1,169
Views
2
CrossRef citations to date
0
Altmetric
Review

A patent review of the ubiquitin ligase system: 2015–2018

, , , , &
Pages 919-937 | Received 20 Aug 2018, Accepted 13 Nov 2018, Published online: 23 Nov 2018

References

  • Komander D, Rape M. The ubiquitin code. Annu Rev Biochem. 2012;81:203–229.
  • Metzger MB, Pruneda JN, Klevit RE, et al. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta. 2014;1843:47–60.
  • Swatek KN, Komander D. Ubiquitin modifications. Cell Res. 2016;26(4):399–422.
  • Bernassola F, Karin M, Ciechanover A, et al. The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell. 2008;14(1):10–21.
  • Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer. 2011;11:629–643.
  • Deshaies RJ, Joazeiro CAP. RING domain E3 ubiquitin ligases. Ann Rev Biochem. 2009;78:399–434.
  • Landré V, Rotblat B, Sonia Melino S. Screening for E3-Ubiquitin ligase inhibitors: challenges and opportunities. Oncotarget. 2014;18(5):7988–8013.
  • Zhang W, Sidhu SS. Development of inhibitors in the ubiquitination cascade. FEBS Lett. 2014;588:356–367.
  • Huang X, Dixit VM. Drugging the undruggables: exploring the ubiquitin system for drug development. Cell Res. 2016;26:484–498.
  • Sekizawa R, Ikeno S, Nakamura H, et al. Panepophenanthrin, from a mushroom strain, a novel inhibitor of the ubiquitin activating enzyme. J Nat Prod. 2002;65:1491–1493.
  • Moses JE, Commeiras L, Baldwin JE, et al. Total synthesis of panepophenanthrin. Org Lett. 2003;5:2987–2988.
  • Tsukamoto S, Hirota H, Imachi M, et al. Himeic acid A: a new ubiquitin-activating enzyme inhibitor isolated from a marine-derived fungus, aspergillus sp. Bioorg Med Chem Lett. 2005;15:191–194.
  • Taori K, Paul VJ, Luesch H. Structure and activity of largazole, a potent antiproliferative agent from the Floridian marine cyanobacterium symploca sp. J Am Chem Soc. 2008;130:1806–1807.
  • Yamanokuchi R, Imada K, Miyazaki M, et al. Hyrtioreticulins A–E, indole alkaloids inhibiting the ubiquitin-activating enzyme, from the marine sponge hyrtios reticulatus. Bioorg Med Chem. 2012;20:4437–4442.
  • Ungermannova D, Parker SJ, Nasveschuk CG, et al. Largazole and its derivatives selectively inhibit ubiquitin activating enzyme (e1). PLoS One. 2012;7:e29208.
  • Wu LC, Wen ZS, Qiu YT, et al. Largazole arrests cell cycle at G1 phase and triggers proteasomal degradation of E2F1 in lung cancer cells. ACS Med Chem Lett. 2013;4:921–926.
  • Yang Y, Kitagaki J, Dai RM, et al. Inhibitors of ubiquitin-activating enzyme (E1), a new class of potential cancer therapeutics. Cancer Res. 2007;67:9472–9481.
  • Ungermannova D, Parker SJ, Nasveschuk CG, et al. Identification and mechanistic studies of a novel ubiquitin E1 inhibitor. J Biomol Screen. 2012;17(4):421–434.
  • Kitagaki J, Yang Y, Saavedra JE, et al. Nitric oxide prodrug JS-K inhibits ubiquitin E1 and kills tumor cells retaining wild type p53. Oncogene. 2009;28(4):619–624.
  • Soucy TA, Smith PG, Milhollen MA, et al. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature. 2009;458:732–736.
  • Nawrocki ST, Griffin P, Kelly KR, et al. MLN4924: a novel first-in-class inhibitor of NEDD8-activating enzyme for cancer therapy. Expert Opin Investig Drugs. 2012;21:1563–1573.
  • Watson IR, Irwin MS, Ohh M. NEDD8 pathways in cancer, sine quibus non. Cancer Cell. 2011;19:168–176.
  • Oladghaffari M, Islamian JP, Baradaran B, et al. MLN4924 therapy as a novel approach in cancer treatment modalities. J Chemother. 2016;28(2):74–82.
  • Soucy TA, Dick LR, Smith PG, et al. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer. 2010;1:708–716.
  • Shah JJ, Jakubowiak AJ, O’Connor OA, et al. Phase I study of the novel investigational NEDD8-activating enzyme inhibitor pevonedistat (MLN4924) in patients with relapsed/refractory multiple myeloma or lymphoma. Clin Cancer Res. 2016;22(1):34–43.
  • Wong KM, Micel LN, Selby HM, et al. Targeting the protein ubiquitination machinery in melanoma by the NEDD8-activating enzyme inhibitor pevonedistat (MLN4924). Invest New Drugs. 2017;35(1):11–25.
  • Chen JJ, Tsu CA, Gavin JM, et al. Mechanistic studies of substrate-assisted inhibition of ubiquitin activating enzyme by adenosine sulfamate analogues. J Biol Chem. 2011;286:40867–40877.
  • Traore T, Huck JH, Shi JS, et al. 255 Pre-clinical in vivo characterization of MLN7243, an investigational ubiquitin activating enzyme inhibitor, in solid tumor models. Eur J Cancer. 2014;50:85.
  • Hyer ML, Milhollen MA, Ciavarri J, et al. A small-molecule inhibitor of the ubiquitin activating enzyme for cancer treatment. Nat Med. 2018;24(2):186–193.
  • McHugh A, Fernandes K, South AP, et al. Preclinical comparison of proteasome and ubiquitin E1 enzyme inhibitors in cutaneous squamous cell carcinoma: the identification of mechanisms of differential sensitivity. Oncotarget. 2018;9(29):20265–20281.
  • An H, Statsyuk AV. An inhibitor of ubiquitin conjugation and aggresome formation. Chem Sci. 2015;6(9):5235–5245.
  • Zhong HJ, Ma VP, Cheng Z, et al. Discovery of a natural product inhibitor targeting protein neddylation by structure-based virtual screening. Biochimie. 2012;94:2457–2460.
  • Zhong HJ, Leung KH, Lin S, et al. Discovery of deoxyvasicinone derivatives as inhibitors of NEDD8-activating enzyme. Methods. 2015;71:71–76.
  • Zhong HJ, Liu LJ, Chan DSH, et al. Structure-based repurposing of FDA-approved drugs as inhibitors of NEDD8-activating enzyme. Biochimie. 2014;102:211–215.
  • Lu P, Liu X, Yuan X, et al. Discovery of a novel NEDD8 activating enzyme inhibitor with piperidin-4-amine scaffold by structure-based virtual screening. ACS Chem Biol. 2016;11:1901–1907.
  • Lu P, Guo Y, Zhu L, et al. A novel NAE/UAE dual inhibitor LP0040 blocks neddylation and ubiquitination leading to growth inhibition and apoptosis of cancer cells. Eur J Med Chem. 2018;154:294–304.
  • Stewart MD, Ritterhoff T, Klevit RE, et al. E2 enzymes: more than just middle men. Cell Res. 2016;26:423–440.
  • Hodge CD, Spyracopoulos L, Mark Glover JN. Ubc13: the Lys63 ubiquitin chain building machine. Oncotarget. 2017;39(7):64471–64504.
  • Laine A, Topisirovic I, Zhai D, et al. Regulation of p53 localization and activity by Ubc13. Mol Cell Biol. 2006;26(23):8901–8913.
  • Tsukamoto S, Takeuchi T, Rotinsulu H, et al. Leucettamol A: A new inhibitor of Ubc13-Uev1A interaction isolated from a marine sponge, leucetta aff. microrhaphis. Bioorg Med Chem Lett. 2008;18:6319–6320.
  • Scheper J, Guerra-Rebollo M, Sanclimens G, et al. Protein-protein interaction antagonists as novel inhibitors of non-canonical polyubiquitylation. PLoS One. 2010;5(6):e11403.
  • Ushiyama S, Umaoka H, Kato H, et al. Manadosterols A and B, sulfonated sterol dimers inhibiting the Ubc13–Uev1a interaction, isolated from the marine sponge lissodendryx fibrosa. J Nat Prod. 2012;75(8):1495–1499.
  • Cheng J, Fan YH, Xu X, et al. A small-molecule inhibitor of UBE2N induces neuroblastoma cell death via activation of p53 and JNK pathways. Cell Death Dis. 2014;5(2):e1079.
  • Ye Y, Rape M. Building ubiquitin chains: E2 enzymes at work. Nat Rev Mol Cell Biol. 2009;10:755–764.
  • Ceccarelli DF, Tang X, Pelletier B. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell. 2011;145:1075–1087.
  • Huang H, Ceccarelli DF, Orlicky S, et al. E2 enzyme inhibition by stabilization of a low-affinity interface with ubiquitin. Nat Chem Biol. 2014;10(2):156–163.
  • Kothayer H, Spencer SM, Tripathi K, et al. Synthesis and in vitro anticancer evaluation of some 4,6-diamino-1,3,5-triazine-2-carbohydrazides as Rad6 ubiquitin conjugating enzyme inhibitors. Bioorg Med Chem Lett. 2016;26(8):2030–2034.
  • Morreale FE, Bortoluzzi A, Chaugule VK, et al. Allosteric targeting of the fanconi anemia ubiquitin-conjugating enzyme Ube2T by fragment screening. J Med Chem. 2017;60:4093–4098.
  • Liu Y, Mallampalli RK. Small molecule therapeutics targeting F-box proteins in cancer. Semin Cancer Biol. 2016;36:105–119.
  • Akhoondi S, Sun D, von der Lehr N, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67:9006–9012.
  • Spruck C. miR-27a regulation of SCF(Fbw7) in cell division control and cancer. Cell Cycle. 2011;10:3232–3233.
  • Ma J, Cheng L, Liu H, et al. Genistein down-regulates miR-223 expression in pancreatic cancer cells. Curr Drug Targets. 2013;14:1150–1156.
  • Kimura T, Gotoh M, Nakamura Y, et al. hCDC4b, a regulator of cyclin E, as a direct transcriptional target of p53. Cancer Sci. 2003;94:431–436.
  • Mao JH, Perez-Losada J, Wu D, et al. Fbxw7/Cdc4 is a p53-dependent, haploinsufficient tumour suppressor gene. Nature. 2004;432:775–779.
  • Balamurugan K, Wang JM, Tsai HH, et al. The tumour suppressor C/EBPdelta inhibits FBXW7 expression and promotes mammary tumour metastasis. Embo J. 2010;29:4106–4117.
  • Welcker M, Orian A, Jin J, et al. The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c- Myc protein degradation. Proc Natl Acad Sci U S A. 2004;101:9085–9090.
  • von der Lehr N, Johansson S, Wu S, et al. The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. Mol Cell. 2003;11:1189–1200.
  • Kim SY, Herbst A, Tworkowski KA, et al. Skp2 regulates Myc protein stability and activity. Mol Cell. 2003;11:1177–1188.
  • Yada M, Hatakeyama S, Kamura T, et al. Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 2004;23:2116–2125.
  • Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt’s lymphoma cells. Mol Cell Biol. 2000;20:2423–2435.
  • Busino L, Millman SE, Scotto L, et al. Fbxw7α- and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nat Cell Biol. 2012;14:375–385.
  • Zhou GB, Chen SJ, Wang ZY, et al. Back to the future of oridonin: again, compound from medicinal herb shows potent antileukemia efficacies in vitro and in vivo. Cell Res. 2007;17:274–276.
  • Huang HL, Weng HY, Wang LQ, et al. Triggering Fbw7-mediated proteasomal degradation of c-Myc by oridonin induces cell growth inhibition and apoptosis. Mol Cancer Ther. 2012;11:1155–1165.
  • Xia J, Duan Q, Ahmad A, et al. Genistein inhibits cell growth and induces apoptosis through up-regulation of miR-34a in pancreatic cancer cells. Curr Drug Targets. 2012;13:1750–1756.
  • Orlicky S, Tang X, Neduva V, et al. An allosteric inhibitor of substrate recognition by the SCF(Cdc4) ubiquitin ligase. Nat Biotechnol. 2010;28:733–737.
  • Reavie L, Buckley SM, Loizou E, et al. Regulation of c-Myc ubiquitination controls chronic myelogenous leukemia initiation and progression. Cancer Cell. 2013;23:362–375.
  • Zheng N, Zhou Q, Wang Z, et al. Recent advances in SCF ubiquitin ligase complex: clinical implications. Biochim Biophys Acta. 2016;1866:12–22.
  • Kim CJ, Song JH, Cho YG, et al. Somatic mutations of the beta-TrCP gene in gastric cancer. APMIS. 2007;115:127–133.
  • Gerstein AV, Almeida TA, Zhao G, et al. APC/CTNNB1 (beta-catenin) pathway alterations in human prostate cancers. Genes Chromosom Cancer. 2002;34:9–16.
  • Wood LD, Parsons DW, Jones S, et al. The genomic landscapes of human breast and colorectal cancers. Science. 2007;318:1108–1113.
  • Blees JS, Bokesch HR, Rübsamen D, et al. Erioflorin stabilizes the tumor suppressor Pdcd4 by inhibiting its interaction with the E3-ligase beta-TrCP1. PLoS One. 2012;7:e46567.
  • Frescas D, Pagano M. Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer. 2008;8:438–449.
  • Schmid T, Jansen AP, Baker AR, et al. Translation inhibitor Pdcd4 is targeted for degradation during tumor promotion. Cancer Res. 2008;68:1254–1260.
  • Carrano AC, Eytan E, Hershko A, et al. SKP2 is required for ubiquitin mediated degradation of the CDK inhibitor p27. Nat Cell Biol. 1999;1:193–199.
  • Yu ZK, Gervais JL, Zhang H. Human CUL-1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A. 1998;95:11324–11329.
  • Kamura T, Hara T, Kotoshiba S, et al. Degradation of p57Kip2 mediated by SCFSkp2- dependent ubiquitylation. Proc Natl Acad Sci U S A. 2003;100:10231–10236.
  • Hiramatsu Y, Kitagawa K, Suzuki T, et al. Degradation of Tob1 mediated by SCFSkp2-dependent ubiquitination. Cancer Res. 2006;66:8477–8483.
  • Song MS, Song SJ, Kim SJ, et al. Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin mediated degradation at the G1-S transition. Oncogene. 2008;27:3176–3185.
  • Wang H, Cui J, Bauzon F, et al. A comparison between Skp2 and FOXO1 for their cytoplasmic localization by Akt1. Cell Cycle. 2010;9:1021–1022.
  • Bhattacharya S, Garriga J, Calbo J, et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene. 2003;22:2443–2451.
  • Waltregny D, Leav I, Signoretti S, et al. Androgen-driven prostate epithelial cell proliferation and differentiation in vivo involve the regulation of p27. Mol Endocrinol. 2001;15:765–782.
  • Lu L, Schulz H, Wolf DA. The F-box protein SKP2 mediates androgen control of p27 stability in LNCaP human prostate cancer cells. BMC Cell Biol. 2002;3:22.
  • Lin HK, Chen Z, Wang G, et al. Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature. 2010;464:374–379.
  • Nakayama K, Nagahama H, Minamishima YA, et al. Targeted disruption of Skp2 results in accumulation of cyclin E and p27(Kip1), polyploidy and centrosome overduplication. Embo J. 2000;19:2069–2081.
  • Kratzat S, Nikolova V, Miething C, et al. Cks1 is required for tumor cell proliferation but not sufficient to induce hematopoietic malignancies. PLoS One. 2012;7:e37433.
  • Agarwal A, Bumm TG, Corbin AS, et al. Absence of SKP2 expression attenuates BCR-ABL-induced myeloproliferative disease. Blood. 2008;112:1960–1970.
  • Nakayama K, Nagahama H, Minamishima YA, et al. Skp2-mediated degradation of p27 regulates progression into mitosis. Dev Cell. 2004;6:661–672.
  • Minamishima YA, Nakayama K, Nakayama K. Recovery of liver mass without proliferation of hepatocytes after partial hepatectomy in Skp2-deficient mice. Cancer Res. 2002;62:995–999.
  • Sistrunk C, Kim SH, Wang X, et al. Skp2 deficiency inhibits chemical skin tumorigenesis independent of p27(Kip1) accumulation. Am J Pathol. 2013;182:1854–1864.
  • Kullmann MK, Grubbauer C, Goetsch K, et al. The p27-Skp2 axis mediates glucocorticoid-induced cell cycle arrest in T-lymphoma cells. Cell Cycle. 2013;12:2625–2635.
  • Lim MS, Adamson A, Lin Z, et al. Expression of Skp2, a p27(Kip1) ubiquitin ligase, in malignant lymphoma: correlation with p27(Kip1) and proliferation index. Blood. 2002;10:2950–2956.
  • Schüler S, Diersch S, Hamacher R, et al. SKP2 confers resistance of pancreatic cancer cells towards TRAIL-induced apoptosis. Int J Oncol. 2011;38:219–225.
  • Hulit J, Lee RJ, Li Z, et al. p27Kip1 repression of ErbB2-inducedmammary tumor growth in transgenicmice involves Skp2 andWnt/beta-catenin signaling. Cancer Res. 2006;66:8529–8541.
  • Fujita T, Liu W, Doihara H, et al. Dissection of the APCCdh1-Skp2 cascade in breast cancer. Clin Cancer Res. 2008;14:1966–1975.
  • Wei S, Chu PC, Chuang HC, et al. Targeting the oncogenic E3 ligase Skp2 in prostate and breast cancer cells with a novel energy restriction-mimetic agent. PLoS One. 2012;7:e47298.
  • Zhao H, Bauzon F, Fu H, et al. Skp2 deletion unmasks a p27 safeguard that blocks tumorigenesis in the absence of pRb and p53 tumor suppressors. Cancer Cell. 2013;24:645–659.
  • Chan CH, Morrow JK, Li CF, et al. Pharmacological inactivation of Skp2 SCF ubiquitin ligase restricts cancer stem cell traits and cancer progression. Cell. 2013;154:556–568.
  • Chen Q, Xie W, Kuhn DJ, et al. Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy. Blood. 2008;111:4690–4699.
  • Roy S, Kaur M, Agarwal C, et al. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol Cancer Ther. 2007;6:2696–2707.
  • Yang ES, Burnstein KL. Vitamin D inhibits G1 to S progression in LNCaP prostate cancer cells through p27Kip1 stabilization and Cdk2 mislocalization to the cytoplasm. J Biol Chem. 2003;278:46862–46868.
  • Huang HC, Lin CL, Lin JK. 1,2,3,4,6-penta-O-galloyl-beta-D-glucose, quercetin, curcumin and lycopene induce cell-cycle arrest in MDA-MB-231 and BT474 cells through downregulation of Skp2 protein. J Agric Food Chem. 2011;59:6765–6775.
  • Huang HC, Way TD, Lin CL, et al. EGCG stabilizes p27kip1 in E2-stimulated MCF-7 cells through down-regulation of the Skp2 protein. Endocrinology. 2008;149:5972–5983.
  • Wu L, Grigoryan AV, Li Y, et al. Specific small molecule inhibitors of Skp2-mediated p27 degradation. Chem Biol. 2012;19:1515–1524.
  • Ungermannova D, Lee J, Zhang G, et al. High-throughput screening AlphaScreen assay for identification of small-molecule inhibitors of ubiquitin E3 ligase SCF Skp2-Cks1. J Biomol Screen. 2013;18(8):910–920.
  • Oh M, Lee JH, Moon H, et al. A chemical inhibitor of the Skp2/p300 interaction that promotes p53 mediated apoptosis. Angew Chem Int Ed. 2016;55:602–606.
  • Momand J, Jung D, Wilczynski S, et al. The MDM2 gene amplification database. Nucleic Acids Res. 1998;26:3453–3459.
  • Reifenberger G, Liu L, Ichimura K, et al. Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res. 1993;53:2736–2739.
  • Hock AK, Vousden KH. The role of ubiquitin modification in the regulation of p53. Biochim Biophys Acta. 2014;1843(1):137–149.
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848.
  • Cohen P, Tcherpakov M. Will the ubiquitin system furnish as many drug targets as protein kinases? Cell. 2010;143:686–693.
  • Vu B, Wovkulich P, Pizzolato G, et al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med Chem Lett. 2013;4(5):466–469.
  • Issaeva N, Bozko P, Enge M, et al. Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors. Nat Med. 2004;10:1321–1328.
  • Grossman SR, Deato ME, Brignone C, et al. Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science. 2003;300:342–344.
  • Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov. 2006;5:596–613.
  • Yang Y, Ludwig RL, Jensen JP, et al. Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells. Cancer Cell. 2005;7:547–559.
  • Roxburgh P, Hock AK, Dickens MP, et al. Small molecules that bind the Mdm2 RING stabilize and activate p53. Carcinogenesis. 2012;33:791–798.
  • Zhang Z, Chu XJ, Liu JJ, et al. Discovery of potent and orally active p53-MDM2 Inhibitors RO5353 and RO2468 for potential clinical development. ACS Med Chem Lett. 2014;5:124–127.
  • Zhang B, Golding BT, Hardcastle IR. Small-molecule MDM2-p53 inhibitors: recent advances. Future Med Chem. 2015;7(5):631–645.
  • Tisato V, Voltan R, Gonelli A, et al. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncolog. 2017;10(1):133.
  • Uchida C, Kitagawa M. RING-, HECT-, and RBR-type E3 ubiquitin ligases: involvement in human cancer. Curr Cancer Drug Tar. 2016;16(2):157–174.
  • Zhang W, Wu K, Sartori MA. System-wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol Cell. 2016;62:121–136.
  • Mund T, Lewis MJ, Maslen S, et al. Peptide and small molecule inhibitors of HECT-type ubiquitin ligases. Proc Natl Acad Sci U S A. 2014;47(111):16736–16741.
  • Quirit JG, Lavrenov SN, Poindexter K, et al. Indole-3-carbinol (I3C) analogues are potent small molecule inhibitors of NEDD4-1 ubiquitin ligase activity that disrupt proliferation of human melanoma cells. Biochem Pharmacol. 2017;127:13–27.
  • Wang M, Pickart CM. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. Embo J. 2005;24(24):4324–4333.
  • Beaudenon S, Huibregtse JM, E6 HPV. E6AP and cervical cancer. BMC Biochem. 2008;9(1):1–7.
  • Haas AL, Ronchi VP Methods of modulating ubiquitin ligase activity. Granted patents US 9725708. 2017.
  • Ronchi VP, Klein JM, Haas AL. E6AP/UBE3A ubiquitin ligase harbors two E2-ubiquitin binding sites. J Biol Chem. 2013;288:10349–10360.
  • Carroll D, Sran A, Singh R, et al. Ubiquitination inhibitors. Applications US 20160068490. 2016.
  • Spruck C, Strohmaier H, Watson M, et al. A CDK-Independent function of mammalian Cks1: targeting of SCFSkp2 to the CDK inhibitor p27Kip1. Mol Cell. 2001;7(3):639–650.
  • Delaunay-Moisan A, Toledano M Ligase E3 RNF185 inhibitors and uses thereof. Applications US 20160194644. 2016.
  • Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol. 2009;10(6):398–409.
  • Scheffner M, Kumar S. Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta. 2014;1843(1):61–74.
  • Zhang W, Sidhu S Ubiquitin variant modulators of HECT E3 ligases and their uses. Applications US 20170275341. 2017.
  • Gorelik M, Sidhu S Ubiquitin variant modulators of SCF E3 ligases and their uses. Applications US 20170321205. 2017.
  • Chamberlain P, Cathers EB, Lopez-Girona A Compositions and methods for inducing conformational changes in cereblon other E3 ubiquitin ligases. Applications US 20150374678. 2015.
  • Rico-Bautista E, Zhu W, Kitada S, et al. Small molecule-induced mitochondrial disruption directs prostate cancer inhibition via upr signaling. Oncotarget. 2013;4:1212–1229.
  • Nils G, Theo R Small molecule inhibitors of the E3 ligase Skp2 in depression and other disease. EP2954896. 2015.
  • Riley B, Johnston J, Morgans D Method for identifying modulators of ubiquitin ligases. Granted patents US 9464311. 2016.
  • Clark JP Ubiquitination assay. EP2564193. 2016.
  • Mevissen TET, Hospenthal MK, Komander D Ubiquitin chain analysis. Granted patents US 9587265. 2017.
  • Statsyuk AV, Park S Probes and assays for measuring E3 ligase activity. Applications US 20160076074. 2016.
  • Harper JW, Jin J Novel activation and transfer cascade for ubiquitin. Applications US 20150105446. 2015.
  • Luo ZQ, Qiu J, Das C, et al. Novel ubiquitination system and the uses thereof. Applications US 20170283852. 2017.
  • Chakraborty T, de Fougerolles A Modified polynucleotides encoding siah E3 ubiquitin protein ligase1. Granted patents US 9255129B2. 2016.
  • Bulatov E, Ciulli A. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J. 2015;467:365–386.
  • Buckley DL, Raina K, Darricarrerre N, et al. HaloPROTACS: use of small molecule PROTACs to induce degradation of HaloTag fusion proteins. ACS Chem Biol. 2015;10(8):1831–1837.
  • Winter GE, Buckley DL, Paulk J, et al. Phthalimide conjugation asastrategy for in vivo target protein degradation. Science. 2015;348(6241):1376–1387.
  • Chang TL, Huang YH, Ou YD. The role of ginsenosides in inhibiting ubiquitin activating enzyme (E1) activity. J. Funct. Foods. 2014;7:462–470.
  • Patel K, Ahmed ZS, Huang X, et al. Discovering proteasomal deubiquitinating enzyme inhibitors for cancer therapy: lessons from rational design, nature and old drug reposition. Future Med Chem. 2018;10:2087–2108. Epub ahead of print.
  • Stein ML, Groll M. Applied techniques for mining natural proteasome inhibitors. Biochim Biophys Acta. 2014;1843:26–38.
  • Wong JH, Alfatah M, Sin MF, et al. A yeast two-hybrid system for the screening and characterization of small-molecule inhibitors of protein-protein interactions identifies a novel putative Mdm2-binding site in p53. BMC Biol. 2017;15(1):108.
  • Chen X, Mangala LS, Rodriguez-Aguayo C, et al. RNA interference-based therapy and its delivery systems. Cancer Metat Rev. 2018;37:107–124.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.