474
Views
9
CrossRef citations to date
0
Altmetric
Review

A patent review of FGFR4 selective inhibition in cancer (2007-2018)

, , &
Pages 429-438 | Received 18 Feb 2019, Accepted 23 May 2019, Published online: 30 May 2019

References

  • De Moerlooze L, Spencer-Dene B, Revest JM, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000 Feb;127(3):483–492.
  • Haugsten EM, Wiedlocha A, Olsnes S, et al. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res. 2010 Nov;8(11):1439–1452.
  • Regeenes R, Silva PN, Chang HH, et al. Fibroblast growth factor receptor 5 (FGFR5) is a co-receptor for FGFR1 that is up-regulated in beta-cells by cytokine-induced inflammation. J Biol Chem. 2018 Nov 2;293(44):17218–17228.
  • Beenken A, Mohammadi M. The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov. 2009 Mar;8(3):235–253.
  • Knights V, Cook SJ. De-regulated FGF receptors as therapeutic targets in cancer. Pharmacol Ther. 2010 Jan;125(1):105–117.
  • Cseh B, Doma E, Baccarini M. “RAF” neighborhood: protein-protein interaction in the Raf/Mek/Erk pathway. FEBS Lett. 2014 Aug 1;588(15):2398–2406.
  • Song K, Wang H, Krebs TL, et al. Novel roles of Akt and mTOR in suppressing TGF-beta/ALK5-mediated Smad3 activation. Embo J. 2006 Jan 11;25(1):58–69.
  • Hart KC, Robertson SC, Kanemitsu MY, et al. Transformation and Stat activation by derivatives of FGFR1, FGFR3, and FGFR4. Oncogene. 2000 Jul 6;19(29):3309–3320.
  • Quintanal-Villalonga A, Mediano M, Ferrer I, et al. Histology-dependent prognostic role of pERK and p53 protein levels in early-stage non-small cell lung cancer. Oncotarget. 2018 Apr 13;9(28):19945–19960.
  • Yang ZY, Di MY, Yuan JQ, et al. The prognostic value of phosphorylated Akt in breast cancer: a systematic review. Sci Rep. 2015 Jan;13(5):7758.
  • Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat Rev Cancer. 2017 May;17(5):318–332.
  • Quintanal-Villalonga A, Molina-Pinelo S, Cirauqui C, et al. FGFR1 cooperates with EGFR in lung cancer oncogenesis, and their combined inhibition shows improved efficacy. J Thorac Oncol. 2019 Apr;14(4):641-655.
  • Holzmann K, Grunt T, Heinzle C, et al. Alternative splicing of fibroblast growth factor receptor IgIII loops in cancer. J Nucleic Acids. 2012;2012:950508.
  • Feng S, Shao L, Yu W, et al. Targeting fibroblast growth factor receptor signaling inhibits prostate cancer progression. Clin Cancer Res. 2012 Jul 15;18(14):3880–3888.
  • Mellor HR. Targeted inhibition of the FGF19-FGFR4 pathway in hepatocellular carcinoma; translational safety considerations. Liver Int. 2014 Jul;34(6):e1–9.
  • Penault-Llorca F, Bertucci F, Adelaide J, et al. Expression of FGF and FGF receptor genes in human breast cancer. Int J Cancer. 1995 Apr 10;61(2):170–176.
  • Repana D, Ross P. Targeting FGF19/FGFR4 pathway: a novel therapeutic strategy for hepatocellular carcinoma. Diseases. 2015 Oct 28;3(4):294–305.
  • Gao L, Wang X, Tang Y, et al. FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res. 2017 Jan 9;36(1):8.
  • Joshi JJ, Coffey H, Corcoran E, et al. H3B-6527 Is a potent and selective inhibitor of FGFR4 in FGF19-driven hepatocellular carcinoma. Cancer Res. 2017 Dec 15;77(24):6999–7013.
  • Liu J, Zhang Z, Li X, et al. Forkhead box C1 promotes colorectal cancer metastasis through transactivating ITGA7 and FGFR4 expression.
  • Turkington RC, Longley DB, Allen WL, et al. Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death Dis. 2014 Feb 6;5:e1046.
  • Quintanal-Villalonga A, Molina-Pinelo S, Yagüe P, et al. FGFR4 increases EGFR oncogenic signaling in lung adenocarcinoma, and their combined inhibition is highly effective.
  • Ulaganathan VK, Sperl B, Rapp UR, et al. Germline variant FGFR4 p.G388R exposes a membrane-proximal STAT3 binding site. Nature. 2015 Dec 24;528(7583):570–574.
  • Xiong SW, Ma J, Feng F, et al. Functional FGFR4 Gly388Arg polymorphism contributes to cancer susceptibility: evidence from meta-analysis. Oncotarget. 2017 Apr 11;8(15):25300–25309.
  • Quintanal-Villalonga A, Carranza-Carranza A, Melendez R, et al. Prognostic role of the FGFR4-388Arg variant in lung squamous-cell carcinoma patients with lymph node involvement. Clin Lung Cancer. 2017 Nov;18(6):667–674 e1.
  • Frullanti E, Berking C, Harbeck N, et al. Meta and pooled analyses of FGFR4 Gly388Arg polymorphism as a cancer prognostic factor. Eur J Cancer Prev. 2011 Jul;20(4):340–347.
  • Quintanal-Villalonga A, Ojeda-Marquez L, Marrugal A, et al. The FGFR4-388arg variant promotes lung cancer progression by N-cadherin induction. Sci Rep. 2018 Feb 5;8(1):2394.
  • Pelaez-Garcia A, Barderas R, Torres S, et al. FGFR4 role in epithelial-mesenchymal transition and its therapeutic value in colorectal cancer. PLoS One. 2013;8(5):e63695.
  • Ding L, Getz G, Da W, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008 Oct 23;455(7216):1069–1075.
  • Greenman C, Stephens P, Smith R, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153–158.
  • Shukla N, Ameur N, Yilmaz I, et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res. 2012 Feb 1;18(3):748–757.
  • Taylor J, Cheuk AT, Tsang PS, et al. Identification of FGFR4-activating mutations in human rhabdomyosarcomas that promote metastasis in xenotransplanted models. J Clin Invest. 2009 Nov;119(11):3395–3407.
  • Quintanal-Villalonga A, Paz-Ares L, Ferrer I, et al. Tyrosine kinase receptor landscape in lung cancer: therapeutical implications. Dis Markers. 2016;2016:9214056.
  • Rosell R, Carcereny E, Gervais R, et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012 Mar;13(3):239–246.
  • Ramalingam SS, Yang JC, Lee CK, et al. Osimertinib as first-line treatment of EGFR mutation-positive advanced non-small-cell lung cancer. J Clin Oncol. 2018 Mar 20;36(9):841–849.
  • Desai A, Adjei AA. FGFR signaling as a target for lung cancer therapy. J Thorac Oncol. 2016 Jan;11(1):9–20.
  • Chae YK, Ranganath K, Hammerman PS, et al. Inhibition of the fibroblast growth factor receptor (FGFR) pathway: the current landscape and barriers to clinical application. Oncotarget. 2017 Feb 28;8(9):16052–16074.
  • Fu W, Chen L, Wang Z, et al. Theoretical studies on FGFR isoform selectivity of FGFR1/FGFR4 inhibitors by molecular dynamics simulations and free energy calculations. Phys Chem Chem Phys. 2017 Feb 1;19(5):3649–3659.
  • Tucker JA, Klein T, Breed J, et al. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure. 2014 Dec 2;22(12):1764–1774.
  • Baillie TA. Targeted covalent inhibitors for drug design. Angew Chem Int Ed Engl. 2016 Oct 17;55(43):13408–13421.
  • Johnson DS, Weerapana E, Cravatt BF. Strategies for discovering and derisking covalent, irreversible enzyme inhibitors. Future Med Chem. 2010 Jun;2(6):949–964.
  • Mah R, Thomas JR, Shafer CM. Drug discovery considerations in the development of covalent inhibitors. Bioorg Med Chem Lett. 2014 Jan 1;24(1):33–39.
  • Leproult E, Barluenga S, Moras D, et al. Cysteine mapping in conformationally distinct kinase nucleotide binding sites: application to the design of selective covalent inhibitors. J Med Chem. 2011 Mar 10;54(5):1347–1355.
  • Reynolds DS, Hao MH, Wang J, et al.; EISAI R&D Management CO., LTD. Pyrimidine FGFR4 inhibitors. Tokyo, JP; 2016. (WO2015057938A1).
  • Moniz GC, Sanders K, Chanda A, et al.; Eisai R&D Management Co., Ltd. Crystalline FGFR4 Inhibitor Compound And Uses Thereof. Tokyo, JP; 2018. (WO2016168331).
  • Bifulco NS, Dipietro LV, Miduturu CV; BLUEPRINT Medicines Corporation. Inhibitors of the fibroblast growth factor receptor. Cambridge, MA, US; 2017. (WO2014011900A2).
  • Hagel M, Miduturu C, Sheets M, et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov. 2015 Apr;5(4):424–437.
  • Buschmann NB, Fairhurst RA, Furet P, et al. Particles of N-(5-cyano-4-((2-methoxyethyl)amino)pyridin-2-yl)-7-formyl-6-((4-methyl-2-oxopiperazin-1-yl)methyl)-3,4-dihydro-1,8-naphthyridine-1(2H)-carboxamide. Basel, CH; 2017. (CN107406448).
  • Fritsch C, Chatenay-Rivauday C, Roesel J, et al.; Novartis AG. Combination Therapy Containing A PI3K-alpha inhibitor and FGFR kinase inhibitor for treating cancer. Basel, CH; 2014. (WO2014191938A1).
  • Bilic S, Cameron J, Gu G, et al.; NOVARTIS AG. Combination comprising a PD-1 antagonist and an FGFR4 inhibitor. Basel, CH; 2018. (WO2018055503).
  • Inarrairaegui M, Melero I, Sangro B. Immunotherapy of hepatocellular carcinoma: facts and hopes. Clin Cancer Res. 2018 Apr 1;24(7):1518–1524.
  • Wu L, Lu L, Qian DQ, et al.; Incyte Corporation. Bicyclic heterocycles as FGFR4 inhibitors. Delaware, US; 2016. (WO2016064960).
  • D’agostino L, Sjin R, Niu D, et al.; Celgene avilomics research, INC. (Massachusetts, US), SANOFI (Paris, FR). Heteroaryl compounds and uses thereof. 2014.(WO2018096525).
  • Gao P, Xiu W, Wang S, et al.; Jiangsu Hansoh pharmaceutical group CO., LTD. (Lianyungang, CN), shanghai hansoh biomedical CO., LTD. (Shanghai CN). FGFR4 inhibitor, preparation method therefor, and applications thereof. 2017. (WO2017198149).
  • Katoh M. Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol Sci. 2016 Dec;37(12):1081–1096.
  • Heinzle C, Erdem Z, Paur J, et al. Is fibroblast growth factor receptor 4 a suitable target of cancer therapy? Curr Pharm Des. 2014;20(17):2881–2898.
  • Bange JJ, Niewwoehner J, Aus Dem Siepen P, et al.; U3 pharma AG. FGFR4 antibodies. US9284379B2. 2008.
  • Bhaskar V, Gerstner R, Michelson K, et al.; XOMA (US). Antibodies specific for FGFR4 and methods of use. 2014.(WO2014105849A1).
  • Baurin N, Berne PF, Blanche F, et al.; Sanofi-Aventis. FGF-R4 receptor-specific antagonists. Paris, FR; 2011. (AU2014271291A1).
  • Alitalo K, Lehti K, Keski-Oja J, et al.; Licentia LTD. Materials and methods for inhibiting cancer cell invasion related to FGFR4. 2010. (WO2010026291A1).
  • Lambert JM. Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol. 2005 Oct;5(5):543–549.
  • Ettenberg S, Haubst N, Hu T, et al.; NOVARTIS AG. Antibody drug conjugates. Basel, CH; 2014. (US20140301946A1).
  • Ling L, Tian H; NGM biopharmaceuticals, INC.. Methods and uses for modulating bile acid homeostasis and treatment of bile acid disorders and diseases. CA, US; 2015. (US9273107B2).
  • Linhhout D, Olson C; NGM biopharmaceuticals, INC. Pharmaceutical compositions comprising peptide variants and methods of use thereof. CA, US; 2016. (WO2016065106).
  • Desnoyers L, French D; Genentech, Inc. Anti-FGF19 antibodies and methods using same. CA, US; 2007. (WO2007136893).
  • Bosch E, Hollenbaugh D, Lee E, et al.; Five Prime Therapeutics, Inc. ECD carboxy-terminal deletion FGFR4 fusion proteins and methods of producing them. CA, US; 2012. (US8173134B2).
  • Ullrich A, Berger H, Roidl A; Max-planck-gesellschaft zur förderung der wissenschaften E.V.. FGFR4 promotes cancer cell resistance in response to chemotherapeutic drugs. München, DE; 2008. (WO2008052798A2).
  • Abraham R, Redondo-Müller M; Daiichi Sankyo Europe GMBH. Combination of anti-FGFR4-antibody and bile acid sequestrant. München, DE; 2018. (WO2016184909).
  • Abraham R, Fukuchi K; Daiichi sankyo Europe GMBH. Combination of human anti-FGFR4 antibody and sorafenib. 2017. (WO2017137503A1).
  • Mayes PA, Hance KW, Hoos A. The promise and challenges of immune agonist antibody development in cancer. Nat Rev Drug Discov. 2018 Jul;17(7):509–527.
  • Saunders LR, Bankovich AJ, Anderson WC, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015 Aug 26;7(302):302ra136.
  • Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017 Jan;18(1):42–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.