6,891
Views
24
CrossRef citations to date
0
Altmetric
Review

A therapeutic patent overview of MDM2/X-targeted therapies (2014–2018)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 151-170 | Received 10 Dec 2018, Accepted 11 Feb 2019, Published online: 01 Mar 2019

References

  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:394–424.
  • Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014;13:217–236.
  • Brady CA, Attardi LD. p53 at a glance. J Cell Sci. 2010;123:2527–2532.
  • Zhang X-P, Liu F, Wang W. Two-phase dynamics of p53 in the DNA damage response. Proc Natl Acad Sci. 2011;108:8990–8995.
  • Soussi T, Wiman KG. Shaping genetic alterations in human cancer: the p53 mutation paradigm. Cancer Cell. 2007;12:303–312.
  • París R, Henry RE, Stephens SJ, et al. Multiple p53-independent gene silencing mechanisms define the cellular response to p53 activation. Cell Cycle. 2008;7:2427–2433.
  • Wade M, Li Y-C, Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer. 2013;13:83–96.
  • Toledo F, Wahl GM. MDM2 and MDM4: p53 regulators as targets in anticancer therapy. Int J Biochem Cell Biol. 2007;39:1476–1482.
  • Khoury K, Popowicz GM, Holak TA, et al. The p53-MDM2/MDMX axis - A chemotype perspective. Medchemcomm. 2011;2:246–260.
  • Marine J-C, Francoz S, Maetens M, et al. Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4. Cell Death Differ. 2006;13:927–934.
  • Karni-Schmidt O, Lokshin M, Prives C. The roles of MDM2 and MDMX in cancer. Annu Rev Pathol Mech Dis. 2016;11:617–644.
  • Weber L. Patented inhibitors of p53-Mdm2 interaction (2006–2008). Expert Opin Ther Pat. 2010;20:179–191.
  • Kamal A, Mohammed AA, Shaik TB. p53-Mdm2 inhibitors: patent review (2009–2010). Expert Opin Ther Pat. 2012;22:95–105.
  • Zak K, Pecak A, Rys B, et al. Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011-present). Expert Opin Ther Pat. 2013;23:425–448.
  • Chen J, Marechal V, Levine AJ. Mapping of the p53 and mdm-2 interaction domains. Mol Cell Biol. 1993;13:4107–4114.
  • Böttger A, Böttger V, Garcia-Echeverria C, et al. Molecular characterization of the hdm2-p53 interaction. J Mol Biol. 1997;269:744–756.
  • Popowicz GM, Dömling A, Holak TA. The structure-based design of Mdm2/Mdmx-p53 inhibitors gets serious. Angew Chem Int Ed Engl. 2011;50:2680–2688.
  • Estrada-Ortiz N, Neochoritis CG, Dömling A. How to design a successful p53-MDM2/X interaction inhibitor: a thorough overview based on crystal structures. ChemMedChem. 2016;11:757–772.
  • Graves B, Thompson T, Xia M, et al. Activation of the p53 pathway by small-molecule-induced MDM2 and MDMX dimerization. Proc Natl Acad Sci U S A. 2012;109:11788–11793.
  • Chang YS, Graves B, Guerlavais V, et al. Stapled α-helical peptide drug development: a potent dual inhibitor of MDM2 and MDMX for p53-dependent cancer therapy. Proc Natl Acad Sci U S A. 2013;110:E3445–E3454.
  • Vassilev LT, Vu BT, Graves B, et al. In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004;303:844–848.
  • Tisato V, Voltan R, Gonelli A, et al. MDM2/X inhibitors under clinical evaluation: perspectives for the management of hematological malignancies and pediatric cancer. J Hematol Oncol. 2017;10:133.
  • Ray-Coquard I, Blay J-Y, Italiano A, et al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol. 2012;13:1133–1140.
  • Vu B, Wovkulich P, Pizzolato G, et al. Discovery of RG7112: A small-molecule MDM2 Inhibitor in clinical development. ACS Med Chem Lett. 2013;4:466–469.
  • Chu X-J, Lovey AJ, Thanh VB, et al., inventor; Hoffmann-La Roche Inc., assignee. Novel Imidazolines as dual inhibitors of MDM2 and MDMX. patent US 2014/0148443 A1.
  • Guy RK, inventor; St. Jude Children’s Research Hospital, assignee. Aryl-substituted imidazoles and methods of making and using same. patent WO 2015/184383 A1.
  • Ding Q, Zhang Z, Liu -J-J, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013;56:5979–5983.
  • Zhang Z, Chu X-J, Liu -J-J, et al. Discovery of potent and orally active p53-MDM2 inhibitors RO5353 and RO2468 for potential clinical development. ACS Med Chem Lett. 2014;5:124–127.
  • Higgins B, Nichols G, Packman K, inventor; Hoffmann-La Roche Inc., assignee. Novel combination treatment for acute myeloid leukemia (AML). patent US 2015/0157603 A1.
  • Crew AP, Crews C, Dong H, et al., inventor; Arvinas Inc., assignee. Imide-based modulators of proteolysis and associated methods of use. patent US 2015/0291562 A1.
  • Crew AP, Crews CM, Dong H, et al., inventor; Arvinas, Inc., assignee. MDM2-based modulators of proteolysis and associated methods of use. patent US 2017/0008904 A1.
  • Feder M, Dubin G, Bulkowska U, et al., inventor; Adamed Sp. z o.o., assignee. 1,5-dihydropyrrol-2-one derivatives as inhibitors of p53-MDM2/MDM4 protein-protein interaction. patent WO 2015/004610 A1.
  • Rew Y, inventor; Amgen Inc., assignee. Benzoic acid derivative MDM2 inhibitor for the treatment of cancer. patent US 2014/0243372 A1.
  • Bartberger MD, Beck HP, Degraffenreid MR, et al., inventor; Amgen Inc., assignee. Cis-morpholinone and other compounds as MDM2 inhibitors for the treatment of cancer. patent WO 2014/130470 A1.
  • Gonzalez Buenrostro A, Li Y, Medina JC, et al., inventor; Amgen Inc., assignee. Heteroaryl acid morpholinone compounds as MDM2 inhibitors for the treatment of cancer. patent WO 2014/151863 A1.
  • Bio M, Caille S, Cochran B, et al., inventor; Amgen Inc., assignee. Processes of making and crystalline forms of a MDM2 inhibitor. patent US 2014/0364455 A1.
  • Caenepeel S, Canon J, Hughes P, et al., inventor; Amgen Inc., assignee. Combination therapy including an MDM2 inhibitor and one or more additional pharmaceutically active agents for the treatment of cancers. patent WO 2015/070224 A2.
  • Ferretti S, Guerreiro N, Jeay S, et al., inventor; Novartis Ag, assignee. Dose and regimen for HDM2-p53 interaction inhibitors. patent WO 2018/092020 A1.
  • Ferretti S, Guerreiro N, Jeay S, et al., inventor; Novartis Ag, assignee. Dose and regimen for an HDM2-p53 interaction inhibitor in hematological tumors. patent WO 2018/178925 A1.
  • Zhang R, Wang W, inventor; Texas Tech University System, assignee. Cancer treatment utilizing SP-141 to bind with MDM2 and act as an inhibitor of MDM2 expression. patent US 2017/0283413 A1.
  • Dinsmore C, Fradera Llinas FX, Kudale AA, et al., inventor; Merck Sharp & Dohme Corp., assignee. Substituted pyrrolopyrimidines as HDM2 inhibitors. patent WO 2014/100071 A2.
  • Cammarano CM, Christopher MP, Dinsmore C, et al., inventor; Merck Sharp & Dohme Corp., assignee. 2,6,7,8 substituted purines as HDM2 inhibitors. patent WO 2014/120748.
  • Christopher MP, Fradera Llinas FX, Machacek M, et al., inventor; Merck Sharp & Dohme Corp., assignee. 2,6,7 substituted purines as HDM2 inhibitors. patent WO 2014/123882 A1.
  • Chessari G, Howard S, Buck IM, et al., inventor; Astex Therapeutics Limited, assignee. Isoindolinone inhibitors of the MDM2-p53 interaction having anticancer activity. patent WO 2017/055859 A1.
  • Chessari G, Howard S, Buck IM, et al., inventor; Astex Therapeutics Limited, assignee. Isoindolinone inhibitors of the MDM2-p53 interaction having anticancer activity. patent WO 2017/055860 A1.
  • Zhang W, Miao Z, Zhuang C, et al., inventor; Second Military Medical University, assignee. Pyrrolidonopyrazole compounds and use thereof as drugs. patent WO 2014/134968 A1.
  • Emerson E, Halilovic E, Wang H-Q, et al., inventor; Novartis Ag, assignee. Combination of MDM2 inhibitor and BRAF inhibitor and their use. patent WO 2015/084804 A1.
  • Holzer P, Masuya K, Furet P, et al. Discovery of a dihydroisoquinolinone derivative (NVP-CGM097): A highly potent and selective MDM2 inhibitor undergoing phase 1 clinical trials in p53wt tumors. J Med Chem. 2015;58:6348–6358.
  • Joseph TL, Verma CS, Lane DP, et al., inventor; Agency for Science, Technology and Research, assignee. Peptides and methods for treating cancer. patent WO 2014/055039 A1.
  • Annis DA, Darlak K, Rhodes C, et al., inventor; Aileron Therapeutics Inc., assignee. Peptidomimetic macrocycles and formulations thereof. patent WO 2016/049355 A1.
  • Chen H, Annis DA, Chang Y, et al., inventor; Aileron Therapeutics Inc., assignee. Peptidomimetic macrocycles and uses thereof. patent WO 2016/049359 A1.
  • Wald D, Agarwal M, Xia Z, et al., inventor; MiRx Pharmaceuticals, LLC, assignee. HDMX inhibitors and their use for cancer treatment. patent US 2017/0022166 A1.
  • Ding K, Lu Y, Nikolovska-Coleska Z, et al. Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc. 2005;127:10130–10131.
  • Barakat A, Islam MS, Al-Majid AM, et al., inventor; King Saud University, assignee. Substituted spirooxindoles. patent US 9822128 B1.
  • Chen Y, Ding Q (Jack), Sun Y, inventor; Hudson Biopharma Inc., assignee. Spiropyrrolidines as MDM2 inhibitors. patent US 2015/0322076 A1.
  • Debussche L, Nicolas J-P, Rowley S, et al., inventor; Sanofi, assignee. Compositions and methods using hdm2 antagonist and mek inhibitor. patent EP 2 752 191 A1.
  • Wang S, Aguilar A, Liu L, et al., inventor; The Regents of the Universityy of Michigan, assignee. MDM2 inhibitors and therapeutic methods using the same. patent WO 2015/161032 A1.
  • Wang S, Aguilar A, Liu L, et al., inventor; The Regents of the Universityy of Michigan, assignee. MDM2 inhibitors and therapeutic methods using the same. patent US 2015/0299211 A1.
  • Aguilar A, Sun W, Liu L, et al. Design of chemically stable, potent, and efficacious MDM2 inhibitors that exploit the retro-mannich ring-opening-cyclization reaction mechanism in spiro-oxindoles. J Med Chem. 2014;57:10486–10496.
  • Feder M, Kalinowska I, Jaszczewska JA, et al., inventor; Adamed Sp. z o.o., assignee. Compounds comprising 1,1ʹ,2,5ʹ-tetrahydrospiro[indole-3,2ʹ-pyrrole]-2,5ʹ-dione system as inhibitors p53-MDM2 protein-protein interaction. patent WO 2015/189799 A1.
  • Gollner A, Kofink C, Ramharter J, et al., inventor; Boehringer Ingelheim International GmbH, assignee. Spiro[3H-indole-3,2′-pyrrolidin]-2(1H)-one compounds and derivatives as MDM2-P53 inhibitors. patent US 2015/0291611 A1.
  • Gollner A, Kofink C, Ramharter J, et al., inventor; Boehringer Ingelheim International GmbH, assignee. Spiro[3H-Indole-3,2ʹ-Pyrrolidin]-2(1H)-one derivatives and their use as Mdm2-P53 inhibitors. patent WO 2015/155332 A1.
  • Weinstabl H, Gollner A, Ramharter J, et al., inventor; Boehringer Ingelheim International GmbH, assignee. New spiro[3h-indole-3,2´-pyrrolidin]-2(1h)-one compounds and derivatives as MDM2-p53 inhibitors. patent WO 2016/001376 A1.
  • Ramharter J, Broeker J, Gille A, et al., inventor; Boehringer Ingelheim International GmbH, assignee. New spiro[3h-indole-3,2´-pyrrolidin]-2(1h)-one compounds and derivatives as MDM2-p53 inhibitors. patent WO 2016/026937 A1.
  • Gollner A, Broeker J, Kerres N, et al., inventor; Boehringer Ingelheim International GmbH, assignee. Spiro[3h-indole-3,2´-pyrrolidin]-2(1h)-one compounds and derivatives as MDM2-p53 inhibitors. patent WO 2017/060431 A1.
  • Cyrus K, Wehenkel M, Choi E-Y, et al. Two-headed PROTAC: an effective new tool for targeted protein degradation. Chembiochem. 2010;11:1531–1534.
  • Sakamoto KM, Kim KB, Verma R, et al. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol Cell Proteomics. 2003;2:1350–1358.
  • Zhang D, Baek SH, Ho A, et al. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg Med Chem Lett. 2004;14:645–648.
  • Churcher I. Protac-induced protein degradation in drug discovery: breaking the rules or just making new ones? J Med Chem. 2018;61:444–452.
  • Collins I, Wang H, Caldwell JJ, et al. Chemical approaches to targeted protein degradation through modulation of the ubiquitin-proteasome pathway. Biochem J. 2017;474:1127–1147.
  • Crew AP, Snyder LB, Wang J, et al., inventor; Arvinas, Inc., assignee. Compounds and methods for the targeted degradation of enhancer of zeste homolog 2 polypeptide. patent US 2018/0177750 A1.
  • Crew AP, Qian Y, Dong H, et al., inventor; Arvinas, Inc., assignee. Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor degraders. patent US 2018/0155322 A1.
  • Qian Y, Crew AP, Crews CM, et al., inventor; Arvinas, Inc., assignee. Modulators of estrogen receptor proteolysis and associated methods of use. patent WO 2018/140809 A1.
  • Crew AP, Hornberger KR, Wang J, et al., inventor; Arvinas, Inc., assignee. Compounds and methods for the targeted degradation of rapidly accelerated fibrosarcoma polypeptides. patent US 2018/0179183 A1.
  • Hines J, Lartigue S, Dong H, et al. MDM2-recruiting PROTAC offers superior, synergistic antiproliferative activity via simultaneous degradation of BRD4 and stabilization of p53. Cancer Res. 2019;79:251–262.
  • Crew AP, Dong H, Wang J, et al., inventor; Arvinas, Inc., assignee. Modulators of proteolysis and associated methods of use. patent WO 2018/226542 A1.
  • Verdine GL, Hilinski GJ. Stapled peptides for intracellular drug targets. Methods Enzymol. 2012;503:3–33.
  • Joseph TL, Verma CS, Lane DP, et al., inventor; Agency for Science, Technology and Research, assignee. Peptides and methods for treating cancer. patent US 2015/0246946 A1.
  • Fu Y, Kaufmann GF, inventor; Sorrento Therapeutics, Inc., assignee. Cell penetrating peptide inhibitors of p53-MDM2 interaction. patent US 2018/0207285 A1.
  • Arora PS, Lao BB, Guarracino D, et al., inventor; New York University, assignee. Oxopiperazine helix mimetics as inhibitors of the p53-MDM2 interaction. patent WO 2015/160914 A1.
  • Zhang R, Wang W, inventor; Texas Tech University System, assignee. Cancer treatment utilizing SP-141 to bind with MDM2 and act as an inhibitor of MDM2 expression. patent WO 2016/049453 A1.
  • Eric E, Frank H, Christian K, et al., inventor; Roche Glycart AG, assignee. Combination therapy of an afucosylated CD20 antibody with a MDM2 inhibitor. patent US 2014/0140988 A1.
  • Klein C, Herting F, Dangl M, inventor; Hoffmann-La Roche Inc., assignee. Combination therapy of an anti CD20 antibody with a BCL-2 inhibitor and a MDM2 inhibitor. patent WO 2016/188935 A1.
  • Herting F, Herter S, Friess T, et al. Antitumour activity of the glycoengineered type II anti-CD20 antibody obinutuzumab (GA101) in combination with the MDM2-selective antagonist idasanutlin (RG7388). Eur J Haematol. 2016;97:461–470.
  • Bhatia R, inventor; Novartis Ag, assignee. Pharmaceutical combinations and their use. patent WO 2016/035023 A1.
  • Caponigro G, Horn-Spirohn T, Lehar J, inventor; Novartis Ag, assignee. Combination therapy using PI3K inhbitor and MDM2 inhibitor. patent WO 2017/037586 A1.
  • Halilovic E, Caponigro G, Horn-Spirohn T, et al., inventor; Novartis Ag, assignee. MDM2 inhibitors and combinations thereof. patent WO 2017/037579 A1.
  • Halilovic E, Emery C, inventor; Novartis Ag, assignee. MDM2 inhibitors for treating uveal melanoma. patent WO 2017/029588 A2.
  • Chapeau E, Durand E, Gembarska A, et al., inventor; Novartis Ag, assignee. Combinations of MDM2 inhibitors and BCL-XL inhibitors. patent WO 2018/092064 A1.
  • Li Z, Parker M, inventor; University of the Sciences of Philadelphia, assignee. Compositions comprising serum albumin and p53 peptides fusion proteins. patent US 2016/0145314 A1.
  • Seki T, inventor; Daiichi Sankyo Company, Limited, assignee. Combination therapy method using MDM2 inhibitor and DNA methyltransferase inhibitor. patent WO 2018/074387 A1.
  • Tovar C, Graves B, Packman K, et al. MDM2 small-molecule antagonist RG7112 activates p53 signaling and regresses human tumors in preclinical cancer models. Cancer Res. 2013;73:2587–2597.
  • Gonzalez AZ, Eksterowicz J, Bartberger MD, et al. Selective and potent morpholinone inhibitors of the MDM2-p53 protein-protein interaction. J Med Chem. 2014;57:2472–2488.
  • Sun D, Li Z, Rew Y, et al. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2-p53 inhibitor in clinical development. J Med Chem. 2014;57:1454–1472.
  • Furet P, Masuya K, Kallen J, et al. Discovery of a novel class of highly potent inhibitors of the p53-MDM2 interaction by structure-based design starting from a conformational argument. Bioorg Med Chem Lett. 2016;26:4837–4841.
  • Wang S, Sun W, Zhao Y, et al. SAR405838: an optimized inhibitor of MDM2-p53 interaction that induces complete and durable tumor regression. Cancer Res. 2014;74:5855–5865.
  • Yi H, Yan X, Luo Q, et al. A novel small molecule inhibitor of MDM2-p53 (APG-115) enhances radiosensitivity of gastric adenocarcinoma. J Exp Clin Cancer Res. 2018;37:97.
  • Arnhold V, Schmelz K, Proba J, et al. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget. 2018;9:2304–2319.
  • Rinnenthal J, Rudolph D, Blake S, et al. Abstract 4865: BI 907828: A highly potent MDM2 inhibitor with low human dose estimation, designed for high-dose intermittent schedules in the clinic. Cancer Res. 2018;78:4865.
  • Carvajal LA, Neriah DB, Senecal A, et al. Dual inhibition of MDMX and MDM2 as a therapeutic strategy in leukemia. Sci Transl Med. 2018;10:eaao3003.
  • Jeay S, Gaulis S, Ferretti S, et al. A distinct p53 target gene set predicts for response to the selective p53-HDM2 inhibitor NVP-CGM097. Elife. 2015;4:1–23.
  • Tovar C, Rosinski J, Filipovic Z, et al. Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci U S A. 2006;103:1888–1893.
  • Tsao CC, Corn PG. MDM-2 antagonists induce p53-dependent cell cycle arrest but not cell death in renal cancer cell lines. Cancer Biol Ther. 2010;10:1315–1325.
  • Michaelis M, Rothweiler F, Barth S, et al. Adaptation of cancer cells from different entities to the MDM2 inhibitor nutlin-3 results in the emergence of p53-mutated multi-drug-resistant cancer cells. Cell Death Dis. 2011;2:e243.
  • Aziz MH, Shen H, Maki CG. Acquisition of p53 mutations in response to the non-genotoxic p53 activator nutlin-3. Oncogene. 2011;30:4678–4686.
  • Wei SJ, Joseph T, Sim AYL, et al. In vitro selection of mutant HDM2 resistant to nutlin inhibition. PLoS One. 2013;8:e62564.
  • Hoffman-Luca CG, Ziazadeh D, McEachern D, et al. Elucidation of acquired resistance to Bcl-2 and MDM2 inhibitors in acute leukemia in vitro and in vivo. Clin Cancer Res. 2015;21:2558–2568.
  • Jung J, Lee JS, Dickson MA, et al. TP53 mutations emerge with HDM2 inhibitor SAR405838 treatment in de-differentiated liposarcoma. Nat Commun. 2016;7:12609.
  • Chapeau EA, Gembarska A, Durand EY, et al. Resistance mechanisms to TP53-MDM2 inhibition identified by in vivo piggyBac transposon mutagenesis screen in an Arf-/- mouse model. Proc Natl Acad Sci U S A. 2017;114:3151–3156.
  • Skalniak L, Kocik J, Polak J, et al. Prolonged idasanutlin (RG7388) treatment leads to the generation of p53-mutated cells. Cancers (Basel). 2018;10:1–17.