1,164
Views
0
CrossRef citations to date
0
Altmetric
Review

α4β7 integrin inhibitors: a patent review

, , , , &
Pages 903-917 | Received 30 Jul 2018, Accepted 13 Nov 2018, Published online: 22 Nov 2018

References

  • Hynes RO. Integrins: bidirectional, allosteric signaling machines. Cell. 2002;110:673–687.
  • Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992;69:11–25.
  • Ley K, Rivera-Nieves J, Sandborn WJ, et al. Integrin-based therapeutics: biological basis, clinical use and new drugs. Nat Rev Drug Discov. 2016;15:173–183.
  • Zundler S, Fischer A, Schillinger D, et al. The alpha4beta1 homing pathway is essential for ileal homing of crohn’s disease effector T cells in vivo. Inflamm Bowel Dis. 2017;23:379–391.
  • Danese S, Panes J. Development of drugs to target interactions between leukocytes and endothelial cells and treatment algorithms for inflammatory bowel diseases. Gastroenterology. 2014;147:981–989.
  • Taraszka KS, Higgins JM, Tan K, et al. Molecular basis for leukocyte integrin alpha(E)beta(7) adhesion to epithelial (E)-cadherin. J Exp Med. 2000;191:1555–1567.
  • Woods AN, Wilson AL, Srivinisan N, et al. Differential expression of homing receptor ligands on tumor-associated vasculature that control CD8 effector T-cell entry. Cancer Immunol Res. 2017;5:1062–1073.
  • Berlin C, Berg EL, Briskin MJ, et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressing MAdCAM-1. Cell. 1993;74:185–195.
  • Briskin MJ, McEvoy LM, Butcher EC. MAdCAM-1 has homology to immunoglobulin and mucin-like adhesion receptors and to IgA1. Nature. 1993;363:461–464.
  • Briskin M, Winsor-Hines D, Shyjan A, et al. Human mucosal addressing cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol. 1997;151:97–110.
  • Souza HS, Elia CC, Spencer J, et al. Expression of lymphocyte-endothelial receptor-ligand pairs, alpha4beta7/MAdCAM-1 and OX40/OX40 ligand in the colon and jejunum of patients with inflammatory bowel disease. Gut. 1999;45:856–863.
  • Zundler S, Becker E, Weidinger C, et al. Anti-adhesion therapies in inflammatory bowel disease-molecular and clinical aspects. Front Immunol. 2017;8:891.
  • Gorfu G, Rivera-Nieves J, Ley K. Role of beta7 integrins in intestinal lymphocyte homing and retention. Curr Mol Med. 2009;9:836–850.
  • Thomas S, Baumgart DC. Targeting leukocyte migration and adhesion in Crohn’s disease and ulcerative colitis. Inflammopharmacology. 2012;20:1–18.
  • Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–2078.
  • Arthos J, Cicala C, Nawaz F, et al. The role of integrin alpha4beta7 in HIV pathogenesis and treatment. Curr HIV/AIDS Rep. 2018;15:127–135.
  • Hsei V. Antibody fragment-polymer conjugates and uses of same.US7122636B1. 2006.
  • Hesi V Antibody fragment-polymer conjugates and uses of same.US7214776B2. 2007.
  • Lin L, Liu X, Wang D, et al. Efficacy and safety of antiintegrin antibody for inflammatory bowel disease: a systematic review and meta-analysis. Medicine (Baltimore). 2015;94:e556.
  • Li H, Shi FH, Huang SY, et al. A review on clinical pharmacokinetics, pharmacodynamics, and pharmacogenomics of patalizumab: a humanized anti-alpha4 integrin monoclonal antibody. Curr Drug Metab. 2018 Apr 27. doi:10.2174/1389200219666180427165841 .
  • Ghosh S, Goldin E, Gordon FH, et al. Natalizumab for active Crohn’s disease. N Engl J Med. 2003;348:24–32.
  • Sandborn WJ, Colombel JF, Enns R, et al. Natalizumab induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2005;353:1912–1925.
  • Pitarokoili K, Gold R. Multiple sclerosis: progressive multifocal leukoencephalopathy risk stratification. Nat Rev Neurol. 2017;13:710–712.
  • Sandborn WJ, Feagan BG, Rutgeerts P, et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N Engl J Med. 2013;369:711–721.
  • Feagan BG, Rutgeerts P, Sands BE, et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N Engl J Med. 2013;369:699–710.
  • Novak G, Hindryckx P, Khanna R, et al. The safety of vedolizumab for the treatment of ulcerative colitis. Expert Opin Drug Saf. 2017;16:501–507.
  • Soler D, Chapman T, Yang LL, et al. The binding specificity and selective antagonism of vedolizumab, an anti-alpha4beta7 integrin therapeutic antibody in development for inflammatory bowel diseases. J Pharmacol Exp Ther. 2009;330:864–875.
  • Sands BE. New drugs on the horizon for IBD. Dig Dis. 2014;32(Suppl 1):74–81.
  • Wyant T, Leach T, Sankoh S, et al. Vedolizumab affects antibody responses to immunisation selectively in the gastrointestinal tract: randomised controlled trial results. Gut. 2015;64:77–83.
  • Feagan BG, Greenberg GR, Wild G, et al. Treatment of ulcerative colitis with a humanized antibody to the alpha4beta7 integrin. N Engl J Med. 2005;352:2499–2507.
  • Willow D. Formulation for anti-α4β7 antibody.US9764033B2. 2017.
  • Lowenberg M, D’Haens G. Next-generation therapeutics for IBD. Curr Gastroenterol Rep. 2015;17:21.
  • Rutgeerts PJ, Fedorak RN, Hommes DW, et al. A randomised phase I study of etrolizumab (rhuMAb beta7) in moderate to severe ulcerative colitis. Gut. 2013;62:1122–1130.
  • Armuzzi A, Felice C. Etrolizumab in moderate-to-severe ulcerative colitis. Lancet. 2014;384:285–286.
  • Tang MT, Keir ME, Erickson R, et al. Review article: nonclinical and clinical pharmacology, pharmacokinetics and pharmacodynamics of etrolizumab, an anti-beta7 integrin therapy for inflammatory bowel disease. Aliment Pharmacol Ther. 2018;47:1440–1452.
  • Pan WJ, Hsu H, Rees WA, et al. Pharmacology of AMG 181, a human anti-alpha4 beta7 antibody that specifically alters trafficking of gut-homing T cells. Br J Pharmacol. 2013;169:51–68.
  • Li H, Kock K, Wisler JA, et al. Prediction of clinical pharmacokinetics of AMG 181, a human anti-alpha 4 beta 7 monoclonal antibody for treating inflammatory bowel diseases. Pharmacol Res Perspect. 2015;3:e00098.
  • Pan WJ, Kock K, Rees WA, et al. Clinical pharmacology of AMG 181, a gut-specific human anti-alpha4beta7 monoclonal antibody, for treating inflammatory bowel diseases. Br J Clin Pharmacol. 2014;78:1315–1333.
  • Tsuda-Tsukimoto M, Maeda T, Iwanaga T, et al. Characterization of hepatobiliary transport systems of a novel alpha4beta1/alpha4beta7 dual antagonist, TR-14035. Pharm Res. 2006;23:2646–2656.
  • Tsuda-Tsukimoto M, Ogasawara Y, Kume T. Role of human liver cytochrome P450 2C9 in the metabolism of a novel alpha4beta1/alpha4beta7 dual antagonist, TR-14035. Drug Metab Pharmacokinet. 2005;20:127–134.
  • Sircar I, Gudmundsson KS, Martin R, et al. Synthesis and SAR of N-benzoyl-L-biphenylalanine derivatives: discovery of TR-14035, a dual alpha(4)beta(7)/alpha(4)beta(1) integrin antagonist. Bioorg Med Chem. 2002;10:2051–2066.
  • Cortijo J, Sanz MJ, Iranzo A, et al. A small molecule, orally active, alpha4beta1/alpha4beta7 dual antagonist reduces leukocyte infiltration and airway hyper-responsiveness in an experimental model of allergic asthma in Brown Norway rats. Br J Pharmacol. 2006;147:661–670.
  • Vanderslice P, Biediger RJ, Woodside DG, et al. Development of cell adhesion molecule antagonists as therapeutics for asthma and COPD. Pulm Pharmacol Ther. 2004;17:1–10.
  • Hijazi Y, Welker H, Dorr AE, et al. Evaluation of the effect of multiple-dose administration of R411, a dual alpha4beta1-alpha4beta7 integrin antagonist on the major CYP isoform activities in healthy volunteers. Eur J Clin Pharmacol. 2006;62:83–85.
  • Hijazi Y, Welker H, Dorr AE, et al. Pharmacokinetics, safety, and tolerability of R411, a dual alpha4beta1-alpha4beta7 integrin antagonist after oral administration at single and multiple once-daily ascending doses in healthy volunteers. J Clin Pharmacol. 2004;44:1368–1378.
  • Sugiura T, Kageyama S, Andou A, et al. Oral treatment with a novel small molecule alpha 4 integrin antagonist, AJM300, prevents the development of experimental colitis in mice. J Crohn’s Colitis. 2013;7:e533–542.
  • Yoshimura N, Watanabe M, Motoya S, et al. Safety and efficacy of ajm300, an oral antagonist of alpha4 integrin, in induction therapy for patients with active ulcerative colitis. Gastroenterology. 2015;149:1775–1783.e1772.
  • Vetter M, Neurath MF. Emerging oral targeted therapies in inflammatory bowel diseases: opportunities and challenges. Therap Adv Gastroenterol. 2017;10:773–790.
  • Chanteux H, Staelens L, Mancel V, et al. Cross-species differences in the preclinical pharmacokinetics of CT7758, an alpha4beta1/alpha4beta7 integrin antagonist. Drug Metab Dispos. 2015;43:1381–1391.
  • Chanteux H, Rosa M, Delatour C, et al. In vitro hydrolysis and transesterification of CDP323, an alpha4beta1/alpha4beta7 integrin antagonist ester prodrug. Drug Metab Dispos. 2014;42:153–161.
  • Dattoli SD, Baiula M, De Marco R, et al. DS-70, a novel and potent alpha4 integrin antagonist, is an effective treatment for experimental allergic conjunctivitis in guinea pigs. Br J Pharmacol. 2018;175:3891–3910.
  • Abelson MB, Shetty S, Korchak M, et al. Advances in pharmacotherapy for allergic conjunctivitis. Expert Opin Pharmacother. 2015;16:1219–1231.
  • Lin K, Ateeq HS, Hsiung SH, et al. Selective, tight-binding inhibitors of integrin alpha4beta1 that inhibit allergic airway responses. J Med Chem. 1999;42:920–934.
  • Delaszlo SE. Para-aminomethylaryl carboxamide derivatives.US6191171B1. 2001.
  • Chang L. Cyclic amino acid derivatives as cell adhesion inhibitors.US6271252B1. 2001.
  • Durette PL. Sulfonamides as cell adhesion inhibitors.US6221888B1. 2001.
  • Durette PL. Biarylalkanoic acids as cell adhesion inhibitors.US6291511B1. 2001.
  • Durette PL. Substituted β-alanine derivatives as cell adhesion inhibitors.US6645939B1. 2003.
  • Durette PL. Heterocyclic amide compounds as cell adhesion inhibitors.US6903075B1. 2005.
  • Laszlo S. Substituted ureas as cell adhesion inhibitors.US6353099B1. 2002.
  • Laszlo S. Substituted nipecotyl derivatives as inhibitors of cell adhesion.US6403584B1. 2002.
  • Laszlo S. Substituted isonipecotyl derivatives as inhibitors of cell adhesion.US6579889B2. 2003.
  • Konradi AW. α-aminoacetic acid derivatives-α4β7 receptor antagonists.US6410781B1. 2002.
  • Konradi AW. α-aminoacetic acid derivatives-α4β7 receptor antagonists.US6545160B2. 2003.
  • Hagmann WK. Heterocycle amides as cell adhesion inhibitors.US6420418B1. 2002.
  • Hagmann WK. Substituted cyclic amidine derivatives as inhibitors of cell adhesion.US6482840B2. 2002.
  • Hagmann WK. Substituted amidine derivatives as inhibitors of cell adhesion.US6734311B2. 2004.
  • Harriman GC, Brewer M, Bennett R, et al. Selective cell adhesion inhibitors: barbituric acid based alpha4beta7–mAdCAM inhibitors. Bioorg Med Chem Lett. 2008;18:2509–2512.
  • Tanaka Y. Phenylalanine derivatives.US6610710B2. 2003.
  • Tilley JW, Sidduri A, Lou J, et al. Identification of N-acyl 4-(3-pyridonyl)phenylalanine derivatives and their orally active prodrug esters as dual acting alpha4beta1 and alpha4beta7 receptor antagonists. Bioorg Med Chem Lett. 2013;23:1036–1040.
  • Xu YZ, Smith JL, Semko CM, et al. Orally available and efficacious alpha4beta1/alpha4beta7 integrin inhibitoFrs. Bioorg Med Chem Lett. 2013;23:4370–4373.
  • Bova MP, Nguyen L, Wallace W, et al. A label-free approach to identify inhibitors of alpha4beta7-mediated cell adhesion to MadCAM. J Biomol Screen. 2011;16:536–544.
  • Dyatkin AB. Aza-bridged-bicyclic amino acid derivatives as α4 integrin antagonists.US6960597B2. 2005.
  • Schwender CF. Inhibitors of MAdCAM-1-mediated interactions and methods of use therefor.US6037324. 2000.
  • Schwender CF. Inhibitors of MAdCAM-1-mediated interactions and methods of use therefor.US6274556B1. 2001.
  • Dutta AS. Cell adhesion ihibiting compounds.US6235711B1. 2001.
  • Locardi E, Boer J, Modlinger A, et al. Synthesis and structure-activity relationship of mannose-based peptidomimetics selectively blocking integrin alpha4beta7 binding to mucosal addressing cell adhesion molecule-1. J Med Chem. 2003;46:5752–5762.
  • Bhandari A. α4β7 peptide dimer antagonists.US9273093B2. 2016.
  • Bhandari A. α4β7 integrin thioether peptide antagonists.US9714270B2. 2017.
  • Tolomelli A, Baiula M, Viola A, et al. Dehydro-beta-proline containing alpha4beta1 integrin antagonists: stereochemical recognition in ligand-receptor interplay. ACS Med Chem Lett. 2015;6:701–706.
  • Appavoo S, Kaji T, Frost JR, et al. Development of endocyclic control elements for peptide macrocycles. J Am Chem Soc. 2018.
  • Papst S, Noisier AF, Brimble MA, et al. Synthesis and biological evaluation of tyrosine modified analogues of the alpha4beta7 integrin inhibitor biotin-R(8)ERY. Bioorg Med Chem. 2012;20:5139–5149.
  • Papst S, Noisier A, Brimble MA, et al. Tyrosine modified analogues of the alpha4beta7 integrin inhibitor biotin-R(8)ERY prepared via click chemistry: synthesis and biological evaluation. Bioorg Med Chem. 2012;20:2638–2644.
  • Harriman GC, Schwender CF, Gallant D, et al. Cell adhesion antagonists: synthesis and evaluation of a novel series of phenylalanine based inhibitors. Bioorg Med Chem Lett. 2000;10:1497–1499.
  • Bhandari A. α4β7 peptide monomer and dimer antagonists.US9518091B2. 2016.
  • Bhandari A. α4β7 peptide monomer and dimer antagonists.US9809623B2. 2017.
  • Thompson AJ, Baranzini SE, Geurts J, et al. Multiple sclerosis. Lancet. 2018;391:1622–1636.
  • Reich DS, Lucchinetti CF, Calabresi PA. Multiple Sclerosis. N Engl J Med. 2018;378:169–180.
  • Ungaro R, Mehandru S, Allen PB, et al. Ulcerative colitis. Lancet. 2017;389:1756–1770.
  • Baumgart DC, Sandborn WJ. Crohn’s disease. Lancet. 2012;380:1590–1605.
  • Bravata I, Allocca M, Fiorino G, et al. Integrins and adhesion molecules as targets to treat inflammatory bowel disease. Curr Opin Pharmacol. 2015;25:67–71.
  • Amiot A, Peyrin-Biroulet L. Current, new and future biological agents on the horizon for the treatment of inflammatory bowel diseases. Therap Adv Gastroenterol. 2015;8:66–82.
  • Targan SR, Feagan BG, Fedorak RN, et al. Natalizumab for the treatment of active Crohn’s disease: results of the ENCORE Trial. Gastroenterology. 2007;132:1672–1683.
  • Pagnini C, Arseneau KO, Cominelli F. Natalizumab in the treatment of Crohn’s disease patients. Expert Opin Biol Ther. 2017;17:1433–1438.
  • Fox IH. Formulation for anti-α4β7 antibody.US9663579B2. 2017.
  • Catalan-Serra I, Brenna O. Immunotherapy in inflammatory bowel disease: novel and emerging treatments. Hum Vaccin Immunother. 2018;1–15.
  • Lobb RR, Adams SP. Small molecule antagonists of alpha4 integrins: novel drugs for asthma. Expert Opin Investig Drugs. 1999;8:935–945.
  • Ogawa H, Binion DG, Heidemann J, et al. Mechanisms of MAdCAM-1 gene expression in human intestinal microvascular endothelial cells. Am J Physiol Cell Physiol. 2005;288:C272–281.
  • Hillan KJ, Hagler KE, MacSween RN, et al. Expression of the mucosal vascular addressing, MAdCAM-1, in inflammatory liver disease. Liver. 1999;19:509–518.
  • Grant AJ, Lalor PF, Hubscher SG, et al. MAdCAM-1 expressed in chronic inflammatory liver disease supports mucosal lymphocyte adhesion to hepatic endothelium (MAdCAM-1 in chronic inflammatory liver disease). Hepatology. 2001;33:1065–1072.
  • Fong S. Diagnosis and treatment of hepatric disorders.US7090845B2. 2006.
  • Fong S. Diagnosis and treatment of hepatic disorders.US7250264B2. 2007.
  • Fong S. Diagnosis and treatment of hepatic disorders.US7368543B2. 2008.
  • Chand S, Messina EL, AlSalmi W, et al. Glycosylation and oligomeric state of envelope protein might influence HIV-1 virion capture by alpha4beta7 integrin. Virology. 2017;508:199–212.
  • Richardson SI, Gray ES, Mkhize NN, et al. South African HIV-1 subtype C transmitted variants with a specific V2 motif show higher dependence on alpha4beta7 for replication. Retrovirology. 2015;12:54.
  • O’Rourke SM, Schweighardt B, Phung P, et al. Mutation at a single position in the V2 domain of the HIV-1 envelope protein confers neutralization sensitivity to a highly neutralization-resistant virus. J Virol. 2010;84:11200–11209.
  • Cicala C, Martinelli E, McNally JP, et al. The integrin alpha4beta7 forms a complex with cell-surface CD4 and defines a T-cell subset that is highly susceptible to infection by HIV-1. Proc Natl Acad Sci USA. 2009;106:20877–20882.
  • Cicala C, Arthos J, Fauci AS. HIV-1 envelope, integrins and co-receptor use in mucosal transmission of HIV. J Transl Med. 2011;9(Suppl 1):S2.
  • Mukhopadhya I, Murray GI, Duncan L, et al. Transporters for antiretroviral drugs in colorectal CD4+ T Cells and circulating alpha4beta7 Integrin CD4+ T Cells: implications for HIV microbicides. Mol Pharm. 2016;13:3334–3340.
  • Pena-Cruz V, Etemad B, Chatziandreou N, et al. HIV-1 envelope replication and alpha4beta7 utilization among newly infected subjects and their corresponding heterosexual partners. Retrovirology. 2013;10:162.
  • Elahi S, Niki T, Hirashima M, et al. Galectin-9 binding to Tim-3 renders activated human CD4+ T cells less susceptible to HIV-1 infection. Blood. 2012;119:4192–4204.
  • Arthos J. Use of antagonists of the interaction between HIV gp120 and α4β7 integrin.US9193790B2. 2015.
  • Arthos J. Use of antagonists of the interaction between HIV gp120 and α4β7 integrin.US9441041B2. 2016.
  • Loo L, Robinson MK, Adams GP. Antibody engineering principles and applications. Cancer J. 2008;14:149–153.
  • Nanda KS, Cheifetz AS, Moss AC. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): a meta-analysis. Am J Gastroenterol. 2013;108: 40–47. quiz 48.
  • Verstockt B, Ferrante M, Vermeire S, et al. New treatment options for inflammatory bowel diseases. J Gastroenterol. 2018;53:585–590.
  • Yang XD, Sytwu HK, McDevitt HO, et al. Involvement of beta 7 integrin and mucosal addressing cell adhesion molecule-1 (MAdCAM-1) in the development of diabetes in obese diabetic mice. Diabetes. 1997;46:1542–1547.
  • Xu B, Cook RE, Michie SA. Alpha4beta7 integrin/MAdCAM-1 adhesion pathway is crucial for B cell migration into pancreatic lymph nodes in nonobese diabetic mice. J Autoimmun. 2010;35:124–129.
  • Vermeire S, Ghosh S, Panes J, et al. The mucosal addressing cell adhesion molecule antibody PF-00547,659 in ulcerative colitis: a randomised study. Gut. 2011;60:1068–1075.
  • Vermeire S, Sandborn WJ, Danese S, et al. Anti-MAdCAM antibody (PF-00547659) for ulcerative colitis (TURANDOT): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet. 2017;390:135–144.
  • Sandborn WJ, Lee SD, Tarabar D, et al. Phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn’s disease: report of the OPERA study. Gut. 2018;67:1824–1835..
  • Wendt E, Keshav S. CCR9 antagonism: potential in the treatment of inflammatory bowel disease. Clin Exp Gastroenterol. 2015;8:119–130.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.