950
Views
13
CrossRef citations to date
0
Altmetric
Review

MYC modulators in cancer: a patent review

, , , , &
Pages 353-367 | Received 07 Jan 2019, Accepted 25 Apr 2019, Published online: 08 May 2019

References

  • Nisen PD, Zimmerman KA, Cotter SV, et al. Enhanced expression of the N-myc gene in wilms‘ tumors. Cancer Res. 1986;46:6217–6222.
  • Zimmerman K, Alt FW. Expression and function of myc family genes. Crit Rev Oncog. 1990;2:75–95.
  • Rickman DS, Schulte JH, Eilers M. The expanding world of N-MYC-driven tumors. Cancer Discov. 2018;8:150–163.
  • Sheiness D, Bishop JM. DNA and RNA from uninfected vertebrate cells contain nucleotide sequences related to the putative transforming gene of avian myelocytomatosis virus. J Virol. 1979;31:514–521.
  • Carroll PA, Freie BW, Mathsyaraja H, et al. The MYC transcription factor network: balancing metabolism, proliferation and oncogenesis. Front Med. 2018;12:412–425.
  • Meyer N, Penn LZ. Reflecting on 25 years with MYC. Nat Rev Cancer. 2008;8:976–990.
  • Fish K, Sora RP, Schaller SJ, et al. EBV latent membrane protein 2A orchestrates p27(kip1) degradation via Cks1 to accelerate MYC-driven lymphoma in mice. Blood. 2017;130:2516–2526.
  • Hydbring P, Castell A, Larsson LG. MYC modulation around the CDK2/p27/SKP2 axis. Genes (Basel). 2017;8:174.
  • van Riggelen J, Yetil A, Felsher DW. MYC as a regulator of ribosome biogenesis and protein synthesis. Nat Rev Cancer. 2010;10:301–309.
  • Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–3016.
  • Perez-Olivares M, Trento A, Rodriguez-Acebes S, et al. Functional interplay between c-Myc and max in B lymphocyte differentiation. EMBO Rep. 2018;19:e45770.
  • Luo W, Chen J, Li L, et al. c-Myc inhibits myoblast differentiation and promotes myoblast proliferation and muscle fibre hypertrophy by regulating the expression of its target genes, miRNAs and lincRNAs. Cell Death Differ. 2019;26:426–442.
  • Melnik S, Werth N, Boeuf S, et al. Impact of c-MYC expression on proliferation, differentiation, and risk of neoplastic transformation of human mesenchymal stromal cells. Stem Cell Res Ther. 2019;10:73.
  • Dejure FR, Eilers M. MYC and tumor metabolism: chicken and egg. Embo J. 2017;36:3409–3420.
  • Boone DN, Hann SR. The Myc-ARF-Egr1 pathway: unleashing the apoptotic power of c-Myc. Cell Cycle. 2011;10:2043–2044.
  • Liao D. c-Myc in breast cancer. Endocr-Relat Cancer. 2000;7:143–164.
  • Jenkins RB, Qian J, Lieber MM, et al. Detection of c-myc oncogene amplification and chromosomal anomalies in metastatic prostatic carcinoma by fluorescence in situ hybridization. Cancer Res. 1997;57:524–531.
  • Hann SR, Dixit M, Sears RC, et al. The alternatively initiated c-Myc proteins differentially regulate transcription through a noncanonical DNA-binding site. Genes Dev. 1994;8:2441–2452.
  • Hann SR, Eisenman RN. Proteins encoded by the human c-myc oncogene: differential expression in neoplastic cells. Mol Cell Biol. 1984;4:2486–2497.
  • Gregory MA, Hann SR. c-Myc proteolysis by the ubiquitin-proteasome pathway: stabilization of c-Myc in Burkitt‘s lymphoma cells. Mol Cell Biol. 2000;20:2423–2435.
  • Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9:810–815.
  • Cowling VH, Cole MD. The Myc transactivation domain promotes global phosphorylation of the RNA polymerase II carboxy-terminal domain independently of direct DNA binding. Mol Cell Biol. 2007;27:2059–2073.
  • Cowling VH, Chandriani S, Whitfield ML, et al. A conserved Myc protein domain, MBIV, regulates DNA binding, apoptosis, transformation, and G2 arrest. Mol Cell Biol. 2006;26:4226–4239.
  • Caforio M, Sorino C, Iacovelli S, et al. Recent advances in searching c-Myc transcriptional cofactors during tumorigenesis. J Exp Clin Cancer Res. 2018;37:239.
  • Blackwood E, Eisenman R. Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science. 1991;251:1211–1217.
  • Nie Z, Hu G, Wei G, et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell. 2012;151:68–79.
  • Hopewell R, Ziff EB. The nerve growth factor-responsive PC12 cell line does not express the Myc dimerization partner max. Mol Cell Biol. 1995;15:3470–3478.
  • Folgiero V, Sorino C, Pallocca M, et al. Che-1 is targeted by c-Myc to sustain proliferation in pre-B-cell acute lymphoblastic leukemia. EMBO Rep. 2018;19:e44871.
  • Cheng SW, Davies KP, Yung E, et al. c-MYC interacts with INI1/hSNF5 and requires the SWI/SNF complex for transactivation function. Nat Genet. 1999;22:102–105.
  • Dingar D, Kalkat M, Chan PK, et al. BioID identifies novel c-MYC interacting partners in cultured cells and xenograft tumors. J Proteomics. 2015;118:95–111.
  • Richart L, Carrillo-de Santa Pau E, Rio-Machin A, et al. BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis. Nat Commun. 2016;7:10153.
  • Turato C, Cannito S, Simonato D, et al. SerpinB3 and yap interplay increases Myc oncogenic activity. Sci Rep. 2015;5:17701.
  • Cigliano A, Pilo MG, Li L, et al. Deregulated c-Myc requires a functional HSF1 for experimental and human hepatocarcinogenesis. Oncotarget. 2017;8:90638–90650.
  • Trop-Steinberg S, Azar Y. Is Myc an important biomarker? Myc expression in immune disorders and cancer. Am J Med Sci. 2018;355:67–75.
  • Sesques P, Johnson NA. Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood. 2017;129:280–288.
  • Feng Y, Lin J, Liu Y, et al. Investigation of expressions of PDK1, PLK1 and c-Myc in diffuse large B-cell lymphoma. Int J Exp Pathol. 2019. DOI:10.1111/iep.12307
  • Bai S, Cao S, Jin L, et al. A positive role of c-Myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene. 2019. DOI:10.1038/s41388-019-0768-8
  • Zhang HL, Wang P, Lu MZ, et al. c-Myc maintains the self-renewal and chemoresistance properties of colon cancer stem cells. Oncol Lett. 2019;17:4487–4493.
  • Brandl L, Kirstein N, Neumann J, et al. The c-MYC/NAMPT/SIRT1 feedback loop is activated in early classical and serrated route colorectal cancer and represents a therapeutic target. Med Oncol. 2018;36:5.
  • Xu TP, Ma P, Wang WY, et al. KLF5 and MYC modulated LINC00346 contributes to gastric cancer progression through acting as a competing endogeous RNA and indicates poor outcome. Cell Death Differ. 2019. DOI:10.1038/s41418-018-0236-y
  • Kim S, Nam SJ, Kwon D, et al. MYC and BCL2 overexpression is associated with a higher class of memorial sloan-kettering cancer center prognostic model and poor clinical outcome in primary diffuse large B-cell lymphoma of the central nervous system. BMC Cancer. 2016;16:363.
  • Zhang G, Dong Z, Prager BC, et al. Chromatin remodeler HELLS maintains glioma stem cells through E2F3 and MYC. JCI Insight. 2019;4:e126140.
  • Tao R, Murad N, Xu Z, et al. MYC drives group 3 medulloblastoma through transformation of Sox2+ astrocyte progenitor cells. Cancer Res. 2019. DOI:10.1158/0008-5472
  • Northcott PA, Buchhalter I, Morrissy AS, et al. The whole-genome landscape of medulloblastoma subtypes. Nature. 2017;547:311–317.
  • Grover R, Ross DA, Richman PI, et al. C-myc oncogene expression in human melanoma and its relationship with tumour antigenicity. Eur J Surg Oncol. 1996;22:342–346.
  • Dragoj M, Bankovic J, Podolski-Renic A, et al. Association of overexpressed MYC gene with altered PHACTR3 and E2F4 genes contributes to non-small cell lung carcinoma pathogenesis. J Med Biochem. 2019;38:188–195.
  • Bisso A, Sabo A, Amati B. MYC in germinal center-derived lymphomas: mechanisms and therapeutic opportunities. Immunol Rev. 2019;288:178–197.
  • Yang L, Zhu JY, Zhang JG, et al. Far upstream element-binding protein 1 (FUBP1) is a potential c-Myc regulator in esophageal squamous cell carcinoma (ESCC) and its expression promotes ESCC progression. Tumour Biol. 2016;37:4115–4126.
  • Han G, Wang Y, Bi W. C-Myc overexpression promotes osteosarcoma cell invasion via activation of MEK-ERK pathway. Oncol Res. 2012;20:149–156.
  • Gao Y, Yang F, Yang XA, et al. Mitochondrial metabolism is inhibited by the HIF1alpha-MYC-PGC-1beta axis in BRAF V600E thyroid cancer. FEBS J. 2019;286:1420–1436.
  • Wang J, Merino DM, Light N, et al. Myc and loss of p53 cooperate to drive formation of choroid plexus carcinoma. Cancer Res. 2019. DOI:10.1158/0008-5472
  • Liu H, Lu W, He H, et al. Inflammation-dependent overexpression of c-Myc enhances CRL4(DCAF4) E3 ligase activity and promotes ubiquitination of ST7 in colitis-associated cancer. J Pathol. 2019. DOI:10.1002/path.5273
  • Whitfield JR, Beaulieu M-E, Soucek L. Strategies to inhibit Myc and their clinical applicability. Front Cell Dev Biol. 2017;5:10.
  • Park S, Chung S, Kim KM, et al. Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: the effect of inhibitors on the binding. Biochim Biophys Acta. 2004;1670:217–228.
  • Jeong KC, Ahn KO, Yang CH. Small-molecule inhibitors of c-Myc transcriptional factor suppress proliferation and induce apoptosis of promyelocytic leukemia cell via cell cycle arrest. Mol Biosyst. 2010;6:1503–1509.
  • Jeong KC, Kim KT, Seo HH, et al. Intravesical instillation of c-MYC inhibitor KSI-3716 suppresses orthotopic bladder tumor growth. J Urol. 2014;191:510–518.
  • Seo HK, Ahn KO, Jung NR, et al. Antitumor activity of the c-Myc inhibitor KSI-3716 in gemcitabine-resistant bladder cancer. Oncotarget. 2014;5:326–337.
  • Jeong KC, Lim HJ, Park SJ, et al., Compounds for inhibiting c-Myc/MAX/DNA complex formation. 2018. (15909088).
  • Prochownik EV, Lazo JS, Yin X, Pharmacologic inhibition of Myc function. 2004. (20040034060).
  • Wang J, Ma X, Jones HM, et al. Evaluation of the antitumor effects of c-Myc-Max heterodimerization inhibitor 100258-F4 in ovarian cancer cells. J Transl Med. 2014;12:226.
  • Yap JL, Wang H, Hu A, et al. Pharmacophore identification of c-Myc inhibitor 10074-G5. Bioorg Med Chem Lett. 2013;23:370–374.
  • Dm C, Parise RAGJF, Parise Ra Fau - Beumer JH, et al. In vitro cytotoxicity and in vivo efficacy, pharmacokinetics, and metabolism of 10074-G5, a novel small-molecule inhibitor of c-Myc/Max dimerization. J Pharmacol Exp Ther. 2010;335:715–727.
  • Schiltz GE, Mishra RK, Han H, et al., Substituted heterocycles as c-myc targeting agents. 2017. (20170253581).
  • Chauhan J, Wang H, Yap JL, et al. Discovery of methyl 4‘-methyl-5-(7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)-[1,1‘-biphenyl]-3-carboxylate, an improved small-molecule inhibitor of c-Myc-Max dimerization. ChemMedChem. 2014;9:2274–2285.
  • Wanner J, Romashko D, Werner DS, et al. Reversible linkage of two distinct small molecule inhibitors of Myc generates a dimeric inhibitor with improved potency that is active in myc over-expressing cancer cell lines. PloS one. 2015;10:e0121793–e0121793.
  • Kiessling A, Sperl B, Hollis A, et al. Selective inhibition of c-Myc/Max dimerization and DNA binding by small molecules. Chem Biol. 2006;13:745–751.
  • Kiessling A, Wiesinger R, Sperl B, et al. Selective inhibition of c-Myc/Max dimerization by a pyrazolo[1,5-a]pyrimidine. ChemMedChem. 2007;2:627–630.
  • Stellas D, Szabolcs M, Koul S, et al. Therapeutic effects of an anti-Myc drug on mouse pancreatic cancer. J Natl Cancer Inst. 2014;106:dju320.
  • Hart JR, Garner AL, Yu J, et al. Inhibitor of MYC identified in a krohnke pyridine library. Proc Natl Acad Sci U S A. 2014;111:12556–12561.
  • Vogt P,K, Tavares, X F, Janda, D K, Small molecule c-myc inhibitors. 2015. (WO/2015/089180).
  • Raffeiner P, Rock R, Schraffl A, et al. In vivo quantification and perturbation of Myc-Max interactions and the impact on oncogenic potential. Oncotarget. 2014;5:8869–8878.
  • Jacob NT, Miranda PO, Shirey RJ, et al. Synthetic molecules for disruption of the MYC protein-protein interface. Bioorg Med Chem. 2018;26:4234–4239.
  • Castell A, Yan Q, Fawkner K, et al. A selective high affinity MYC-binding compound inhibits MYC:MAX interaction and MYC-dependent tumor cell proliferation. Sci Rep. 2018;8:10064.
  • Choi SH, Mahankali M, Lee SJ, et al. Targeted disruption of Myc-Max oncoprotein complex by a small molecule. ACS Chem Biol. 2017;12:2715–2719.
  • Struntz NB, Chen A, Deutzmann A, et al. Stabilization of the Max homodimer with a small molecule attenuates Myc-driven transcription. Cell Chem Biol. 2019;26:1–13.
  • Jung KY, Wang H, Teriete P, et al. Perturbation of the c-Myc-Max protein-protein interaction via synthetic alpha-helix mimetics. J Med Chem. 2015;58:3002–3024.
  • Gonzalez V, Hurley LH. The c-MYC NHE III(1): function and regulation. Annu Rev Pharmacol Toxicol. 2010;50:111–129.
  • Siddiqui-Jain A, Grand CL, Bearss DJ, et al. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc Natl Acad Sci U S A. 2002;99:11593–11598.
  • Rhodes D, Lipps HJ. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 2015;43:8627–8637.
  • Bochman ML, Paeschke K, Zakian VA. DNA secondary structures: stability and function of G-quadruplex structures. Nat Rev Genet. 2012;13:770–780.
  • Maizels N. G4-associated human diseases. EMBO Rep. 2015;16:910–922.
  • Hansel-Hertsch R, Beraldi D, Lensing SV, et al. G-quadruplex structures mark human regulatory chromatin. Nat Genet. 2016;48:1267–1272.
  • Neidle S. Quadruplex nucleic acids as targets for anticancer therapeutics. Nat Rev Chem. 2017;1:0041.
  • Hurley LH, Von Hoff DD, Siddiqui-Jain A, et al. Drug targeting of the c-MYC promoter to repress gene expression via a G-quadruplex silencer element. Semin Oncol. 2006;33:498–512.
  • Nielsen MC, Ulven T. Macrocyclic G-quadruplex ligands. Curr Med Chem. 2010;17:3438–3448.
  • Hurley LH, Lu T, Thiaporphyrin, selenaporphyrin, and carotenoid porphyrin compounds as c-myc and telomerase inhibitors. 2002. (PCT/US2002/009457)
  • Hurley LH, Expanded porphyrin compositions for tumor inhibition. 2004. (20040110820)
  • Izbicka E, Wheelhouse RT, Raymond E, et al. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999;59:639–644.
  • Kim MY, Gleason-Guzman M, Izbicka E, et al. The different biological effects of telomestatin and TMPyP4 can be attributed to their selectivity for interaction with intramolecular or intermolecular G-quadruplex structures. Cancer Res. 2003;63:3247–3256.
  • Mikami-Terao Y, Akiyama M, Yuza Y, et al. Antitumor activity of TMPyP4 interacting G-quadruplex in retinoblastoma cell lines. Exp Eye Res. 2009;89:200–208.
  • Mikami-Terao Y, Akiyama M, Yuza Y, et al. Antitumor activity of G-quadruplex-interactive agent TMPyP4 in K562 leukemic cells. Cancer Lett. 2008;261:226–234.
  • Grand CL, Han H, Munoz RM, et al. The cationic porphyrin TMPyP4 down-regulates c-MYC and human telomerase reverse transcriptase expression and inhibits tumor growth in vivo. Mol Cancer Ther. 2002;1:565–573.
  • Rapozzi V, Zorzet S, Zacchigna M, et al. Anticancer activity of cationic porphyrins in melanoma tumour-bearing mice and mechanistic in vitro studies. Mol Cancer. 2014;13:75.
  • Seenisamy J, Bashyam S, Gokhale V, et al. Design and synthesis of an expanded porphyrin that has selectivity for the c-MYC G-quadruplex structure. J Am Chem Soc. 2005;127:2944–2959.
  • Sun D, Liu WJ, Guo K, et al. The proximal promoter region of the human vascular endothelial growth factor gene has a G-quadruplex structure that can be targeted by G-quadruplex-interactive agents. Mol Cancer Ther. 2008;7:880–889.
  • Gasser G, Ott I, Metzler-Nolte N. Organometallic anticancer compounds. J Med Chem. 2011;54:3–25.
  • Dixon IM, Lopez F, Esteve JP, et al. Porphyrin derivatives for telomere binding and telomerase inhibition. Chembiochem. 2005;6:123–132.
  • Yu Q, Liu Y, Xu L, et al. Ruthenium(II) polypyridyl complexes: cellular uptake, cell image and apoptosis of HeLa cancer cells induced by double targets. Eur J Med Chem. 2014;82:82–95.
  • Zhang Z, Wu Q, Wu XH, et al. Ruthenium(II) complexes as apoptosis inducers by stabilizing c-myc G-quadruplex DNA. Eur J Med Chem. 2014;80:316–324.
  • Wang L, He YH, Xiang GY, et al. Synthesis, cytotoxicity and anti-metastatic properties of new pyridyl-thiazole arene ruthenium(II) complexes. Appl Organomet Chem. 2018;32:e4311.
  • Rodríguez Villar J, Mascareñas Cid JL, Rodríguez Couceiro J, et al., Ruthenium complexes for treating cancer which comprises cancer stem cells. 2018. (ES2017/070745).
  • Franceschin M, Rossetti L, D‘Ambrosio A, et al. Natural and synthetic G-quadruplex interactive berberine derivatives. Bioorg Med Chem Lett. 2006;16:1707–1711.
  • Zhang WJ, Ou TM, Lu YJ, et al. 9-Substituted berberine derivatives as G-quadruplex stabilizing ligands in telomeric DNA. Bioorg Med Chem. 2007;15:5493–5501.
  • Ma Y, Ou TM, Hou JQ, et al. 9-N-Substituted berberine derivatives: stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc. Bioorg Med Chem. 2008;16:7582–7591.
  • Franceschin M, Cianni L, Pitorri M, et al. Natural aromatic compounds as scaffolds to develop selective G-Quadruplex ligands: from previously reported berberine derivatives to new palmatine analogues. Molecules. 2018;23:1423.
  • Huang Z, Gu L, Ma Y, et al., 9-N-substituted berberine derivatives as well as preparation method and use as anti-cancer drugs. 2010. (CN101255158A)
  • Huang Z, Gu L, Du G, et al., Preparation method and application of methylbenzofuran quinoline derivative as antitumor drug. 2013. (CN103382207A)
  • Zhou JL, Lu YJ, Ou TM, et al. Synthesis and evaluation of quindoline derivatives as G-quadruplex inducing and stabilizing ligands and potential inhibitors of telomerase. J Med Chem. 2005;48:7315–7321.
  • Ou TM, Lu YJ, Zhang C, et al. Stabilization of G-quadruplex DNA and down-regulation of oncogene c-myc by quindoline derivatives. J Med Chem. 2007;50:1465–1474.
  • Zhou WJ, Deng R, Zhang XY, et al. G-quadruplex ligand SYUIQ-5 induces autophagy by telomere damage and TRF2 delocalization in cancer cells. Mol Cancer Ther. 2009;8:3203–3213.
  • Liu JN, Deng R, Guo JF, et al. Inhibition of myc promoter and telomerase activity and induction of delayed apoptosis by SYUIQ-5, a novel G-quadruplex interactive agent in leukemia cells. Leukemia. 2007;21:1300–1302.
  • Lu YJ, Ou TM, Tan JH, et al. 5-N-methylated quindoline derivatives as telomeric g-quadruplex stabilizing ligands: effects of 5-N positive charge on quadruplex binding affinity and cell proliferation. J Med Chem. 2008;51:6381–6392.
  • Huang Z, Gu L, Tan J, et al., Bisfatty amido substituted quinazolone derivatives as well as preparation method and use as anti-cancer drugs. 2008. (CN101250189)
  • Ou T, Zeng D, Huang Z, et al., Preparation method and application of quinolines derivative as anti-tumor medicine. 2017. (CN106279189A)
  • Zeng DY, Kuang GT, Wang SK, et al. Discovery of novel 11-triazole substituted benzofuro[3,2-b]quinolone derivatives as c-myc G-quadruplex specific stabilizers via click chemistry. J Med Chem. 2017;60:5407–5423.
  • Kobayashi K, Matsui N, Usui K. Use of a designed Peptide library to screen for binders to a particular DNA g-quadruplex sequence. J Nucleic Acids. 2011;2011:572873.
  • Long Y, Li Z, Tan JH, et al. Benzofuroquinoline derivatives had remarkable improvement of their selectivity for telomeric G-quadruplex DNA over duplex DNA upon introduction of peptidyl group. Bioconjug Chem. 2012;23:1821–1831.
  • Huang Z, Gu L, Du G, et al., Peptidyl-substituted double-chain benzofuran quinoline derivative as well as preparation method and application. 2014. (CN104017047A)
  • Huang Z, Tan J, Wang Y, et al., Quinazolinone and alpha, beta-unsaturated ketone conjugated derivative as well as preparation method and application. 2017. (CN107522700A)
  • Felsenstein KM, Saunders LB, Simmons JK, et al. Small molecule microarrays enable the identification of a selective, quadruplex-binding inhibitor of MYC expression. ACS Chem Biol. 2016;11:139–148.
  • Schneekloth JS Jr., Simmons J, Felsenstein K, et al., MYC G-quadruplex stabilizing small molecules and their use. 2016. (US20180030018/EP3242661A1/WO/2016/112036A1)
  • Dash J, Panda D, Debnath M, et al., Anticancer activities of a heterocyclic molecule that selectively stabilizes G-quadruolex DNA. 2014. (N1136/KOL/2014)
  • Panda D, Debnath M, Mandal S, et al. A nucleus-imaging probe that selectively stabilizes a minor conformation of c-MYC G-quadruplex and down-regulates c-MYC Transcription in human cancer cells. Sci Rep. 2015;5:13183.
  • Shibata H, Iwabuchi Y, Ohori H, et al., Bis(arylmethylidene)acetone compound, anti-cancer agent, carcinogenesis-preventive agent, inhibitor of expression of ki-ras, erbb2, c-myc and cycline d1, beta-catenin-degrading agent, and p53 expression enhancer. 2010. 20100152493
  • Gu L, Huang S, Huang Z, et al., 1,5-diaryl-substituted 2,4-dienone derivative as well as preparation method and application. 2009. (CN101723935A)
  • Schaertl S, Geeves MA, Konrad M. Human nucleoside diphosphate kinase B (Nm23-H2) from melanoma cells shows altered phosphoryl transfer activity due to the S122P mutation. J Biol Chem. 1999;274:20159–20164.
  • Postel EH, Weiss VH, Beneken J, et al. Mutational analysis of NM23-H2/NDP kinase identifies the structural domains critical to recognition of a c-myc regulatory element. Proc Natl Acad Sci U S A. 1996;93:6892–6897.
  • Chen S, Su L, Qiu J, et al. Mechanistic studies for the role of cellular nucleic-acid-binding protein (CNBP) in regulation of c-myc transcription. Biochim Biophys Acta. 2013;1830:4769–4777.
  • Yao Y, Li C, Zhou X, et al. PIWIL2 induces c-Myc expression by interacting with NME2 and regulates c-Myc-mediated tumor cell proliferation. Oncotarget. 2014;5:8466–8477.
  • Shan C, Lin J, Hou JQ, et al. Chemical intervention of the NM23-H2 transcriptional programme on c-MYC via a novel small molecule. Nucleic Acids Res. 2015;43:6677–6691.
  • Shan C, Yan JW, Wang YQ, et al. Design, synthesis, and evaluation of isaindigotone derivatives to downregulate c-myc transcription via disrupting the interaction of NM23-H2 with G-quadruplex. J Med Chem. 2017;60:1292–1308.
  • Wang YQ, Huang ZL, Chen SB, et al. Design, synthesis, and evaluation of new selective NM23-H2 binders as c-myc transcription inhibitors via disruption of the NM23-H2/G-quadruplex interaction. J Med Chem. 2017;60:6924–6941.
  • Huang Z, Tan J, Wang Y, 7-fluoro-substituted Isaindigotone derivatives and preparation method thereof, and application of 7-fluoro-substituted Isaindigotone derivatives in preparing anticancer drugs. 2016. (CN106220631A)
  • Kuo H-P, Hsieh H-K, Chang B, BET inhibitor and bruton‘s tyrosine kinase inhibitor combinations. 2016. (20160022684)
  • Lannutti B, Jessen K, Breitmeyer J-B, Uses of indolinone compounds. 2019. (20190022062)
  • Abedin SM, Boddy CS, Munshi HG. BET inhibitors in the treatment of hematologic malignancies: current insights and future prospects. Onco Targets Ther. 2016;9:5943–5953.
  • Huang H, Sun Y, Ren S, Methods and materials for identifying and treating BET inhibitor-resistant cancers. 2019. (WO/2019/032810)
  • Turk B, Calderwood D, Schlessinger J, et al., Compositions and methods of resensitizing cells to bromodomain and extraterminal domain protein inhibitors (BETi). 2017. (WO/2017/223268)
  • Abrams M, Chipumuro E, Combination therapy with c-myc nucleic acid inhibitors and selective CDK7 inhibitors. 2017. (WO2017160797)
  • Wang Y, Zhang T, Kwiatkowski N, et al. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell. 2015;163:174–186.
  • Eissa T, Tyryshkin A, Bhattacharya A, SRC kinase inhibition as treatment for lympangioleiomyomatosis and tuberous sclerosis. 2015. (WO/2015/069217)
  • Polivka J Jr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR pathway. Pharmacol Ther. 2014;142:164–175.
  • Roohi A, Hojjat-Farsangi M. Recent advances in targeting mTOR signaling pathway using small molecule inhibitors. J Drug Target. 2017;25:189–201.
  • Cermelli S, Jang IS, Bernard B, et al. Synthetic lethal screens as a means to understand and treat MYC-driven cancers. Cold Spring Harb Perspect Med. 2014;4:a014209.
  • Li X, Zhang XA, Li X, et al. MYC-mediated synthetic lethality for treating tumors. Curr Cancer Drug Targets. 2015;15:99–115.
  • Smith MR. Ibrutinib in B lymphoid malignancies. Expert Opin Pharmacother. 2015;16:1879–1887.
  • Casey SC, Tong L, Li Y, et al. MYC regulates the antitumor immune response through CD47 and PD-L1. Science. 2016;352:227–231.
  • Masso-Valles D, Jauset T, Soucek L. Ibrutinib repurposing: from B-cell malignancies to solid tumors. Oncoscience. 2016;3:147–148.
  • Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: A review. Int J Cancer. 2016;138:2570–2578.
  • Donato N, Maxwell J,D, Talpaz M, et al., Tryphostin-analogs for the treatment of cell proliferative diseases. 2008. (WO/2008/005954)
  • Priebe W, Donato N, Talpaz J,M, et al., Compounds for treatment of cell proliferative diseases. 2012. (US20120214850/EP2487156A1)
  • Lee D-S, Choi HS, Composition comprise ciclesonide for inhibiting growth of cancer stem cell. 2017. (WO/2018/070819A1)
  • Wittekindt NE, Hortnagel K, Geltinger C, et al. Activation of c-myc promoter P1 by immunoglobulin kappa gene enhancers in Burkitt lymphoma: functional characterization of the intron enhancer motifs kappaB, E box 1 and E box 2, and of the 3‘ enhancer motif PU. Nucleic Acids Res. 2000;28:800–808.
  • Aggarwal B, Shishodia S, Guggulsterone as an inhibitor of nuclear factor-kb and ikbalpha kinase activation. 2005. (WO/2006/017211A1).
  • Davis RJ, Welcker M, Clurman BE. Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell. 2014;26:455–464.
  • Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer. 2018;17:115.
  • Reavie L, Della Gatta G, Crusio K, et al. Regulation of hematopoietic stem cell differentiation by a single ubiquitin ligase-substrate complex. Nat Immunol. 2010;11:207–215.
  • Aifantis I, Reavie L, Buckley S, Inhibition of c-Myc ubiquitination to prevent cancer initiation and progression. 2013. (US20140288178/WO/2013/063560A2)
  • Parajuli P, Tiwari RV, Sylvester PW. Anti-proliferative effects of gamma-tocotrienol are associated with suppression of c-Myc expression in mammary tumour cells. Cell Prolif. 2015;48:421–435.
  • Junttila MR, Puustinen P, Niemela M, et al. CIP2A inhibits PP2A in human malignancies. Cell. 2007;130:51–62.
  • Wang GZ, Liu YQ, Cheng X, et al. Celastrol induces proteasomal degradation of FANCD2 to sensitize lung cancer cells to DNA crosslinking agents. Cancer Sci. 2015;106:902–908.
  • Liu Z, Ma L, Wen ZS, et al. Cancerous inhibitor of PP2A is targeted by natural compound celastrol for degradation in non-small-cell lung cancer. Carcinogenesis. 2014;35:905–914.
  • Zhou G, Ma L, Wu F, et al., New use of tripterine in pharmacy. 2008. (CN101352444)
  • Kim D, Hong A, Park HI, et al. Deubiquitinating enzyme USP22 positively regulates c-Myc stability and tumorigenic activity in mammalian and breast cancer cells. J Cell Physiol. 2017;232:3664–3676.
  • Donati B, Lorenzini E, Ciarrocchi A. BRD4 and cancer: going beyond transcriptional regulation. Mol Cancer. 2018;17:164.
  • Yang Z, Yik JH, Chen R, et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol Cell. 2005;19:535–545.
  • Dey A, Chitsaz F, Abbasi A, et al. The double bromodomain protein Brd4 binds to acetylated chromatin during interphase and mitosis. Proc Natl Acad Sci U S A. 2003;100:8758–8763.
  • Pestell R,G. (Jefferson Kimmel Cancer Center, 233 South 10th StreetSuite 105, Philadelphia PA, 19107, US), Prostate cancer cell lines, gene signatures and uses thereof. 2012. (WO/2012/122499)
  • de Pretis S, Kress TR, Morelli MJ, et al. Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res. 2017;27:1658–1664.
  • Orphanides G, Reinberg D. A unified theory of gene expression. Cell. 2002;108:439–451.
  • Cho S, Schroeder S, Ott M. CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cell Cycle. 2010;9:1697–1705.
  • Toyoshima MS, Grandori C, Methods and compositions for inhibiting the growth and/or proliferation of myc-driven tumor cells. 2016. (US20160367572)
  • Xu RH, Jiang H, C14-hydroxyl esterified amino acid derivative of triptolide, and preparation method and use thereof. 2018. (20180036277)
  • Scholz A, Use of 4-(4-fluoro-2-methoxyphenyl)-n-{3-[(s-methylsulfonimidoyl)methyl]phenyl}-1,3,5-triazin-2-amine for treating gastric cancers. 2016. (WO/2018/136843A1)
  • Morioka T, Loik ND, Hipolito CJ, et al. Selection-based discovery of macrocyclic peptides for the next generation therapeutics. Curr Opin Chem Biol. 2015;26:34–41.
  • Soucek L, Helmer-Citterich M, Sacco A, et al. Design and properties of a Myc derivative that efficiently homodimerizes. Oncogene. 1998;17:2463–2472.
  • Soucek L, Helmer-Citterich M, Methods and compositions for the treatment of cancer. 2014. (WO/2014/180889)
  • Soucek L, Whitfield JR, Sodir NM, et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 2013;27:504–513.
  • Beaulieu ME, Jauset T, Masso-Valles D, et al. Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Sci Transl Med. 2019;11:eaar5012.
  • Aldrich J, Mukhopadhyay A, Hanold LE, Macrocyclic peptides to decrease c-Myc protein levels and reduce cancer cell growth. 2018. (WO/2018/136843A1)
  • Johnson EM, Daniel DC, Family of synthetic polynucleotide-binding peptides and uses thereof. (2015. US20160052979/EP2904008A1)
  • Zamore PD, Tuschl T, Sharp PA, et al. RNAi. Cell. 2000;101:25–33.
  • Lin R, Avery L. RNA interference. Policing rogue genes. Nature. 1999;402:128–129.
  • Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411:494–498.
  • Rossi J, Tiemann K, Zhou J, et al., RNA aptamers against BAFF-R as cell-type specific delivery agents and methods for their use. 2016. (US20160348113)
  • Mcswiggen J, Beigelman L, RNA interference mediated inhibition of myc and/or myb gene expression using short interfering nucleic acid (siNA). 2010. (US20100093835)
  • James M, Leonid B, RNA interference mediated inhibition of MYC and/or MYB gene expression using short interfering nucleic acid (siNA). 2008. (US20090099115)
  • James M, Leonid B, RNA interference mediated inhibition of Myc and/or Myb gene expression using short interfering nucleic acid (siNA). 2004. (US20050159378)
  • Vivas-Mejia PE, Gonzalez JMR, Sood AK, Nanoliposomal c-MYC-siRNA inhibits in vivo tumor growth of cisplatin-resistant ovarian cancer. 2015. (US20150306036)
  • Fujita DJ, Bjorge JD, Methods and reagents for inhibiting cell proliferation. 2006. (US20060287273)
  • Zheng W, Yan Q, Liu Y, et al., External guide sequence of target c-myc cancer gene. 2009. (CN101624596)
  • Gabriella Z, Oligonucleotide treatments and compositions for human melanoma. 1997. (EP0932698A1/WO/1997/036005A1)
  • Wang H, Hammoudeh DI, Follis AV, et al. Improved low molecular weight Myc-Max inhibitors. Mol Cancer Ther. 2007;6:2399–2408.
  • Verdine GL, Walensky LD. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clin Cancer Res. 2007;13:7264–7270.
  • Walensky LD, Kung AL, Escher I, et al. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science. 2004;305:1466–1470.
  • Fieber W, Schneider ML, Matt T, et al. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc. J Mol Biol. 2001;307:1395–1410.
  • Conti E, Kuriyan J. Crystallographic analysis of the specific yet versatile recognition of distinct nuclear localization signals by karyopherin alpha. Structure. 2000;8:329–338.
  • Nair SK, Burley SK. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors. Cell. 2003;112:193–205.
  • Thomas LR, Wang Q, Grieb BC, et al. Interaction with WDR5 promotes target gene recognition and tumorigenesis by MYC. Mol Cell. 2015;58:440–452.
  • Richards MW, Burgess SG, Poon E, et al. Structural basis of N-Myc binding by Aurora-A and its destabilization by kinase inhibitors. Proc Natl Acad Sci U S A. 2016;113:13726–13731.
  • Bayliss R, Burgess SG, Leen E, et al. A moving target: structure and disorder in pursuit of Myc inhibitors. Biochem Soc Trans. 2017;45:709–717.
  • Sutherland C, Cui Y, Mao H, et al. A mechanosensor mechanism controls the G-Quadruplex/i-Motif molecular switch in the MYC promoter NHE III1. J Am Chem Soc. 2016;138:14138–14151.
  • Phan AT, Modi YS, Patel DJ. Propeller-type parallel-stranded G-quadruplexes in the human c-myc promoter. J Am Chem Soc. 2004;126:8710–8716.
  • Neidle S. Quadruplex nucleic acids as novel therapeutic targets. J Med Chem. 2016;59:5987–6011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.