290
Views
1
CrossRef citations to date
0
Altmetric
Review

Chymase inhibitors for the treatment of cardiac diseases: a patent review (2010–2018)

&
Pages 755-764 | Received 10 Aug 2018, Accepted 01 Oct 2018, Published online: 10 Oct 2018

References

  • De Caterina R, Zampolli A, Del Turco S, et al. Nutritional mechanisms that influence cardiovascular disease. Am J Clin Nutr. 2006;83(2):421S–26S.
  • Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst. 2006;7(1):3–14.
  • Oparil S, Acelajado MC, Bakris GL, et al. Hypertension. Nat Rev Dis Primers. 2018;4:18014.
  • Te Riet L, van Esch JH, Roks AJ, et al. Hypertension: renin-angiotensin-aldosterone system alterations. Circ Res. 2015;116(6):960–975.
  • Dell’Italia LJ, Collawn JF, Ferrario CM. Multifunctional role of chymase in acute and chronic tissue injury and remodeling. Circ Res. 2018;122(2):319–336.
  • Lundequist A, Pejler G. Biological implications of preformed mast cell mediators. Cell Mol Life Sci. 2011;68(6):965–975.
  • Shiota N, Rysa J, Kovanen PT, et al. A role for cardiac mast cells in the pathogenesis of hypertensive heart disease. J Hypertension. 2003;21(10):1935–1944.
  • Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007;217:141–154.
  • Levick SP, Melendez GC, Plante E, et al. Cardiac mast cells: the centerpiece in adverse myocardial remodeling. Cardiovascular Res. 2011;89(1):12–19.
  • Stewart JA, Wei CC, Brower GL, et al. Cardiac mast cell- and chymase-mediated mast cell number and matrix metalloproteinase activity and left ventricular remodeling in mitral regurgitation in the dog. J Mol Cell Cardiol. 2003;35(3):311–319.
  • Brower GL, Janicki JS. Pharmacologic inhibition of mast cell degranulation prevents left ventricular remodeling induced by chronic volume overload in rats. J Cardiac Fail. 2005;11(7):548–556.
  • Fu L, Wei CC, Powell PC, et al. Increased fibroblast chymase production mediates procollagen autophagic digestion in volume overload. J Mol Cell Cardiol. 2016;92:1–9.
  • Chen YW, Pat B, Gladden JD, et al. Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am J Physiol Heart Circ Physiol. 2011;300(6):H2251–60.
  • Engels W, Reiters PH, Daemen MJ, et al. Transmural changes in mast cell density in rat heart after infarct induction in vivo. J Pathol. 1995;177(4):423–429.
  • Patella V, de Crescenzo G, Lamparter-Schummert B, et al. Increased cardiac mast cell density and mediator release in patients with dilated cardiomyopathy. Inflamm Res. 1997;46(Suppl 1):S31–32.
  • Levick SP, McLarty JL, Murray DB, et al. Cardiac mast cells mediate left ventricular fibrosis in the hypertensive rat heart. Hypertension. 2009;53(6):1041–1047.
  • Kovanen PT. Role of mast cells in atherosclerosis. Chem Immunol. 1995;62:132–170.
  • Zhang J, Shi GP. Mast cells and metabolic syndrome. Biochem Biophys Acta. 2012;1822(1):14–20.
  • Patella V, de Crescenzo G, Ciccarelli A, et al. Human heart mast cells: a definitive case of mast cell heterogenecity. Int Arch Allergy Immunol. 1995;106(4):386–393.
  • Caughey GH. Mast cell proteases as protective and inflammatory mediators. Adv Exp Med Biol. 2011;716:212–234.
  • Caughey GH, Raymond WW, Wolters PJ. Angiotensin II generation by mast cell alpha- and beta-chymases. Biochim Biophys Acta. 2000;1480(1–2):245–257.
  • Pejler G, Abrink M, Ringvall M, et al. Mast cell proteases. Adv Immunol. 2007;95:167–255.
  • Pejler G, Knight SD, Henningsson F, et al. Novel insights into the biological function of mast cell carboxypeptidase A. Trends Immunol. 2009;30(8):401–408.
  • Sperr WR, Banki HC, Mundigler G, et al. The human cardiac mast cell: localization, isolation, phenotype, and functional characterization. Blood. 1994;84(11):3876–3884.
  • Ekoff M, Strasser A, Nilsson G. FcepsilonRI aggregation promotes survival of connective tissue-like mast cells but not mucosal-like mast cells. J Immunol. 2007;178(7):4177–4183.
  • Enerback L. Mast cells in rat gastrointestinal mucosaI. Effects of fixation. Acta Pathol Microbiol Scand. 1966;66(3):289–302.
  • Wolters PJ, Pham CTN, Muilenburg DJ, et al. Dipeptidyl peptidase I is essential for activation of mast cell chymases, but not tryptases, in mice. J Bio Chem. 2001;276(21):18551–18556.
  • Ahmad S, Simmons T, Varagic J, et al. Chymase-dependent generation of angiotensin II from angiotensin-(1-12) in human atrial tissue. PLoS One. 2011;6(12):e28501.
  • Ahmad S, Varagic J, VonCannon JL, et al. Primacy of cardiac chymase over angiotensin converting enzyme as an angiotensin-(1-12) metabolizing enzyme. Biochem Biophys Res Commun. 2016;478(2):559–564.
  • Ferrario CM, Ahmad S, Nagata S, et al. An evolving story of angiotensin-II-forming pathways in rodents and humans. Clin Sci (Lond). 2014;126(7):461–469.
  • Soualmia F, Amri CE. Serine proteases inhibitors to treat inflammation: a patent review (2011–2016). Exp Opin Ther Patents. 2018;28(2):93–110.
  • Rachel KV, Sirisha GVD. Serine proteases and their inhibitors in human health and disease. Proteases in human diseases. Singapore: Springer; 2017. p. 195–226.
  • Benter IF, Diz DI, Ferrario CM. Cardiovascular actions of angiotensin(1-7). Peptides. 1993;14(4):679–684.
  • Campagnole-Santos MJ, Diz DI, Santos RA, et al. Cardiovascular effects of angiotensin-(1–7) injected into the dorsal medulla of rats. Am J Physiol. 1989;257(1 Pt 2):H324–9.
  • Schiavone MT, Khosla MC, Ferrario CM. Angiotensin-[1-7]: evidence for novel actions in the brain. J Cardiovasc Pharmacol. 1990;16(Suppl 4):S19–S24.
  • Schiavone MT, Santos RA, Brosnihan KB, et al. Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1-7) heptapeptide. Proc Natl Acad Sci U S A. 1988;85(11):4095–4098.
  • Ferrario CM. New physiological concepts of the renin-angiotensin system from the investigation of precursors and products of angiotensin I metabolism. Hypertension. 2010;55(2):445–452.
  • Welches WR, Brosnihan KB, Ferrario CM. A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase. Life Sci. 1993;52(18):1461–1480.
  • Crackower MA, Sarao R, Oudit GY, et al. Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature. 2002;417(6891):822–828.
  • Nagata S, Hatakeyama K, Asami M, et al. Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine. Biochem Biophys Res Commun. 2013;441(4):757–762.
  • Nagata S, Kato J, Sasaki K, et al. Isolation and identification of proangiotensin-12, a possible component of the renin-angiotensin system. Biochem Biophys Res Commun. 2006;350(4):1026–1031.
  • Ahmad S, Varagic J, Groban L, et al. Angiotensin-(1-12): a chymase-mediated cellular angiotensin II substrate. Curr Hypertens Rep. 2014;16(5):429.
  • Urata H, Healy B, Stewart RW, et al. Angiotensin II receptors in normal and failing human hearts. J Clin Endocrinol Metab. 1989;69(1):54–66.
  • Urata H, Healy B, Stewart RW, et al. Angiotensin II-forming pathways in normal and failing human hearts. Circ Res. 1990;66(4):883–890.
  • Urata H, Kinoshita A, Misono KS, et al. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990;265(36):22348–22357.
  • Balcells E, Meng QC, Hageman GR, et al. Angiotensin II formation in dog heart is mediated by different pathways in vivo and in vitro. Am J Physiol. 1996;271(2 Pt 2):H417–21.
  • Chandrasekharan UM, Sanker S, Glynias MJ, et al. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science. 1996;271(5248):502–505.
  • Dell’Italia LJ, Meng QC, Balcells E, et al. Compartmentalization of angiotensin II generation in the dog heart. Evidence for independent mechanisms in intravascular and interstitial spaces. J Clin Invest. 1997;100(2):253–258.
  • Zisman LS, Abraham WT, Meixell GE, et al. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway. J Clin Invest. 1995;96(3):1490–1498.
  • Ahmad S, Varagic J, Westwood BM, et al. Uptake and metabolism of the novel peptide angiotensin-(1-12) by neonatal cardiac myocytes. PLoS One. 2011;6(1):e15759.
  • Ahmad S, Wei CC, Tallaj J, et al. Chymase mediates angiotensin-(1-12) metabolism in normal human hearts. J Am Soc Hypertens. 2013;7(2):128–136.
  • Kitamura Y, Oboki K, Ito A. Development of mast cells. Proc Jpn Acad Ser B Phys Biol Sci. 2007;83(6):164–174.
  • Levick SP, Melendez GC, Plante E, et al. Cardiac mast cells: the centrepiece in adverse myocardial remodelling. Cardiovasc Res. 2011;89(1):12–19.
  • Newlands GF, Gibson S, Knox DP, et al. Characterization and mast cell origin of a chymotrypsin-like proteinase isolated from intestines of mice infected with Trichinella spiralis. Immunology. 1987;62(4):629–634.
  • Woodbury RG, Everitt MT, Neurath H. Mast cell proteases. Methods Enzymol. 1981;80(Pt C):588–609.
  • Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev. 1997;77(4):1033–1079.
  • Ide H, Itoh H, Tomita M, et al. Cloning of the cDNA encoding a novel rat mast-cell proteinase, rMCP-3, and its expression in comparison with other rat mast-cell proteinases. Biochem J. 1995;311(Pt 2):675–680.
  • Karlson U, Pejler G, Froman G, et al. Rat mast cell protease 4 is a beta-chymase with unusually stringent substrate recognition profile. J Biol Chem. 2002;277(21):18579–18585.
  • Gallwitz M, Enoksson M, Hellman L. Expression profile of novel members of the rat mast cell protease (rMCP)-2 and (rMCP)-8 families, and functional analyses of mouse mast cell protease (mMCP)-8. Immunogenetics. 2007;59(5):391–405.
  • Guo C, Ju H, Leung D, et al. A novel vascular smooth muscle chymase is upregulated in hypertensive rats. J Clin Invest. 2001;107(6):703–715.
  • Wintroub BU, Schechter NB, Lazarus GS, et al. Angiotensin I conversion by human and rat chymotryptic proteinases. J Invest Dermatol. 1984;83(5):336–339.
  • Yamamoto D, Shiota N, Takai S, et al. Three-dimensional molecular modeling explains why catalytic function for angiotensin-I is different between human and rat chymases. Biochem Biophys Res Commun. 1998;242(1):158–163.
  • Balcells E, Meng QC, Johnson WH Jr., et al. Angiotensin II formation from ACE and chymase in human and animal hearts: methods and species considerations. Am J Physiol. 1997;273(4 Pt 2):H1769–74.
  • Butts B, Goeddel LA, George DJ, et al. Increased inflammation in pericardial fluid persists 48 hours after cardiac surgery. Circulation. 2017;136(23):2284–2286.
  • Urata H. Chymase and matrix metalloproteinase. Hypertens Res. 2007;30(1):3–4.
  • Kirimura K, Takai S, Jin D, et al. Role of chymase-dependent angiotensin II formation in regulating blood pressure in spontaneously hypertensive rats. Hypertens Res. 2005;28(5):457–464.
  • Takai S, Jin D, Chen H, et al. Chymase inhibition improves vascular dysfunction and survival in stroke-prone spontaneously hypertensive rats. J Hypertens. 2014;32(8):1637–1649.
  • Roszkowska-Chojecka MM, Walkowska A, Gawrys O, et al. Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp Physiol. 2015;100(9):1093–1105.
  • Urata H, Kinoshita A, Misono KS, et al. Identification of a highly specific chymase as the major angiotensin II-forming enzyme in the human heart. J Biol Chem. 1990;265(36):22348–22357.
  • Lindstedt L, Lee M, Castro GR, et al. Chymase in exocytosed rat mast cell granules effectively proteolyzes apolipoprotein AI-containing lipoproteins, so reducing the cholesterol efflux-inducing ability of serum and aortic intimal fluid. J Clin Invest. 1996;97(10):2174–2182.
  • Jin D, Takai S, Yamada M, et al. Possible roles of cardiac chymase after myocardial infarction in hamster hearts. Jpn J Pharmacol. 2001;86(2):203–214.
  • Heuston S, Hyland NP. Chymase inhibition as a pharmacological target: a role in inflammatory and functional gastrointestinal disorders? Br J Pharmacol. 2012;167(4):732–740.
  • Takai S, Jin D, Miyazaki M. New approaches to blockade of the renin-angiotensin-aldosterone system: chymase as an important target to prevent organ damage. J Pharmacol Sci. 2010;113(4):301–309.
  • Froogh G, Pinto JT, Le Y, et al. Chymase-dependent production of angiotensin II: an old enzyme in old hearts. Am J Physiol Heart Circ Physiol. 2017;312(2):H223–H31.
  • Kinoshita A, Urata H, Bumpus FM, et al. Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem. 1991;266(29):19192–19197.
  • Doggrell SA, Wanstall JC. Vascular chymase: pathophysiological role and therapeutic potential of inhibition. Cardiovasc Res. 2004;61(4):653–662.
  • Tamai H, Katoh K, Yamaguchi T, et al. The impact of tranilast on restenosis after coronary angioplasty: the second tranilast restenosis following angioplasty trial (TREAT-2). Am Heart J. 2002;143:506–513.
  • Holmes DR, Savage M, LaBlanche JM, et al. Results of preventionof restenosis with tranilast and its outcomes (PRESTO) trial. Circulation. 2002;106(10):1243–1250.
  • Oyamada S, Bianchi C, Takai S, et al. Chymase inhibition reduces infarction and matrix metalloproteinase-9 activation and attenuates inflammation and fibrosis after acute myocardial ischemia/reperfusion. J Pharmacol Exp Ther. 2011;339(1):143–151.
  • Shiota N, Kakizoe E, Shimoura K, et al. Effect of mast cell chymase inhibitor on the development of scleroderma in tight-skin mice. Br J Pharmacol. 2005;145(4):424–431.
  • Takai S, Jin D, Sakaguchi M, et al. A novel chymase inhibitor, 4-[1-([bis-(4-methyl-phenyl)-methyl]-carbamoyl)3-(2-ethoxy-benzyl)-4-oxo-azetidin e-2-yloxy]-benzoic acid (BCEAB), suppressed cardiac fibrosis in cardiomyopathic hamsters. J Pharmacol Exp Ther. 2003;305(1):17–23.
  • Takai S, Jin D, Sakaguchi M, et al. An orally active chymase inhibitor, BCEAB, suppresses heart chymase activity in the hamster. Jpn J Pharmacol. 2001;86(1):124–126.
  • Kanefendt F, Thuss U, Becka M, et al. Pharmacokinetics, safety, and tolerability of the novel chymase inhibitor BAY 1142524 in healthy male volunteers. Clin Pharmacol Drug Dev. 2018;00(0):1-13. [Epub ahead of print]
  • Terakawa M, Fujieda Y, Tomimori Y, et al. Oral chymase inhibitor SUN13834 ameliorates skin inflammation as well as pruritus in mouse model for atopic dermatitis. Eur J Pharmacol. 2008;601(1–3):186–191.
  • Ogata A, Fujieda Y, Terakawa M, et al. Pharmacokinetic/pharmacodynamic analyses of chymase inhibitor SUN13834 in NC/Nga mice and prediction of effective dosage for atopic dermatitis patients. Int Immunopharmacol. 2011;11(10):1628–1632.
  • Soga Y, Takai S, Koyama T, et al. Attenuation of adhesion formation after cardiac surgery with a chymase inhibitor in a hamster model. J Thorac Cardiovasc Surg. 2004;127(1):72–78.
  • Doggrell SA, Wanstall JC. Will chymase inhibitors be the next major development for the treatment of cardiovascular disorders? Expert Opin Investig Drugs. 2003;12(8):1429–1432.
  • Hoshino F, Urata H, Inoue Y, et al. Chymase inhibitor improves survival in hamsters with myocardial infarction. J Cardiovasc Pharmacol. 2003;41(Suppl 1):S11–8.
  • Bot I, Bot M, van Heiningen SH, et al. Mast cell chymase inhibition reduces atherosclerotic plaque progression and improves plaque stability in ApoE-/- mice. Cardiovasc Res. 2011;89(1):244–252.
  • Imada T, Komorita N, Kobayashi F, et al. Therapeutic potential of a specific chymase inhibitor in atopic dermatitis. Jpn J Pharmacol. 2002;90(3):214–217.
  • Doggrell SA, Wanstall JC. Cardiac chymase: pathophysiological role and therapeutic potential of chymase inhibitors. Can J Physiol Pharmacol. 2005;83(2):123–130.
  • Roszkowska-Chojecka MM, Walkowska A, Gawrys O, et al. Effects of chymostatin, a chymase inhibitor, on blood pressure, plasma and tissue angiotensin II, renal haemodynamics and renal excretion in two models of hypertension in the rat. Exp Physiol. 2015;100(9):1093–1105.
  • Matsumoto T, Wada A, Tsutamoto T, et al. Chymase inhibition prevents cardiac fibrosis and improves diastolic dysfunction in the progression of heart failure. Circulation. 2003;107(20):2555–2558.
  • Takai S, Miyazaki M. Application of a chymase inhibitor, NK3201, for prevention of vascular proliferation. Cardiovasc Drug Rev. 2003;21(3):185–198.
  • Takai S, Jin D, Nishimoto M, et al. Oral administration of a specific chymase inhibitor, NK3201, inhibits vascular proliferation in grafted vein. Life Sci. 2001;69(15):1725–1732.
  • Guttman-Yassky E, Dhingra N, Leung DY. New era of biologic therapeutics in atopic dermatitis. Expert Opin Biol Ther. 2013;13(4):549–561.
  • Gallwitz M, Hellman L. Rapid lineage-specific diversification of the mast cell chymase locus during mammalian evolution. Immunogenetics. 2006;58(8):641–654.
  • Miyazaki M, Takai S, Jin D, et al. Pathological roles of angiotensin II produced by mast cell chymase and the effects of chymase inhibition in animal models. Pharmacol Ther. 2006;112(3):668–676.
  • Kunori Y, Muroga Y, Iidaka M, et al. Specises differences in angiotensin II generation and degradation by mast cell chymases. J Recept Signal Transduct Res. 2005;25(1):35–44.
  • Eda M, Ashimori A, Akahoshi F, et al. Peptidyl human heart chymase inhibitors. 2. Discovery of highly selective difluoromethylene ketone derivatives with Glu at P3 site. Bioorg Med Chem Lett. 1998;8(8):919–924.
  • Eda M, Ashimori A, Akahoshi F, et al. Peptidyl human heart chymase inhibitors. 1. Synthesis and inhibitory activity of difluoromethylene ketone derivatives bearing P’ binding subsites. Bioorg Med Chem Lett. 1998;8(8):913–918.
  • Hayashi Y, Iijima K, Katada J, et al. Structure-activity relationship studies of chloromethyl ketone derivatives for selective human chymase inhibitors. Bioorg Med Chem Lett. 2000;10(3):199–201.
  • Iijima K, Katada J, Hayashi Y. Symmetrical anhydride-type serine protease inhibitors: structure-activity relationship studies of human chymase inhibitors. Bioorg Med Chem Lett. 1999;9(3):413–418.
  • Taylor SJ, Padyana AK, Abeywardane A, et al. Discovery of potent, selective chymase inhibitors via fragment linking strategies. J Med Chem. 2013;56(11):4465–4481.
  • Greco MN, Hawkins MJ, Powell ET, et al. Discovery of potent, selective, orally active, nonpeptide inhibitors of human mast cell chymase. J Med Chem. 2007;50(8):1727–1730.
  • Janssen Pharmaceutical NV. Inhibitors of chymase. US7872044 (2011).
  • Aoyama Y. Non-peptidic chymase inhibitors. Expert Opin Ther Pat. 2001;11(9):1423–1428.
  • Aoyama Y, Konoike T, Kanda A, et al. Total synthesis of human chymase inhibitor methyllinderone and structure–activity relationships of its derivatives. Bioorg Med Chem Lett. 2001;11(13):1695–1697.
  • Boehringer Ingelheim International GmbH. Quinazolinedione chymase inhibitors. US8377949 (2013).
  • Boehringer Ingelheim International GmbH. Azaquinazolinedione chymase inhibitors. US8501749 (2013).
  • Boehringer Ingelheim International GmbH. Chymase inhibitors. US8969348 (2015).
  • Boehringer Ingelheim International GmbH. Benzimidazolone chymase inhibitors. US9150556 (2015).
  • Boehringer Ingelheim International GmbH. Aza-benzimidazolone chymase inhibitors. US9062056 (2015).
  • Bayer Pharma Aktiengesellschaft. Substituted uracils as chymase inhibitors. US9695131 (2017).
  • Tinel H, Zubov D, Zimmermann K, et al. A novel chymase inhibitor BAY 1142524 reduces fibrosis and improves cardiac function after myocardial infarction in hamster. Circulation. 2017;136(suppl 1):A13624.
  • Hooshdaran B, Kolpakov MA, Guo X, et al. Dual inhibition of cathepsin G and chymase reduces myocyte death and improves cardiac remodeling after myocardial ischemia reperfusion injury. Basic Res Cardiol. 2017;112(6):62.
  • Ferrario CM, Mullick AE. Renin angiotensin aldosterone inhibition in the treatment of cardiovascular disease. Pharmacol Res. 2017;125(Pt A):57–71.
  • Reyes S, Varagic J, Ahmad S, et al. Novel cardiac intracrine mechanisms based on Ang-(1–12)/chymase axis require a revision of therapeutic approaches in human heart disease. Curr Hypertens Rep. 2017;19(2):16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.