoline Derived compounds. US 201202944885. 2012. (c) Shukla NM, Salunke DB, Balakrishna R, et al. Potent adjuvanticity of a pure TLR7-agonistic imidazoquinoline dendrimer. PLoS ONE. 2012;7: e43612.
  • (a) Steinhagen F, Kinjo T, Bode C, et al. TLR-based immune adjuvants. Vaccine. 2011;29(17):3341–3355. (b) Mbow ML, Gregorio ED, Valiante NM, Rappuoli R. New adjuvants for human vaccines. Curr Opin Immunol. 2010; 22: 411–416.
  • Hussell T, Goenka A. TLR vaccine adjuvants: Closing the stable door before novel influenza strains bolt. Immunol Cell Biol. 2016;94(1):1–2.
  • (a) Bhardwaj N, Gnjatic S. Sawhney NB. TLR AGONISTS: Are They Good Adjuvants? Cancer J. 2010;16(4):382–391. (b) Stevceva, L. Toll-like receptor agonists as adjuvants for HIV vaccines. Curr Med Chem. 2011; 18(33): 5079–5082.
  • (a) Penny MA, Verity R, Bever CA, et al. Public health impact and cost-effectiveness of the RTS, S/AS01 malaria vaccine: a systematic comparison of predictions from four mathematical models. Lancet. 2015;387:367–375. (b) Didierlaurent AM, Laupèze B, Di Pasquale A, Hergli N, Collignon C, Garçon N. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines. 2017, 16(1): 55–63.
  • Bargieri DY, Rosa DS, Braga DJ, et al. New malaria vaccine candidates based on the Plasmodium vivax Merozoite Surface Protein-1 and the TLR-5 agonist Salmonella Typhimurium FliC flagellin. Vaccine. 2008;26(48):6132–6142.
  • Steuner-Monard V, Kamaka K, Olfa K, et al. The Candidate Blood Stage Malaria Vaccine P27A Induces a Robust Humoral Response in a Fast Track to the Filed Phase I Trial in Exposed and Non-Exposed Volunteers. Clin Infect Dis. 2018. DOI: 10.1093/cid/ciy514.
  • Olugbile S, Kulangara C, Bang G, et al. Vaccine Potentials of an Intrinsically Unstructured Fragment Derived from the Blood Stage-Associated Plasmodium falciparum Protein PFF0165c. Infect Immun. 2009;77(12):5701–5709.
  • (a) Bagai U, Pawar A. A blood stage fraction of Plasmodium berghei induces protective and long-lasting immune response in BALB/c mice. Parasitol Int. 2013;62:329–336. (b) Kumar V, Rakha A, Saroa R, Bagai U. CD4+T Cells Expansion in P. berghei (NK-65) Infected and Immunized BALB/C Mice. J Clinic Exp Pathol. 2015; 5: 229–234.
  • Mahairas GG. Compositions comprising immune response altering agents and methods of Use. WO2005070959. 2005.
  • Akira S, Ishii KJ, Coban C. Detection/Measurement of malaria infection disease utilizing Natural immunity by Hemozoin, screening of preventive of therapeutic medicine for malaria infection Disease and regulation of natural Immunity Induction. WO200606195. 2006.
  • Coban C, Igari Y, Yagi M, et al. Immunogenicity of Whole-Parasite Vaccines against Plasmodium falciparum Involves Malarial Hemozoin and Host TLR9. Cell Host & Microbe. 2010;7(1):50–61.
  • Cohen J, Marchand M, Ockenhouse CF, et al. Vaccines for Malaria. WO2008009652. 2008.
  • Powell TJ, Nakaar V, Mcdonald WF, et al. Composition of Toll-Like Receptor Agonists and Malaria Antigens and Methods of Use. WO2009082440. 2009.
  • Douglas AD, de Cassan SC, Dicks MDJ, et al. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1. Vaccine. 2010;28:7167–7178.
  • Nacer A, Carapau D, Mitchell R, et al. EH. Imaging Murine NALT following Intranasal Immunization with Flagellin-Modified Circumsporozoite Protein Malaria Vaccines. Mucosal Immunol. 2014;7(2):304–314.
  • Mohan T, Verma P, Rao DN. Novel adjuvants and delivery vehicles for vaccines development: a road ahead. Indian J Med Res. 2013;138(5):779–795.
  • Fox CB. Squalene emulsions for parenteral vaccine and drug delivery. Molecules. 2009;14(9):3286–3312.
  • Keitel W, Groth N, Lattanzi M, et al. Dose ranging of adjuvant and antigen in a cell culture H5N1 influenza vaccine: safety and immunogenicity of a phase ½ clinical trial. Vaccine. 2010;28(3):840–848.
  • Bergmann-Leitner ES, Mease RM, De La Vega P, et al. Immunization with pre-erythrocytic antigen CelTOS from Plasmodiumfalciparum elicits cross-species protection against heterologous challenge with Plasmodium berghei. PLos One. 2015;5(8):e12294.
  • Bergmann-Leitner ES, Legler PM, Savranskaya T, et al. Cellular and humoral immune effector mechanisms required for sterile protection against sporozoite challenge induced with the novel malaria vaccine candidate CelTOS. Vaccine. 2011;29(35):5940–5949.
  • Fox C, Reed SG, Baldwinj S, et al. Improved Adjuvant Formulations Comprising TLR4 Agonists and Methods of Using the Same. WO2013119856. 2013.
  • Espinosa DA, Vega-Rodriguez J, Flores-Garcia Y, et al. The Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission- Blocking Vaccines. Infect Immun. 2017;85(2):e00498–e00516.
  • Fox CB, Baldwin SL, Vedvick TS, et al. Effects on Immunogenicity by Formulations of Emulsion-Based Adjuvants for Malaria Vaccines. Clin Vaccine Immunol. 2012;19(10):1633–1640.
  • Fung HWM, Mikasa TJT, Vergara J, et al. Optimizing manufacturing and composition of a TLR4 nanosuspension: physicochemical stability and vaccine adjuvant activity. J Nanobiotechnology. 2013;11(1):43–55.
  • Fox CB, Baldwin SL, Duthie MS, et al. Immunomodulatory and Physical Effects of Phospholipid Composition in Vaccine Adjuvant Emulsions. AAPS Pharm Sci Tech. 2012;13(2):498–506.
  • Cm J, Dm L. Multilayered Polyelectrolyte Assemblies as Platforms for the Delivery of DNA and Other Nucleic Acid-Based Therapeutics. Adv Drug Delivery Rev. 2008;60(9): 979−999. (b) Wong SY, Moskowitz JS, Veselinovic J, et al. Dual Functional Polyelectrolyte Multilayer Coatings for Implants: Permanent Microbicidal Base with Controlled Release of Therapeutic Agents. J Am Chem Soc. 2010; 132(50): 17840−17848.
  • Caruso F, Donath E, Mo¨Hwald H. Influence of polyelectrolyte multilayer coatings on Fo¨rster resonance energy transfer between 6-carboxyfluorescein and rhodamine B-labeled particles in aqueous solution. J Phys Chem B. 1998;102:2011−2016.
  • Pc D, Min Y, Dj I, et al. Implantable Silk Composite Microneedles for Programmable Vaccine Release Kinetics and Enhanced Immunogenicity in Transcutaneous Immunization. Adv Healthc. 2014;3(1): 47−58. (b) Hsu BB, Park MH, Hagerman SR, Hammond PT. Multimonth Controlled Small Molecule Release from Biodegradable Thin Films. Proc Natl Acad Sci U S A. 2014; 111(33):12175−12180. (c) Donath E, Sukhorukov GB, Caruso F, Davis SA, Mohwald H. Novel Hollow Polymer Shells by Colloid-Templated Assembly of Polyelectrolytes. Angew Chem Int Ed. 1998; 37(16):2201−2205.
  • De Koker S, De Geest BG, Singh SK, et al. Polyelectrolyte Microcapsules as Antigen Delivery Vehicles to Dendritic Cells: uptake, Processing, and Cross-Presentation of Encapsulated Antigens. Angew Chem Int Ed. 2009;48:8485−8489.
  • Powell TJ. Microparticle Vaccine against Malaria. WO2013148426. 2013.
  • Powell TJ, Boyd JG. Antigenic compositions and methods. WO2013148427. 2013.
  • Powell TJ, Tang J, DeRome ME, et al. Plasmodium falciparum synthetic LbL microparticle vaccine elicits protective neutralizing antibody and parasite-specific cellular immune responses. Vaccine. 2013;31(15):1898–1904.
  • Tang D. Methods and compositions for viral vectored vaccine. WO2015035128. 2015.
  • Coelho CH, Doritchamou JYA, Zaidi I, et al. Advances in malaria vaccine development: report from the 2017 malaria vaccine symposium. NPJ Vaccines. 2017;2:34.
  • Espinosa DA, Vega-Rodriguez J, Flores-Garcia Y, et al. The Plasmodium falciparum CellTraversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission Blocking Vaccines. Infect Immun. 2017;85(2):e00498–e00516.
  • Angov E, Es B-L, Cf O. Novel Malaria Vaccines. WO2015091734. 2015.
  • Bergmann-Leitner ES, Mease RM, Vega PDL, et al. Immunization with Pre-Erythrocytic Antigen CelTOS from Plasmodium falciparum Elicits Cross-Species Protection against Heterologous Challenge with Plasmodium berghei. PLoS ONE. 2010;5(8):e12294.
  • Strugnell R, Zepp F, Cunningham A, et al. Vaccine antigens. Understanding Modern Vaccines: Perspectives in Vaccinology. 2011;1(1):61–88.
  • Heterologous Prime-Boost LS. Vaccination. Curr Opin Immunol. 2009;21(3):46–351.
  • Ballou WRJ, Diderlaurent AM, Van der most, RG. Novel methods for inducing an immune response. WO2015150568. 2015.
  • Han TH, Tang Y, Park YH, et al. TAA/ecdCD40L VPP Vaccination Induces Robust Adaptive Immune Response Even in Individuals with Post Transplantation Lymphopenia. Blood. 2008;112(11):363.
  • Deisserot AB. TAA/CD40L Vaccine for Malaria. US9642901 (2017).
  • Boyd JG, Powell TJ. Anti-Malaria Compositions and Methods. US20170128558. 2017.
  • Ra S, Lj C, Me E, et al. Protection against malaria by intravenous immunization with a nonreplicating sporozoite vaccine. Science. 2013;341(6152):1359–1365. (b) Teirlinck AC, McCall MBB, Roestenberg M, et al. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathogens. 2011; 7(12):e1002389. (c) Mordmuller B, Surat G, Lagler H, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017; 542: 445–449.
  • Douglas AD, Williams AR, Illingworth JJ, et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat Commun. 2011;2:601.
  • Gwadz RW. Successful immunization against the sexual stages of Plasmodium gallinaceum. Science. 1976;193(4258):1150–1151.
  • Radtke AJ, Anderson CF, Ritea N, et al. Adjuvant and carrier protein-dependent T-cell priming promotes a robust antibody response against the Plasmodium falciparum Pfs2z vaccine candidate. Sci Rep. 2017;7:40312.
  • Ke K, Jf C, Ofori-Anyinam O, et al. Randomized, double-blind, Phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naïve adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 2009;200(3):337–346. (c) Polhemus ME, Remich SA, Ogutu BR, et al. Evaluation of RTS,S/AS02A and RTS,S/AS01B in adults in a high malaria transmission area. PLoS ONE. 2009; 4(7):e6465.
  • Othoro C, Johnston D, Lee RSoverow JBystryn JCNardin E. Enhanced immunogenicity of Plasmodium falciparum peptide vaccines using a topical adjuvant containing a potent synthetic Toll-like receptor 7 agonist, imiquimod. Infect Immun. 2009;77(2):739–748.
  • Nardin EH, Calvo-Calle JM, Oliveira GA, et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. J Immunol. 2001;166(1):481–489.
  • Nardin EH, Oliveira GA, Calvo-Calle JM, et al. Synthetic malaria peptide vaccine elicits high levels of antibodies in vaccinees of defined HLA genotypes. J Infect Dis. 2000;182(5):1486–96.
  • Lousada-Dietrich S, Jogdand PS, Jepsen S, et al. A synthetic TLR4 agonist formulated in an emulsion enhances humoral and Type 1 cellular immune responses against GMZ2 – a GLURP-MSP3 fusion protein malaria vaccine candidate. Vaccine. 2011;29(17):3284–3292.
  • Theisen M, Soe S, Brunstedt K, et al. A Plasmodium falciparum GLURP–MSP3 chimeric protein; expression in Lactococcus lactis, immunogenicity and induction of biologically active antibodies. Vaccine. 2004;22:1188–98.
  • Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P, Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med. 1995;182:409–18.
  • Mitchell RA, Altszuler R, Frevert U, et al. Skin scarification with Plasmodium falciparum peptide vaccine using synthetic TLR agonists as adjuvants elicits malaria sporozoite neutralizing immunity. Sci Rep. 2016;6:32575.
  • *Madan-Lala R, Pradhan P, Roy K. Combinatorial Delivery of Dual and Triple TLR Agonists via Polymeric Pathogen-like Particles Synergistically Enhances Innate and Adaptive Immune Responses. Sci. Rep. 2017;7(2530):1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.