402
Views
13
CrossRef citations to date
0
Altmetric
Review

A patent update on PDK1 inhibitors (2015-present)

ORCID Icon & ORCID Icon
Pages 271-282 | Received 10 Jan 2019, Accepted 18 Mar 2019, Published online: 29 Mar 2019

References

  • Kandoth C, McLellan MD, Vandin F, et al. Mutational landscape and significance across 12 major cancer types. Nature. 2013;502(7471):333.
  • Zhang J, Yang PL, Gray NS. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer. 2009;9(1):28.
  • Whitman M, Downes CP, Keeler M, et al. Type I phosphatidylinositol kinase makes a novel inositol phospholipid, phosphatidylinositol-3-phosphate. Nature. 1988;332(6165):644.
  • Franke TF, Kaplan DR, Cantley LC. PI3K: downstream AKTion blocks apoptosis. Cell. 1997;88(4):435–437.
  • Vara JÁF, Casado E, de Castro J, et al. PI3K/Akt signalling pathway and cancer. Cancer Treat Rev. 2004;30(2):193–204.
  • Garcia-Echeverria C, Sellers W. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27(41):5511.
  • Mayer IA, Arteaga CL. The PI3K/AKT pathway as a target for cancer treatment. Annu Rev Med. 2016;67:11–28.
  • Lien EC, Dibble CC, Toker A. PI3K signaling in cancer: beyond AKT. Curr Opin Cell Biol. 2017;45:62–71.
  • Vennila K, Sunny D, Madhuri S, et al. Design, synthesis, crystal structures and anticancer activity of 4-substituted quinolines to target PDK1. Bioorg Chem. 2018;81:184–190.
  • Du J, Yang M, Chen S, et al. PDK1 promotes tumor growth and metastasis in a spontaneous breast cancer model. Oncogene. 2016;35(25):3314.
  • Gagliardi PA, Di Blasio L, Orso F, et al. 3-phosphoinositide-dependent kinase 1 controls breast tumor growth in a kinase-dependent but Akt-independent manner. Neoplasia. 2012;14(8):719–IN19.
  • Mora A, Komander D, van Aalten DM, et al. PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol. 2004;15(2):161–170.
  • Di Blasio L, Gagliardi P, Puliafito A, et al. Serine/threonine kinase 3-phosphoinositide-dependent protein kinase-1 (PDK1) as a key regulator of cell migration and cancer dissemination. Cancers (Basel). 2017;9(3):25.
  • Emmanouilidi A, Falasca M. Targeting PDK1 for chemosensitization of cancer cells. Cancers (Basel). 2017;9(10):140.
  • Anderson KE, Coadwell J, Stephens LR, et al. Translocation of PDK-1 to the plasma membrane is important in allowing PDK-1 to activate protein kinase B. Curr Biol. 1998;8(12):684–691.
  • Filippa N, Sable CL, Hemmings BA, et al. Effect of phosphoinositide-dependent kinase 1 on protein kinase B translocation and its subsequent activation. Mol Cell Biol. 2000;20(15):5712–5721.
  • Jethwa N, Chung GH, Lete MG, et al. Endomembrane PtdIns (3, 4, 5) P3 activates the PI3K–akt pathway. J Cell Sci. 2015;128(18):3456–3465.
  • Calleja V, Laguerre M, de Las Heras-Martinez G, et al. Acute regulation of PDK1 by a complex interplay of molecular switches. Biochemical Society Transactions 2014;42(5):1435–1440.
  • Biondi RM, Kieloch A, Currie RA, et al. The PIF‐binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. Embo J. 2001;20(16):4380–4390.
  • Avruch J, Belham C, Weng Q-P, et al. The p70 S6 kinase integrates nutrient and growth signals to control translational capacity. Progress in Molecular and Subcellular Biology Springer; 2001;26:115–154.
  • Frödin M, Jensen CJ, Merienne K, et al. A phosphoserine‐regulated docking site in the protein kinase RSK2 that recruits and activates PDK1. Embo J. 2000;19(12):2924–2934.
  • Kobayashi T, Cohen P. Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J. 1999 Apr 15;339(Pt 2):319–328.
  • Le Good JA, Ziegler WH, Parekh DB, et al. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science. 1998;281(5385):2042–2045.
  • Arencibia JM, Pastor-Flores D, Bauer AF, et al. AGC protein kinases: from structural mechanism of regulation to allosteric drug development for the treatment of human diseases. Biochim Biophys Acta Proteins Proteom. 2013;1834(7):1302–1321.
  • Castel P, Ellis H, Bago R, et al. PDK1-SGK1 signaling sustains AKT-independent mTORC1 activation and confers resistance to PI3Kα inhibition. Cancer Cell. 2016;30(2):229–242.
  • Gagliardi PA, Puliafito A, Primo L. PDK1: at the crossroad of cancer signaling pathways. Seminars in cancer biology. Vol. 48. Elsevier; 2018. p. 27–35.
  • Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC protein kinases. Nat Rev Mol Cell Biol. 2010;11(1):9–22.
  • Liu Y. Chemical biology: caught in the activation. Nature. 2009;461(7263):484–485.
  • Stroba A, Schaeffer F, Hindie V, et al. 3, 5-Diphenylpent-2-enoic acids as allosteric activators of the protein kinase PDK1: structure− activity relationships and thermodynamic characterization of binding as paradigms for PIF-binding pocket-targeting compounds. J Med Chem. 2009;52(15):4683–4693.
  • Stockman BJ, Kothe M, Kohls D, et al. Identification of allosteric PIF‐pocket ligands for PDK1 using NMR‐based fragment screening and 1H‐15N TROSY Experiments. Chem Biol Drug Des. 2009;73(2):179–188.
  • Xu X, Chen Y, Fu Q, et al. The chemical diversity and structure-based discovery of allosteric modulators for the PIF-pocket of protein kinase PDK1. J Enzyme Inhib Med Chem. 2019;34(1):361–374.
  • Erlanson DA, Arndt JW, Cancilla MT, et al. Discovery of a potent and highly selective PDK1 inhibitor via fragment-based drug discovery. Bioorg Med Chem Lett. 2011;21(10):3078–3083.
  • Treiber DK, Shah NP. Ins and outs of kinase DFG motifs. Chem Biol. 2013;20(6):745–746.
  • Liu Y, Gray NS. Rational design of inhibitors that bind to inactive kinase conformations. Nat Chem Biol. 2006;2(7):358–364.
  • Sadowsky JD, Burlingame MA, Wolan DW, et al. Turning a protein kinase on or off from a single allosteric site via disulfide trapping. Proc Nat Acad Sci. 2011;108(15):6056–6061.
  • Casamayor A, Morrice NA, Alessi DR. Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J. 1999;342(2):287–292.
  • Gagliardi PA, Di Blasio L, Primo L. PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta Rev Cancer. 2015;1856(2):178–188.
  • Primo L, Di Blasio L, Roca C, et al. Essential role of PDK1 in regulating endothelial cell migration. J Cell Biol. 2007;176(7):1035–1047.
  • Liu Y, Wang J, Wu M, et al. Down-regulation of 3-phosphoinositide–dependent protein kinase-1 levels inhibits migration and experimental metastasis of human breast cancer cells. Mol Cancer Res. 2009;7(6):944-954.
  • Itoh Y, Higuchi M, Oishi K, et al. PDK1–akt pathway regulates radial neuronal migration and microtubules in the developing mouse neocortex. Proc Nat Acad Sci. 2016;113(21):E2955–E2964.
  • Gagliardi PA, Di Blasio L, Puliafito A, et al. PDK1-mediated activation of MRCKα regulates directional cell migration and lamellipodia retraction. J Cell Biol. 2014;206(3):415–434.
  • Pinner S, Sahai E. PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol. 2008;10(2):127–137.
  • Raimondi C, Chikh A, Wheeler AP, et al. A novel regulatory mechanism links PLCγ1 to PDK1. J Cell Sci. 2012;125(13):3153–3163.
  • Di Blasio L, Gagliardi PA, Puliafito A, et al. PDK1 regulates focal adhesion disassembly by modulating endocytosis of αvβ3 integrin. J Cell Sci. 2015;128(5):863–877.
  • Huttenlocher A, Horwitz AR. Integrins in cell migration. Cold Spring Harb Perspect Biol. 2011;3(9):a005074–a005074.
  • Xie Z, Yuan H, Yin Y, et al. 3-phosphoinositide-dependent protein kinase-1 (PDK1) promotes invasion and activation of matrix metalloproteinases. BMC Cancer. 2006;6(1):1.
  • Naderali E, Khaki AA, Rad JS, et al. Regulation and modulation of PTEN activity. Mol Biol Rep. 2018;45(6):2869-2881.
  • Meulmeester E, Jochemsen AG. p53: a guide to apoptosis. Curr Cancer Drug Targets. 2008;8(2):87–97.
  • Basnet R, Gong GQ, Li C, et al. Serum and glucocorticoid inducible protein kinases (SGKs): a potential target for cancer intervention. Acta Pharm Sin B. 2018;8(5):767-771.
  • Steelman LS, Chappell WH, Abrams SL, et al. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY). 2011;3(3):192.
  • Ferro R, Falasca M. Emerging role of the KRAS-PDK1 axis in pancreatic cancer. World J Gastroenterol. 2014;20(31):10752.
  • Medina JSR. Selective 3-phosphoinositide-dependent kinase 1 (PDK1) inhibitors: dissecting the function and pharmacology of PDK1: miniperspective. J Med Chem. 2013;56(7):2726–2737.
  • Peifer C, Alessi DR. Small-molecule inhibitors of PDK1. ChemMedChem. 2008;3(12):1810–1838.
  • Barile E, De SK, Pellecchia M. PDK1 inhibitors. Pharm Pat Anal. 2012;1(2):145–163.
  • Wu P, Clausen MH, Nielsen TE. Allosteric small-molecule kinase inhibitors. Pharmacol Ther. 2015;156:59–68.
  • Hossen MJ, Kim SC, Yang S, et al. PDK1 disruptors and modulators: a patent review. Expert Opin Ther Pat. 2015;25(5):513–537.
  • Hansen SK,, Binnerts ME, Sunesis Pharmaceuticals, Inc. Heterocyclic Pdk1 inhibitors for use to treat cancer. WO2017070565. 2017.
  • Busschots K, Lopez-Garcia LA, Lammi C, et al. Substrate-selective inhibition of protein kinase PDK1 by small compounds that bind to the PIF-pocket allosteric docking site. Chem Biol. 2012 Sep 21;19(9):1152–1163.
  • Feldman RI, Wu JM, Polokoff MA, et al. Novel small molecule inhibitors of 3-phosphoinositide-dependent kinase-1. J Biol Chem. 2005;280(20):19867–19874.
  • Serra V, Eichhorn PJ, García-García C, et al. RSK3/4 mediate resistance to PI3K pathway inhibitors in breast cancer. J Clin Invest. 2013;123(6):2551–2563.
  • Kang S, Elf S, Dong S, et al. Fibroblast growth factor receptor 3 associates with and tyrosine phosphorylates p90 RSK2, leading to RSK2 activation that mediates hematopoietic transformation. Mol Cell Biol. 2009;29(8):2105–2117.
  • Elf S, Blevins D, Jin L, et al. p90RSK2 is essential for FLT3-ITD-, but dispensable for BCR-ABL-induced myeloid leukemia. Blood. 2011;117(25):6885–6894.
  • Arndt JC, Guckian T, Kumaravel K, et al., Sunesis Pharmaceuticals, Inc, Millennium Pharmaceuticals, Inc. Heterocyclic compounds useful as PDK1 inhibitors. AU2018222943. 2018.
  • Sestito S, Daniele S, Martini C, et al. 2-oxo-1, 2-dihydropyridine-3-carboxamide compounds and their use as inhibitors of PDK1. US Patent App. 15/735,468; 2018.
  • Sestito S, Daniele S, Nesi G, et al. Locking PDK1 in DFG-out conformation through 2-oxo-indole containing molecules: another tools to fight glioblastoma. Eur J Med Chem. 2016;118:47–63.
  • Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature. 2006;444(7120):756–760.
  • Eramo A, Ricci-Vitiani L, Zeuner A, et al. Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 2006;13(7):1238–1241.
  • Sestito S, Daniele S, Martini C, et al. International society for drug development S.R.L. 2-oxo-1,2-dihydropyridine-3-carboxamide compounds and their use as dual inhibitors of PDK1/AurA. WO2017211946. 2017.
  • Daniele S, Sestito S, Pietrobono D, et al. Dual inhibition of PDK1 and Aurora kinase a: an effective strategy to induce differentiation and apoptosis of human glioblastoma multiforme stem cells. ACS Chem Neurosci. 2017;8(1):100–114.
  • Lind KEC, Lin K, Nguyen EYS, et al. Pyridinonyl PDK1 inhibitors. WO2008005457. 2008.
  • Nagashima K, Shumway SD, Sathyanarayanan S, et al. Genetic and pharmacological inhibition of PDK1 in cancer cells. Characterization of a selective allosteric kinase inhibitor. J Biol Chem. 2011;286(8):6433–6448.
  • Sells TB, Chau R, Ecsedy JA, et al. MLN8054 and alisertib (MLN8237): discovery of selective oral aurora A inhibitors. ACS Med Chem Lett. 2015;6(6):630–634.
  • Dessain SK, Dessain SK, Heimbach BC. PDK1 binding molecules and uses thereof. US2016319035 (A1). 2016.
  • Currie RA, Walker KS, Gray A, et al. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J. 1999;337(3):575–583.
  • Waniczek D, Śnietura M, Lorenc Z, et al. Assessment of PI3K/AKT/PTEN signaling pathway activity in colorectal cancer using quantum dot‑conjugated antibodies. Oncol Lett. 2018;15(1):1236–1240.
  • Castel P, Baselga JT, Scaltriti M; Memorial sloan kettering cancer center. Combination therapy using PDK1 and PI3K inhibitors. WO2017015152. 2018.
  • Sommer EM, Dry H, Cross D, et al. Elevated SGK1 predicts resistance of breast cancer cells to Akt inhibitors. Biochem J. 2013;452(3):499–508.
  • Orlacchio A, Ranieri M, Brave M, et al. SGK1 is a critical component of an akt-independent pathway essential for pi3k-mediated tumor development and maintenance. Cancer Res. 2017;77(24):6914–6926.
  • Galli SJ, Tsai M. IgE and mast cells in allergic disease. Nat Med. 2012;18(5):693–704.
  • Lang F, Shumilina E. Regulation of ion channels by the serum-and glucocorticoid-inducible kinase SGK1. FASEB J. 2013;27(1):3–12.
  • Shumilina E, Zemtsova IM, Heise N, et al. Phosphoinositide-dependent kinase PDK1 in the regulation of Ca2+ entry into mast cells. Cell Physiol Biochem. 2010;26(4–5):699–706.
  • Jimenez AI, Pañeda C, Martinez T, et al. siRNA and their use in methods and compositions for inhibiting the expression of the PDK1 gene. US2016237440. 2016.
  • Baxter BK, DiDone L, Ogu D, et al. Identification, in vitro activity and mode of action of phosphoinositide-dependent-1 kinase inhibitors as antifungal molecules. ACS Chem Biol. 2011;6(5):502–510.
  • Pastor-Flores D, Schulze JRO, Bahí A, et al. PIF-pocket as a target for C albicans Pkh selective inhibitors. ACS Chem Biol. 2013;8(10):2283–2292.
  • Pianalto K, Alspaugh J. New horizons in antifungal therapy. J Fungi. 2016;2(4):26.
  • Wu CX, Wang XQ, Chok SH, et al. Blocking CDK1/PDK1/β-Catenin signaling by CDK1 inhibitor RO3306 increased the efficacy of sorafenib treatment by targeting cancer stem cells in a preclinical model of hepatocellular carcinoma. Theranostics. 2018;8(14):3737.
  • Signore M, Pelacchi F, Di Martino S, et al. Combined PDK1 and CHK1 inhibition is required to kill glioblastoma stem-like cells in vitro and in vivo. Cell Death Dis. 2014;5(5):e1223.
  • Wang Z, Xu X, Liu N, et al. SOX9-PDK1 axis is essential for glioma stem cell self-renewal and temozolomide resistance. Oncotarget. 2018;9(1):192.
  • Shiozawa Y, Nie B, Pienta KJ, et al. Cancer stem cells and their role in metastasis. Pharmacol Ther. 2013;138(2):285–293.
  • Colak S, Medema JP. Cancer stem cells–important players in tumor therapy resistance. FEBS J. 2014;281(21):4779–4791.
  • Batlle E, Clevers H. Cancer stem cells revisited. Nat Med. 2017;23(10):1124.
  • Sestito S, Runfola M, Tonelli M, et al. New multitarget approaches in the war against glioblastoma: a mini-perspective. Front Pharmacol. 2018;9:874.
  • Carlino L, Rastelli G. Dual Kinase-bromodomain inhibitors in anticancer drug discovery: a structural and pharmacological perspective: miniperspective. J Med Chem. 2016;59(20):9305–9320.
  • Oliveira Pedrosa MD, Da Cruz D, Marques R, et al. Hybrid compounds as direct multitarget ligands: a review. Curr Top Med Chem. 2017;17(9):1044–1079.
  • Kucuksayan E, Ozben T. Hybrid compounds as multitarget directed anticancer agents. Curr Top Med Chem. 2017;17(8):907–918.
  • Ramsay RR, Popovic-Nikolic MR, Nikolic K, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin Transl Med. 2018;7(1):3.
  • Petrelli A, Giordano S. From single- to multi-target drugs in cancer therapy: when aspecificity becomes an advantage. Curr Med Chem. 2008;15(5):422–432.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.