430
Views
57
CrossRef citations to date
0
Altmetric
Review

Selective COX-2 inhibitors as anticancer agents: a patent review (2014-2018)

&
Pages 407-427 | Received 19 Jan 2019, Accepted 22 May 2019, Published online: 27 May 2019

References

  • Cronin KA, Lake AJ, Scott S, et al. annual report to the nation on the status of cancer, part i: national cancer statistics. Cancer. 2018;124(13):2785-2800. doi: 10.1002/cncr.31551.
  • Xu J, Mao W. Overview of research and development for anticancer drugs. J Cancer Ther. 2016;7(10):762.
  • Lee Y, Rodriguez C, Dionne R. The role of COX-2 in acute pain and the use of selective COX-2 inhibitors for acute pain relief. Curr Pharm Des. 2005;11(14):1737–1755.
  • Xu X-C. COX-2 inhibitors in cancer treatment and prevention, a recent development. Anticancer Drugs. 2002;13(2):127–137.
  • De Monte C, Carradori S, Gentili A, et al. Dual cyclooxygenase and carbonic anhydrase inhibition by nonsteroidal anti-inflammatory drugs for the treatment of cancer. Curr Med Chem. 2015;22(24):2812–2818.
  • Supuran CT, Casini A, Mastrolorenzo A, et al. COX-2 selective inhibitors, carbonic anhydrase inhibition and anticancer properties of sulfonamides belonging to this class of pharmacological agents. Mini Rev Med Chem. 2004 Aug;4(6):625–632.
  • Dogne JM, Thiry A, Pratico D, et al. Dual carbonic anhydrase–cyclooxygenase-2 inhibitors. Curr Top Med Chem. 2007;7(9):885–891.
  • Temperini C, Cecchi A, Scozzafava A, et al. Carbonic anhydrase inhibitors. Sulfonamide diuretics revisited—old leads for new applications? Org Biomol Chem. 2008;6(14):2499–2506.
  • Noma N, Fujii G, Miyamoto S, et al. impact of acetazolamide, a carbonic anhydrase inhibitor, on the development of intestinal polyps in min mice. Int J Mol Sci. 2017;18(4):851.
  • Singh S, Lomelino CL, Mboge MY, et al. cancer drug development of carbonic anhydrase inhibitors beyond the active site. Molecules (Basel, Switzerland). 2018 Apr 30;23:5.
  • Pannunzio A, Coluccia M. Cyclooxygenase-1 (COX-1) and COX-1 inhibitors in cancer: a review of oncology and medicinal chemistry literature. Pharmaceuticals. 2018;11(4):101.
  • Mattia C, Coluzzi F. COX-2 inhibitors: pharmacological data and adverse effects. Minerva Anestesiol. 2005;71(7–8):461–470.
  • Davies NM, Jamali F. COX-2 selective inhibitors cardiac toxicity: getting to the heart of the matter. J Pharm Pharm Sci. 2004 Oct 29;7(3):332–336.
  • Zarghi A, Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 2011 Autumn; 10(4):655–683.
  • Mathew ST, Devi SG, Prasanth VV, et al. Efficacy and safety of COX-2 inhibitors in the clinical management of arthritis: mini review. ISRN Pharmacol. 2011;2011:480291.
  • Syed M, Skonberg C, Hansen SH. Mitochondrial toxicity of selective COX-2 inhibitors via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria. Toxicol In Vitro. 2016 Apr;32:26–40.
  • Bansal SS, Joshi A, Bansal AK. New dosage formulations for targeted delivery of cyclo-oxygenase-2 inhibitors. Drugs Aging. 2007;24(6):441–451.
  • Minghetti L. Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J Neuropathol Exp Neurol. 2004;63(9):901–910.
  • Simon L. Arthritis: new agents herald more effective symptom management. Geriatrics (Basel, Switzerland). 1999;54(6):37–42. quiz 44.
  • Zatz R, Fujihara CK. Mechanisms of progressive renal disease: role of angiotensin II, cyclooxygenase products and nitric oxide. J Hypertens Suppl. 2002;20(3):S37–S44.
  • Grosser T, Theken KN, FitzGerald GA. Cyclooxygenase inhibition: pain, inflammation, and the cardiovascular system. Clin Pharmacol Ther. 2017;102(4):611–622.
  • Lk D, Cf L, Jc T. Epidemiologic association between prostatitis and prostate cancer. Urology. 2002;60(1):78–83.
  • Lr H. Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res. 2007;9(4):210.
  • Lm C, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860.
  • Yao M, Lam E, Kelly C, et al. Cyclooxygenase-2 selective inhibition with NS-398 suppresses proliferation and invasiveness and delays liver metastasis in colorectal cancer. Br J Cancer. 2004;90(3):712.
  • Eisinger AL, Prescott SM, Jones DA, et al. The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat. 2007;82(1–4):147–154.
  • Steinbach G, Lynch PM, Phillips RK, et al. The effect of celecoxib, a cyclooxygenase-2 inhibitor, in familial adenomatous polyposis. N Engl J Med. 2000;342(26):1946–1952.
  • Food U, Administration D. Pfizer, Inc.; withdrawal of approval of familial adenomatous polyposis indication for CELEBREX. 2016.
  • Dai P, Li J, Ma X-P, et al. Efficacy and safety of COX-2 inhibitors for advanced non-small-cell lung cancer with chemotherapy: a meta-analysis. Onco Targets Ther. 2018;11:721.
  • Perwez Hussain S, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–2380.
  • Sobolewski C, Cerella C, Dicato M, et al. The role of cyclooxygenase-2 in cell proliferation and cell death in human malignancies. Int J Cell Biol. 2010;2010:215158. doi: 10.1155/2010/215158.
  • Stoimenov I, Helleday T. PCNA on the crossroad of cancer.Biochem Soc Trans. 2009;37(Pt 3):605-613. doi: 10.1042/BST0370605.
  • de Franceschi N, Hamidi H, Alanko J, et al. Integrin traffic–the update. J Cell Sci. 2015;128(5):839–852.
  • Regulski M, Regulska K, Prukala W, et al. COX-2 inhibitors: a novel strategy in the management of breast cancer. Drug Discov Today. 2016 Apr;21(4):598–615.
  • Su CW, Zhang Y, Zhu YT. Stromal COX-2 signaling are correlated with colorectal cancer: a review. Crit Rev Oncol Hematol. 2016 Nov;107:33–38.
  • Tsujii M, Kawano S, DuBois RN. Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Nat Acad Sci. 1997;94(7):3336–3340.
  • Liu R, Xu KP, Tan GS. Cyclooxygenase-2 inhibitors in lung cancer treatment: bench to bed. Eur J Pharmacol. 2015 Dec 15;769:127–133.
  • Sung I-C, Huang K-H, Sung M-T, et al. The HGF/c-Met/COX-2 and Jagged1/Notch1/COX-2 pathways as molecular targets for gastric cancer treatment. J Cancer Res Pract. 2014;1(2):93–102.
  • Qiu J, Shi Z, Jiang J. Cyclooxygenase-2 in glioblastoma multiforme. Drug Discov Today. 2017 Jan;22(1):148–156.
  • Khor L-Y, Bae K, Pollack A, et al. COX-2 expression predicts prostate-cancer outcome: analysis of data from the RTOG 92-02 trial. Lancet Oncol. 2007;8(10):912–920.
  • An KP, Athar M, Tang X, et al. Cyclooxygenase-2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochem Photobiol. 2002 Jul;76(1):73–80.
  • Bernard M, Bancos S, Sime P, et al. Targeting cyclooxygenase-2 in hematological malignancies: rationale and promise. Curr Pharm Des. 2008;14(21):2051–2060.
  • Sun H, Zhang X, Sun D, et al. COX-2 expression in ovarian cancer: an updated meta-analysis. Oncotarget. 2017;8(50):88152.
  • Hase T, Yoshimura R, Matsuyama M, et al. Cyclooxygenase-1 and −2 in human testicular tumours. Eur J Cancer. 2003;39(14):2043–2049.
  • Uddin MJ, Crews BC, Xu S, et al. Antitumor activity of cytotoxic cyclooxygenase-2 inhibitors. ACS Chem Biol. 2016;11(11):3052–3060.
  • Kune GA, Kune S, Watson LF. Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne colorectal cancer study. Cancer Res. 1988;48(15):4399–4404.
  • Rai A, Kumar U, Raj V, et al. Novel 1,4-benzothazines obliterate COX-2 mediated JAK-2/STAT-3 signals with potential regulation of oxidative and metabolic stress during colorectal cancer. Pharmacol Res. 2018;132:188–203.
  • Clària J. Cyclooxygenase-2 biology. Curr Pharm Des. 2003;9(27):2177–2190.
  • Kurumbail RG, Stevens AM, Gierse JK, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384(6610):644.
  • Bandyopadhyay D, Granados JC, Short JD, et al. Polycyclic aromatic compounds as anticancer agents: evaluation of synthesis and in vitro cytotoxicity. Oncol Lett. 2012;3(1):45–49.
  • Becker FF, Banik BK. Polycyclic aromatic compounds as anticancer agents: synthesis and biological evaluation of some chrysene derivatives. Bioorg Med Chem Lett. 1998;8(20):2877–2880.
  • Sadeghi-Aliabadi H, Aliasgharluo M, Fattahi A, et al. In vitro cytotoxic evaluation of some synthesized COX-2 inhibitor derivatives against a panel of human cancer cell lines. Res Pharm Sci. 2013;8(4):298.
  • Yamauchi S, Wukirsari T, Ochi Y, et al. Syntheses of cytotoxic novel arctigenin derivatives bearing halogen and alkyl groups on aromatic rings. Bioorg Med Chem Lett. 2017;27(17):4199–4203.
  • Rodl CB, Vogt D, Kretschmer SB, et al. Multi-dimensional target profiling of N,4-diaryl-1,3-thiazole-2-amines as potent inhibitors of eicosanoid metabolism. Eur J Med Chem. 2014 Sep 12;84:302–311.
  • Naaz F, Preeti Pallavi MC, Shafi S, et al. 1,2,3-triazole tethered Indole-3-glyoxamide derivatives as multiple inhibitors of 5-LOX, COX-2 & tubulin: their anti-proliferative & anti-inflammatory activity. Bioorg Chem. 2018;81:1–20.
  • Kim KJ, Choi MJ, Shin JS, et al. Synthesis, biological evaluation, and docking analysis of a novel family of 1-methyl-1H-pyrrole-2,5-diones as highly potent and selective cyclooxygenase-2 (COX-2) inhibitors. Bioorg Med Chem Lett. 2014 Apr 15;24(8):1958–1962.
  • Galal SA, Khairat SH, Ragab FA, et al. Design, synthesis, and molecular docking study of novel quinoxalin-2(1H)-ones as anti-tumor active agents with inhibition of tyrosine kinase receptor and studying their cyclooxygenase-2 activity. Eur J Med Chem. 2014 Oct 30;86:122–132.
  • Pirahmadi N, Zarghi A, Salimi A, et al. beta-lactam Structured, 4-(4-(Methylsulfonyl)phenyl)-1-pentyl-3-phenoxy azetidine-2-one: selectively targets cancerous B Lymphocyte mitochondria. Anticancer Agents Med Chem. 2017;17(9):1292–1301.
  • Yakaiah S, Sagar Vijay Kumar P, Baby Rani P, et al. Design, synthesis and biological evaluation of novel pyrazolo-oxothiazolidine derivatives as antiproliferative agents against human lung cancer cell line A549. Bioorg Med Chem Lett. 2018 Feb 15;28(4):630–636.
  • Yatam S, Gundla R, Jadav SS, et al. Focused library design and synthesis of 2-mercapto benzothiazole linked 1, 2, 4-oxadiazoles as COX-2/5-LOX inhibitors. J Mol Struct. 2018;1159:193–204.
  • Ghatak S, Vyas A, Misra S, et al. Novel di-tertiary-butyl phenylhydrazones as dual cyclooxygenase-2/5-lipoxygenase inhibitors: synthesis, COX/LOX inhibition, molecular modeling, and insights into their cytotoxicities. Bioorg Med Chem Lett. 2014 Jan 1;24(1):317–324.
  • Qiu HY, Wang PF, Li Z, et al. Synthesis of dihydropyrazole sulphonamide derivatives that act as anti-cancer agents through COX-2 inhibition. Pharmacol Res. 2016;104:86–96.
  • El Sayed MT, El-Sharief M, Zarie ES, et al. Design, synthesis, anti-inflammatory antitumor activities, molecular modeling and molecular dynamics simulations of potential naprosyn(R) analogs as COX-1 and/or COX-2 inhibitors. Bioorg Chem. 2018;76:188–201.
  • El-Husseiny WM, El-Sayed MA, Abdel-Aziz NI, et al. Structural alterations based on naproxen scaffold: synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. Eur J Med Chem. 2018 Oct 5;158:134–143.
  • Nguyen BCQ, Takahashi H, Uto Y, et al. 1,2,3-Triazolyl ester of Ketorolac: A “Click Chemistry”-based highly potent PAK1-blocking cancer-killer. Eur J Med Chem. 2017 Jan;27(126):270–276.
  • Medda F, Sells E, Chang HH, et al. Synthesis and biological activity of aminophthalazines and aminopyridazines as novel inhibitors of PGE2 production in cells. Bioorg Med Chem Lett. 2013 Jan 15;23(2):528–531.
  • Temirak A, Shaker YM, Ragab FA, et al. Part I. Synthesis, biological evaluation and docking studies of new 2-furyl benzimidazoles as antiangiogenic agents. Eur J Med Chem. 2014 Nov;24(87):868–880.
  • Mathew B, Hobrath JV, Connelly MC, et al. Diverse amide analogs of sulindac for cancer treatment and prevention. Bioorg Med Chem Lett. 2017 Oct 15;27(20):4614–4621.
  • Sever B, Altintop MD, Kus G, et al. Indomethacin based new triazolothiadiazine derivatives: synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. Eur J Med Chem. 2016 May 4;113:179–186.
  • Chen Z, Wang ZC, Yan XQ, et al. Design, synthesis, biological evaluation and molecular modeling of dihydropyrazole sulfonamide derivatives as potential COX-1/COX-2 inhibitors. Bioorg Med Chem Lett. 2015 May 1;25(9):1947–1951.
  • Coricello A, El-Magboub A, Luna M, et al. Rational drug design and synthesis of new alpha-Santonin derivatives as potential COX-2 inhibitors. Bioorg Med Chem Lett. 2018 Apr 1;28(6):993–996.
  • El-Gamal MI, Oh C-H. Synthesis, in vitro antiproliferative activity, and in silico studies of fused tricyclic coumarin sulfonate derivatives. Eur J Med Chem. 2014;84:68–76.
  • Farzaneh S, Shahhosseini S, Arefi H, et al. Design, synthesis, and biological evaluation of new 1,3-diphenyl-3- (phenylamino)propan-1-ones as selective cyclooxygenase (COX-2) Inhibitors. Med Chem. 2018;14(7):652–659.
  • Regulski M, Piotrowska-Kempisty H, Prukala W, et al. Synthesis, in vitro and in silico evaluation of novel trans-stilbene analogs as potential COX-2 inhibitors. Bioorg Med Chem. 2018 Jan 1;26(1):141–151.
  • Gasser G, Ott I, Metzler-Nolte N. Organometallic anticancer compounds. J Med Chem. 2010;54(1):3–25.
  • Jaouen G, Vessières A, Top S. Ferrocifen type anti-cancer drugs. Chem Soc Rev. 2015;44(24):8802–8817.
  • Ren SZ, Wang ZC, Zhu D, et al. Design, synthesis and biological evaluation of novel ferrocene-pyrazole derivatives containing nitric oxide donors as COX-2 inhibitors for cancer therapy. Eur J Med Chem. 2018 Sep 5;157:909–924.
  • Farzaneh S, Zeinalzadeh E, Daraei B, et al. New ferrocene compounds as selective cyclooxygenase (COX-2) inhibitors: design, synthesis, cytotoxicity, and enzyme-inhibitory activity. Anticancer Agents Med Chem. 2018;18(2):295–301.
  • Reiley MA, Silber BM, Chen X, inventor REILEY PHARMACEUTICALS, INC., assignee. COX-2-TARGETING, PLATINUM-CONTAINING CONJUGATES AND THEIR USE IN THE TREATMENT OF TUMORS AND CANCERS. United States patent WO 2016/111834. 2016 July 14.
  • Jeon Y-W, Suh YJ. Synergistic apoptotic effect of celecoxib and luteolin on breast cancer cells. Oncol Rep. 2013;29(2):819–825.
  • Fantini M, Benvenuto M, Masuelli L, et al. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: perspectives on cancer treatment. Int J Mol Sci. 2015;16(5):9236–9282.
  • Yu C-P, Qiu R-G, Shi L, et al. Celecoxib and quercetin induce apoptosis in human hepatocarcinoma. Biomed Res. 2017;28(8):3465–3470.
  • Cai H, Huang X, Xu S, et al. Discovery of novel hybrids of diaryl-1,2,4-triazoles and caffeic acid as dual inhibitors of cyclooxygenase-2 and 5-lipoxygenase for cancer therapy. Eur J Med Chem. 2016 Jan 27;108:89–103.
  • Ren SZ, Wang ZC, Zhu XH, et al. Design and biological evaluation of novel hybrids of 1, 5-diarylpyrazole and Chrysin for selective COX-2 inhibition. Bioorg Med Chem. 2018 Aug 7;26(14):4264–4275.
  • Lu XY, Wang ZC, Ren SZ, et al. Coumarin sulfonamides derivatives as potent and selective COX-2 inhibitors with efficacy in suppressing cancer proliferation and metastasis. Bioorg Med Chem Lett. 2016 Aug 1;26(15):3491–3498.
  • Shen FQ, Wang ZC, Wu SY, et al. Synthesis of novel hybrids of pyrazole and coumarin as dual inhibitors of COX-2 and 5-LOX. Bioorg Med Chem Lett. 2017 Aug 15;27(16):3653–3660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.