539
Views
17
CrossRef citations to date
0
Altmetric
Review

SGLT2 inhibitors for the treatment of diabetes: a patent review (2013-2018)

&
Pages 369-384 | Received 13 Mar 2019, Accepted 25 Apr 2019, Published online: 04 May 2019

References

  • Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58(4):773–795.
  • Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes. 2008;2:77–82.
  • Chaudhury A, Duvoor C, Dendi VSR, et al. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol. 2017;8:6.
  • Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA. 1999;281:2005–2012.
  • Hallow KM, Greasley PJ, Helmlinger G, et al. Evaluation of renal and cardiovascular protection mechanisms of SGLT2 inhibitors: model-based analysis of clinical data. Am J Physiol Renal Physiol. 2018;315(5):F1295–306.
  • Abdul-Ghani MA, Norton L, DeFronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev. 2011;32(4):515–531.
  • Asano T, Ogihara T, Katagiri H, et al. Glucose cotransporter and Na+/glucose cotransporter as molecular targets of antidiabetic drugs. Curr Med Chem. 2004;11:2717–2724.
  • Neumiller JJ, White JR Jr, Campbell RK. Sodium-glucose co-transport inhibitors: progress and therapeutic potential in type 2 diabetes mellitus. Drugs. 2010;70(4):377–385.
  • Kuang H, Liao L, Chen H, et al. Therapeutic effect of sodium glucose co-transporter 2 inhibitor dapagliflozin on renal cell carcinoma. Med Sci Monit. 2017;23:3737–3745.
  • Duann P, Lin PH. Mitochondria damage and kidney disease. Adv Exp Med Biol. 2017;982:529–551.
  • Andrianesis V, Glykofridi S, John D. The renal effects of SGLT2 inhibitors and a mini-review of the literature. Ther Adv Endocrinol Metab. 2016;7(5–6):212–228.
  • Roder PV, Geillinger KE, Zietek TS, et al. The Role of SGLT1 and GLUT2 in intestinal glucose transport and sensing. PLoS One. 2014;9(2):e89977.
  • Augustin R. The protein family of glucose transport facilitators: it’s not only about glucose after all: critical review. IUBMB Life. 2010;62:315–333.
  • Bakris GL, Fonseca V, Sharma K, et al. Renal sodium glucose transport: role in diabetes mellitus and potential clinical implications. Kidney Int. 2009;75:1272–1277.
  • Wright E, Turc E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447:510–518.
  • Vallon V, Platt K, Gunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol. 2011;22:104–112.
  • Wright E, Loo D, Hirayama B. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794.
  • Wright E, Hirayama B, Loo D. et al. Intestinal sugar transport. L. Johnson, editor. Physiology of Gastrointestinal Tract. 3rd ed. New York, NY:Raven Press; 1994. p.1751–1772.
  • Wright EM, Hirayama BA, Loo DF. Active sugar transport in health and disease. J Intern Med. 2007;261:32–43.
  • Coady M, Wallendorff B, Gagnon D, et al. Indentification of a Novel Na+/myo-Inositol Cotransporter. J Biol Chem. 2002;277:35219–35224.
  • Abdul-Ghani M, DeFronzo R. Inhibition of renal glucose reabsorption: a novel strategy for achieving glucose control in type2 diabetes mellitus. Endocr Pract. 2008;14:782–790.
  • Vallon V, Richter K, Blantz R, et al. Glomerular hyperfiltration in experimental diabetes mellitus: potential role of tubular reabsorption. J Am Soc Nephrol. 1999;10:2569–2576.
  • Guyton A, Hall J. Chapter 27: urine formation by the kidneys: II tubular processing of the glomerular filtrate. In: Guyton A, Hall J, editors. Textbook of Medical Physiology. 11th ed. Philadelphia, Pennsylvania: Elsevier Saunders; 2006. p. 327–347.
  • Ghezzi C, Loo DDF, Wright EM. Physiology of renal glucose handling via SGLT1, SGLT2 and GLUT2. Diabetologia. 2018;61(10):2087–2097.
  • Hediger M, Rhoads D. Molecular physiology of sodium-glucose cotransporters. Physiol Rev. 1994;74:993–1026.
  • Rahmoune H, Thompson P, Ward J, et al. Glucose transporters in human renal proximal tubular cells isolated from the urine of patients with non–insulin-dependent diabetes. Diabetes. 2005;54:3427–3434.
  • Abdul-Ghani M, DeFronzo R. Lowering plasma glucose concentration by inhibiting renal sodium-glucose co-transport. J Intern Med. 2014;276:352–363.
  • Scholl-Burgi S, Santer R, Ehrich J. Long-term outcome of renal glucosuria type 0: the original patient and his natural history. Nephrol Dial Transplant. 2004;19:2394–2396.
  • Mosley JF, Smith L, Everton E, et al. Sodium-Glucose Linked Transporter 2 (SGLT2) inhibitors in the management of type-2 diabetes: A drug class overview. Pharm Ther. 2015;40(7):451–462.
  • Marsenic O. Glucose control by the kidney: an emerging target in diabetes. Am J Kidney Dis. 2009;53(5):875–883.
  • Idris I, Donnelly R. Sodium-glucose co-transporter-2 inhibitors: an emerging new class of oral antidiabetic drug. Diabetes Obes Metab. 2009;11(2):79–88.
  • Ehrenkranz J, Lewis N, Kahn C, et al. Phlorizin: a review. Diabetes Metab Res Rev. 2005;21:31–38.
  • White J. Apple trees to sodium glucose co-transporter inhibitors: a review of SGLT2 inhibition. Clin Diabetes. 2010;28:5–10.
  • Oku A, Ueta K, Arakawa K, et al. T-1095, an inhibitor of renal Na+-glucose cotransporters, may provide a novel approach to treating diabetes. Diabetes. 1999;48:1794–1800.
  • Misra M. SGLT2 inhibitors: a promising new therapeutic option for treatment of type2 diabetes mellitus: review. J Pharm Pharmacol. 2013;65:317–327.
  • Hussey EK, Clark RV, Amin DM, et al. Single-dose pharmacokinetics and pharmacodynamics of sergliflozin etabonate, a novel inhibitor of glucose reabsorption, in healthy volunteers and patients with type2 diabetes mellitus. J Clin Pharmacol. 2010;50:623–635.
  • Nair S, Wilding JPH. Sodium Glucose Cotransporter. 2 Inhibitors as a new treatment for diabetes mellitus. J Clin Endocrinol Metab. 2010;95(1):34–42.
  • Hummel CS, Lu C, Liu J, et al. Structural selectivity of human SGLT inhibitors. AJP: Cell Physiol. 2011;302(2):C373–C382.
  • Ferrannini E, Ramos S, Salsali A, et al. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double- blind, placebo-controlled, phase III trial. Diabetes Care. 2010;33:2217–2224.
  • Stenlöf K, Cefalu WT, Kim KA, et al. Efficacy and safety of canagliflozin monotherapy in subjects with type2 diabetes mellitus inadequately controlled with diet and exercise. Diabetes Obes Metab. 2013;15:372–382.
  • Ferrannini E, Muscelli E, Frascerra S, et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014;124:499–508.
  • Kaku K, Watada H, Iwamoto Y, et al. Efficacy and safety of monotherapy with the novel sodium/glucose cotransporter-2 inhibitor tofogliflozin in Japanese patients with type2 diabetes mellitus: a combined phase 2 and 3 randomized, placebo-controlled, double-blind, parallel-group comparative study. Cardiovasc Diabetol. 2014;13:1–15.
  • Liang Y, Arakawa K, Ueta K, et al. Effect of canagliflozin on renal threshold for glucose, glycemia, and body weight in normal and diabetic animal models. PLoS One. 2012;7:e30555.
  • Rosenstock J, Aggarwal N, Polidori D, et al. Dose ranging effects of canagliflozin, a sodium-glucose cotransporter 2 inhibitor, as add-on to metformin in subjects with type 2 diabetes. Diabetes Care. 2012;35:1232–1238.
  • Wilding J, Norwood P, T’joen C, et al. A study of dapagliflozin in patients with type2 diabetes receiving high doses of insulin plus insulin sensitizers: applicability of a novel insulin-independent treatment. Diabetes Care. 2009;32:1656–1662.
  • Sarashina A, Koiwai K, Seman LJ, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics of single doses of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in healthy Japanese subjects. Drug Metab Pharmacokinet. 2013;28:213–219.
  • Scheen A. Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor. Clin Pharmacokinet. 2014;53:213–225.
  • Wilding J, Ferrannini E, Fonseca V, et al. Efficacy and safety of ipragliflozin in patients with type 2 diabetes inadequately controlled on metformin: a dose-finding study. Diabetes Obes Metab. 2013;15:403–409.
  • Heise T, Seewaldt-Becker E, Macha S, et al. Safety, tolerability, pharmacokinetics and pharmacodynamics following 4 weeks’ treatment with empagliflozin once daily in patients with type 2 diabetes. Diabetes Obes Metab. 2013;15:613–621.
  • Veltkamp S, Kadokura T, Krauwinkel W, et al. Effect of ipragliflozin (ASP1941), a novel selective sodium-dependent glucose co-transporter 2 inhibitor, on urinary glucose excretion in healthy subjects. Clin Drug Investig. 2011;31:839–851.
  • Fonseca V, Ferrannini E, Wilding J, et al. Active- and placebo-controlled dose-finding study to assess the efficacy, safety, and tolerability of multiple doses of ipragliflozin in patients with type 2 diabetes mellitus. J Diabetes Complications. 2013;27:268–277.
  • Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of canagliflozin in subjects with type 2 diabetes and chronic kidney disease. Diabetes Obes Metab. 2013;15:463–473.
  • Bolinder J, Ö L, Kullberg J, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97:1020–1031.
  • Bailey C, Gross J, Pieters A, et al. Effect of dapagliflozin in patients with type 2 diabetes who have inadequate glycaemic control with metformin: a randomised, double-blind, placebocontrolled trial. Lancet. 2010;375:2223–2233.
  • Hansen HH, Jelsing J, Hansen CF, et al. The sodium glucose cotransporter type 2 inhibitor empagliflozin preserves beta-cell mass and restores glucose homeostasis in the male Zucker diabetic fatty rat. J Pharmacol Exp Ther. 2014;350:657–664.
  • Novikov A, Vallon V. Sodium glucose cotransporter 2 inhibition in the diabetic kidney: an update. Curr Opin Nephrol Hypertens. 2015;24:1–9.
  • Mathieu C, Dandona P, Phillip M, et al. Glucose variables in type 1 diabetes studies with dapagliflozin: pooled analysis of continuous glucose monitoring data from DEPICT-1 and −2. Diabetes Care. 2019;pii: dc181983.
  • Cherney DZ, Perkins BA, Soleymanlou N, et al. The renal hemodynamic effect of SGLT2 inhibition in patients with type 1 diabetes. Circulation. 2014;129:587–597.
  • Lamos E, Younk L, Davis S. Empagliflozin, a sodium glucose co-transporter 2 inhibitor, in the treatment of type 1 diabetes. Expert Opin Investig Drugs. 2014;23:875–882.
  • Musso G, Gambino R, Cassader M, et al. Efficacy and safety of dual SGLT 1/2 inhibitor sotagliflozin in type 1 diabetes: meta-analysis of randomised controlled trials. BMJ. 2019;365:l1328.
  • Danne T, Cariou B, Buse JB, et al. Improved time in range and glycemic variability with sotagliflozin in combination with insulin in adults with type 1 diabetes: a pooled analysis of 24-week continuous glucose monitoring data from the in tandem program. Diabetes Care.2019;42(5):919-930. .
  • McCrimmon RJ, Henry RR. SGLT inhibitor adjunct therapy in type 1 diabetes. Diabetologia. 2018;61(10):2126–2133.
  • Škrtić M, Yang G, Perkins B, et al. Characterisation of glomerular haemodynamic responses to SGLT2 inhibition in patients with type 1 diabetes and renal hyperfiltration. Diabetologia. 2014;57:2599–2602.
  • Ruggenenti P, Porrini E, Gaspari F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care. 2012;35:2061–2068.
  • Jerums G, Premaratne E, Panagiotopoulos S, et al. The clinical significance of hyperfiltration in diabetes. Diabetologia. 2010;53:2093–2104.
  • Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic akita mice. Am J Physiol Renal Physiol. 2014;306:F194–F204.
  • Nagata T, Fukuzawa T, Takeda M, et al. Tofogliflozin, a novel sodium-glucose co-transporter 2 inhibitor, improves renal and pancreatic function in db/db mice. Br J Pharmacol. 2013;170:519–531.
  • Wanner C, Inzucchi S, Lachin J, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–334.
  • Macha S, Mattheus M, Halabi A, et al. Pharmacokinetics, pharmacodynamics and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, in subjects with renal impairment. Diabetes Obes Metab. 2014;16:215–222.
  • Perkovic V, de Zeeuw D, Mahaffey KW, et al. Canagliflozin and renal outcomes in type 2 diabetes: results from the CANVAS Program randomised clinical trials. Lancet Diabetes Endocrinol. 2018;6(9):691–704.
  • Zelniker TA, Wiviott SD, Raz I, et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcomes trials. Lancet. 2019 Jan 5;393(10166):31–39.
  • Oliva R, Bakris G. Blood pressure effects of sodium-glucose co-transport 2 (SGLT2) inhibitors. J Am Soc Hypertens. 2014;8:330–339.
  • Tikkanen I, Narko K, Zeller C, et al. Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care. 2015;38:420–428.
  • Majewski C, Bakris G. Blood pressure reduction: an added benefit of sodium glucose cotransporter 2 inhibitors in patients with type 2 diabetes. Diabetes Care. 2015;38:429–430.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–2128.
  • Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(7):644–657.
  • Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–357.
  • Wu J, Foote C, Blomster J, et al. Effects of sodium glucose cotransporter-2 inhibitors on cardiovascular events, death, and major safety outcomes in adults with type 2 diabetes: a systematic review and meta analysis. Lancet Diabetes Endocrinol. 2016;4:411–419.
  • Kaji K, Nishimura N, Seki K, et al. Sodium glucose cotransporter 2 inhibitor canagliflozin attenuates liver cancer cell growth and angiogenic activity by inhibiting glucose uptake. Int J Cancer. 2017;10:1002–1193.
  • Linda AV, Brennan KS, Katarina M, et al. The diabetes medication Canagliflozin reduces cancer cell proliferation by inhibiting mitochondrial complex-I supported respiration. Mol metabolisms. 2016; 5(10):1048–1056.
  • Tsugumichi S, Shuichi O, Eijiro Y, et al. Effect of dapagliflozin on colon cancer cell. Endocr J. 2015;62(12):1133–1137.
  • Scafoglioa C, Hirayamab BA, Kepea V, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci USA. 2015;112:E4111–9.
  • Li H, Tong CW, Leung Y, et al. Identification of clinically approved drugs indacaterol and canagliflozin for repurposing to treat epidermal growth factor tyrosine kinase inhibitor-resistant lung cancer. Front Oncol. 2017;7:288.
  • Ptaszynska A, Cohen S, Messing E, et al. Assessing bladder cancer risk in type 2 diabetes clinical trials: the dapagliflozin drug development program as a ‘case study’. Diabetes Ther. 2015;6:357–375.
  • Reilly TP, Graziano MJ, Janovitz EB, et al. Carcinogenicity risk assessment supports the chronic safety of dapagliflozin, an inhibitor of sodium-glucose co-transporter 2, in the treatment of type2 diabetes mellitus. Diabetes Ther. 2014;5:73–96.
  • Washburn WN. Sodium glucose co-transporter 2 (SGLT2) inhibitors: novel antidiabetic agents. Expert Opin Ther Pat. 2012;22(5):483–494.
  • Merck patent Gmbh, Tsaklakidid C, Beier N. Glucopyranoside derivatives. 2009. (WO2009124638).
  • Sanofi SA, Frick W, Glombik H, et al. Novel aromatic glycoside derivatives, medicament containing said compounds, and the use thereof; 2011 . (WO2011107494(A1))
  • TFChem, C-arylglycoside compounds for the treatment of diabetes and obesity; 2010. (WO2009121939).
  • Pharmaceutical A, Gant TG, Shahbaz M thoxyphenylmethyl inhibitors of SGLT2. WO2010048358; 2010.
  • Liu J, Li L, Li S, et al. Effects of SGLT2 inhibitors on UTIs and genital infections in type 2 diabetes mellitus: a systematic review and meta-analysis. Sci Rep. 2017;7(1):2824.
  • Chen Y, Fu X, Li X, Shanghai Sun Sail Pharmaceutical Science & Technology Co. Ltd. C-aryl glucoside derivative, preparation method and applications thereof. CN104109154 (A). 2014.
  • Zhao J, Hu W, Xu D, et al. Chia Tai Tianqing Pharmaceutical Group co ltd. C-triaryl glucoside SGLT-2 inhibitors. WO2014146606 (A1). 2014.
  • Chen Y, He L, Zhu X Shanghai Sun Sail Pharmaceutical Science & Technology co ltd. C-benzo five-membered heteroaromatic aryl glucoside derivative as well as preparation method and application thereof. CN105294785 (A). 2016.
  • Gao D, Yang H, Wang P, Shanghai Dinuo Pharmaceutical co ltd. C-aryl indican derivative, pharmaceutical composition thereof, preparation method thereof and uses thereof. JP2017511383 (A). 2017.
  • Wang Y, He R, Jin Y, Zhejiang Yongtai Tech co ltd; Zhejiang Yongtai Pharmaceutical co ltd. Compound containing adamantane structure and serving as SGLT-2 inhibitor. CN107903231 (A). 2018.
  • Lin J, Chen S, Li Y, Zhejiang Yongtai Tech Co. Ltd. Compound containing hydroxypiperidine structure and serving as SGLT-2 inhibitor. CN107903247 (A). 2018.
  • He R, Wang Y, Jin Y Zhejiang Yongtai Tech co ltd; Yongtai Pharmaceutical ltd. Compound containing cyclohexane structure and severed as SGLT-2 inhibitor. CN107880006 (A); 2018.
  • Jain R, Trehan S, Das J, et al. Panacea Biotech Limited. Novel SGLT inhibitors. US2014378540 (A1). 2014.
  • Wells K, Li X, Branum S, et al. Janssen Pharmaceutica NV. Process for the preparation of compounds useful as inhibitors of SGLT-2. US2014206859 (A1). 2014.
  • Li Y, Chen L, Xu B, et al. Sichuan Haisco Pharmaceutical co ltd. Oxa-thia-bicyclo [3.2.1] octane derivative, preparation method, and use of same. 2014. (WO2014206349 (A1)).
  • Gu Z, Wen J, Wang H, et al. Guangdong Hec pharmaceutical Co. Ltd. Glucopyranose-based derivative and application of glucopyranose-based derivative in medicines. 2015. (CN104447893 (A)).
  • Xu B, Lyu B, Xu G, et al. Theracos inc. Process for preparation of benzylbenzene sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. 2015. (CN104334568 (A))
  • Cai Z, Foshan Saiweisi Pharmaceutical Technology co ltd. Alkoxyphenylthiazole carboxylic acid amide compounds containing phenylamidine structures and application. CN104628672 (A). 2015.
  • Cai Z, Foshan Saiweisi Pharmaceutical Technology co ltd. Alkoxy-substituted compounds containing methoxyphenyl thiophene amide structures and application. CN104725347 (A). 2015.
  • Cai Z, Foshan Saiweisi Pharmaceutical Technology co ltd. Cyano-substituted double-target inhibitors containing methoxybenzene thiophene amide and application thereof. CN104725346 (A). 2015.
  • Cai Z, Foshan Saiweisi Pharmaceutical Technology co ltd. Halogenophenylthiazole carboxylic acid amide compounds containing phenylamidine structures as well as preparation method and application thereof. CN104910097 (A). 2015.
  • Cai Z, Foshan Saiweisi Pharmaceutical Technology co ltd. Nitrobenzothiazole carboxylic acid amide compounds containing phenylamidine structures and application. CN104628671 (A). 2015.
  • Xu G, Binhua LV, Seed B, et al. Theracos Sub LLC. Process for preparation of benzylbenzene sodium-dependent glucose cotransporter 2 (SGLT-2) inhibitors. NZ630408 (A). 2016.
  • Kwee HS, Nam DK, Moon SL, et al. Hanmi Pharm Ind co ltd. 2,3-Dihydrobenzofuran derivatives as an sglt inhibitor and pharmaceutical composition comprising same. AR100420 (A1). 2016.
  • Cho EH, Shin HJ, Kwon HS, et al. Samjin Pharm co ltd. Novel isoindolines derivatives, method of preparing thereof, and pharmaceutical composition including therof. KR20160097861 (A); 2016.
  • Chen X, Omar P, Huang Q, et al. Zhenjiang San an Pharmaceutical co ltd. Isobenzofuran derivatives, pharmaceutical composition and preparation of derivatives, and application of derivatives. CN108640958 (A). 2018.
  • Dong AN, Jia L. Allist Pharmaceuticals Inc. Spiroketal derivative and preparation method and application thereof. CN106892929 (A). 2017.
  • Gaul M, Kuo GH, Xu G, et al. Janssen Pharmaceutica NV. Benzocyclobutane derivatives useful as dual sglt1/sglt2 modulators. WO2018089449 (A1). 2018.
  • Kwak WY, Sung SY, Kim JH, et al. Dong A ST co ltd. SGLT-2 Novel Glucose derivatives of SGLT-2 inhibitor. KR20180098173 (A). 2018.
  • Zhao G, Han S, Xie Y, et al. Tianjin Inst Pharm Research. Crystal form A of compound as well as preparation method and application thereof. CN104693192 (A). 2015.
  • Zhao J, Pan B, Tian H Jiangsu hansoh Pharmaceutical; Univ Southeast. 1-(beta-D-pyranoglucosyl)-4-methyl-3-[5-(4-fluorophenyl)-2-thienylmethyl]benzene and L-phenylalanine eutectic compound and preparation method thereof. CN103965267 (A). 2014.
  • Lin G, Li X, Liu Z, et al. Beijing Winsunny Pharmaceutical co ltd. Preparation method of SGLT-2 inhibitor compound. CN105481915 (A); 2016.
  • Lin W, Zheng H, Lin C, et al. Porton Fine Chemicals ltd. SGLT-2 inhibitor intermediate synthesis method. CN106316803 (A). 2017.
  • Kwak WY, Sung SY, Kim JH, et al. Dong-A ST co ltd. Novel solvate of dapagliflozin and preparation method thereof. WO2017099496. (A1). 2017
  • Zhang L, Wang Y Youngene Therapeutics co ltd. Amine solvate of sodium-glucose linked transporter inhibitor, and preparation method and application thereof. CA3016273 (A1). 2017.
  • Nair R, Pv R, Sk D, et al. Indoco Remedies ltd. Process for the preparation of SGLT inhibitor compounds. US2018016290 (A1). 2018.
  • Zheng X, Zhang Y, Fu C, Hangzhou Cheminspire Tech co ltd. Preparation method of ertugliflozin and intermediate of ertugliflozin. CN107382952 (A). 2017.
  • Zheng X, Zhang Y, Wu Y Hangzhou Cheminspire Tech co ltd. Preparation methods of SGLT-2 diabetes inhibitors and intermediates thereof. CN107163092 (A). 2017.
  • Claudius W, Thomas Adam D, Marbod H, et al. Boehringer Ingelheim Vetmedica GMBH. Liquid pharmaceutical compositions comprising SGLT-2 inhibitors. MX2018002383 (A). 2018.
  • Mundla MV, Malyala S, Narani CP, et al. Emmennar Pharma Private ltd. Processes for the Preparation of SGLT-2 Inhibitors, Intermediates Thereof. US2018346502 (A1). 2018.
  • Wienrich M, Mayoux E Boehringer Ingelheim International Gmbh. SGLT-2 inhibitors for treating metabolic disorders in patients treated with neuroleptic agents. AU2012264736 (A1). 2013.
  • Eickelmann P, Mark M, Leo JS, et al. Boehringer Ingelheim int. SGLT-2 inhibitor for treating type 1 diabetes mellitus, type 2 diabetes mellitus, impaired glucose tolerance or hyperglycemia. JP2015042691 (A). 2015
  • Liu K, Lang Y Shandong Target Drug Research Co. Ltd. Medical application of diacerein in treating diabetes and diabetic nephropathy. CN103655535 (A). 2014.
  • Naoki K Taisho Pharma co ltd. Combinations of SGLT-2 inhibitors and antihypertensive drugs. EP2891499 (A1). 2015.
  • Broedl CU, Cherney D, Daiber A, et al. Therapeutic uses of empagliflozin. Boehringer Ingelheim int. AU2014247091(A1). 2015.
  • Broedl U, Von EM, Macha S, et al. Boehringer Ingelheim int. Pharmaceutical composition, methods for treating and uses thereof. US9949998(B2). 2018.
  • Naik R, Ommen E, Rusnak JM, et al. Merck sharp & Dohme, Pfizer. SGLT-2 inhibitors for treating metabolic disorders in patients with renal impairment or chronic kidney disease.US2017304262 (A1). 2017.
  • Albrecht- Kupper B, Bayer VS. Selective partial adenosine a1 receptor agonists in combination with SGLT-2 inhibitors. WO2018153900 (A1). 2018
  • Nyirjesy P, Zhao Y, Ways K, et al. Evaluation of vulvovaginal symptoms and Candida colonization in women with type 2 diabetes mellitus treated with canagliflozin, a sodium glucose co-transporter 2 inhibitor. Curr Med Res Opin. 2012;28:1173–1178.
  • Rosenstock J, Seman LJ, Jelaska A, et al. Efficacy and safety of empagliflozin, a sodium glucose cotransporter 2 (SGLT2) inhibitor, as add-on to metformin in type2 diabetes with mild hyperglycaemia. Diabetes Obes Metab. 2013;15:1154–1160.
  • Nauck MA, Del Prato S, Meier JJ, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34:2015–2022.
  • Taylor S, Blau J, Rother K. SGLT2 inhibitors may predispose to ketoacidosis. J Clin Endocrinol Metab. 2015;100:2849–2852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.