401
Views
40
CrossRef citations to date
0
Altmetric
Review

Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): a patent review

, &
Pages 27-38 | Received 05 Oct 2019, Accepted 25 Nov 2019, Published online: 02 Dec 2019

References

  • Wajchenberg BL. beta-cell failure in diabetes and preservation by clinical treatment. Endocr Rev. 2007;28:187–218.
  • Safavi M, Foroumadi A, Abdollahi M. The importance of synthetic drugs for type 2 diabetes drug discovery. Expert Opin Drug Dis. 2013;8:1339–1363.
  • Bailey CJ, Day C. The future of new drugs for diabetes management. Diabetes Res Clin Pract. 2019;155:107785.
  • Bailey CJ. Safety of antidiabetes medications: an update. Clin Pharmacol Ther. 2015;98:185–195.
  • Stoddart LA, Smith NJ, Milligan G. International union of pharmacology. LXXI. Free fatty acid receptors FFA1, −2, and-3: pharmacology and pathophysiological functions. Pharmacol Rev. 2008;60:405–417.
  • Nakamura MT, Yudell BE, Loor JJ. Regulation of energy metabolism by long-chain fatty acids. Prog Lipid Res. 2014;53:124–144.
  • Itoh Y, Kawamata Y, Harada M, et al. Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature. 2003;422:173–176.
  • Hauge M, Vestmar MA, Husted AS, et al. GPR40 (FFAR1) - Combined Gs and Gq signaling in vitro is associated with robust incretin secretagogue action ex vivo and in vivo. Mol Metab. 2014;4:3–14.
  • Schnell S, Schaefer M, Schoefl C. Free fatty acids increase cytosolic free calcium and stimulate insulin secretion from beta-cells through activation of GPR40. Mol Cell Endocrinol. 2007;263:173–180.
  • Lupi R, Del Guerra S, Fierabracci V, et al. Lipotoxicity in human pancreatic islets and the protective effect of metformin. Diabetes. 2002;51:S134–S137.
  • Haber EP, Ximenes HMA, Procopio J, et al. Pleiotropic effects of fatty acids on pancreatic beta-cells. J Cell Physiol. 2003;194:1–12.
  • Steneberg R, Rubins N, Bartoov-Shifman R, et al. The FFA receptor GPR40 links hyperinsulinemia, hepatic steatosis, and impaired glucose homeostasis in mouse. Cell Metab. 2005;1:245–258.
  • Matsuda-Nagasumi K, Takami-Esaki R, Iwachidow K, et al. Lack of GPR40/FFAR1 does not induce diabetes even under insulin resistance condition. Diabetes Obes Metab. 2013;15:538–545.
  • Lan H, Hoos LM, Tetzloff G, et al. Lack of FFAR1/GPR40 does not protect mice from high-fat diet-induced metabolic disease. Diabetes. 2008;57:2999–3006.
  • Latour MG, Alquier T, Oseid E, et al. GPR40 is necessary but not sufficient for fatty acid stimulation of insulin secretion in vivo. Diabetes. 2007;56:1087–1094.
  • Kae N, Ritsuko E, Kimihiko I, et al. Overexpression of GPR40 in pancreatic beta-cells augments glucose stimulated insulin secretion and improves glucose tolerance in normal and diabetic mice. Diabetes. 2009;58:1067–1076.
  • Wagner R, Kaiser G, Gerst F, et al. Reevaluation of fatty acid receptor 1 as a drug target for the stimulation of insulin secretion in humans. Diabetes. 2013;62:2106–2111.
  • Panse M, Gerst F, Kaiser G, et al. Activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) by free fatty acid receptor 1 (FFAR1/GPR40) protects from palmitate-induced beta cell death, but plays no role in insulin secretion. Cell Physiol Biochem. 2015;35:1537–1545.
  • Li Z, Qiu QQ, Geng XQ, et al. Free fatty acid receptor agonists for the treatment of type 2 diabetes: drugs in preclinical to phase II clinical development. Expert Opin Inv Drug. 2016;25:871–890.
  • Bharate SB, Nemmani KVS, Vishwakarma RA. Progress in the discovery and development of small-molecule modulators of G-protein-coupled receptor 40 (GPR40/FFA1/FFAR1): an emerging target for type 2 diabetes. Expert Opin Ther Pat. 2009;19:237–264.
  • Milligan G, Shimpukade B, Ulven T, et al. Complex pharmacology of free fatty acid receptors. Chem Rev. 2017;117:67–110.
  • Li Z, Xu X, Huang W, et al. Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for Type 2 diabetes mellitus: recent progress and prevailing challenges. Med Res Rev. 2018;38:381–425.
  • Negoro N, Sasaki S, Mikami S, et al. Discovery of TAK-875: A potent, selective, and orally bioavailable GPR40 agonist. ACS Med Chem Lett. 2010;1:290–294.
  • Boehringer Ingelheim Int. Indanylaminoazadihydrobenzofuranylacetic Acids, Pharmaceutical Compositions For The Treatment Of Diabetes WO2018146008; 2018.
  • Boehringer Ingelheim Int. Indanylaminopyridylcyclopropanecarboxylic Acids, Pharmaceutical Compositions And Uses Thereof WO2018095877; 2018.
  • Boehringer Ingelheim Int. Benzyloxypyridylcyclopropanecarboxylic Acids, Pharmaceutical Compositions and Uses Thereof WO2018138029; 2018.
  • Boehringer Ingelheim Int. Benzyloxypyrazinylcyclopropanecarboxylic Acids, Pharmaceutical Compositions And Uses Thereof WO2018138030; 2018.
  • Boehringer Ingelheim Int. Benzylaminopyrazinylcyclopropa-necarboxylic Acids, Pharmaceutical Compositions And Uses Thereof WO2018138028; 2018.
  • Boehringer Ingelheim Int. Benzylaminopyridylcyclopropanecarboxylic Acids, Pharmaceutical Compositions And Uses Thereof WO2018138027; 2018.
  • Boehringer Ingelheim Int. Benzylaminopyridylcyclopropanecarboxylic Acids, Pharmaceutical Compositions And Uses Thereof WO2018077699; 2018.
  • CJ Healthcare Corporation. Novel Amino-phenyl-sulfonyl-acetate Derivative and Use Thereof WO2016032120; 2016.
  • Li Z, Liu C, Xu X, et al. Discovery of phenylsulfonyl acetic acid derivatives with improved efficacy and safety as potent free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Eur J Med Chem. 2017;138:458–479.
  • Shanghai institute of materia medica. Sulfinylacetic acid or sulfonylacetic acid derivatives, medicinal composition and preparation method thereof, and use of derivatives or medicinal composition; 2016. (CN108059607).
  • Li Z, Liu C, Yang J, et al. Design, synthesis and biological evaluation of novel FFA1/GPR40 agonists: new breakthrough in an old scaffold. Eur J Med Chem. 2019;179:608–622.
  • Li Z, Ren Q, Wang X, et al. Discovery of HWL-088: A highly potent FFA1/GPR40 agonist bearing a phenoxyacetic acid scaffold. Bioorg Chem. 2019;92:103209.
  • Nanjing University. (Phenylthio)acetic acid derivative and preparation method thereof, and uses of (phenylthio)acetic acid derivative as drug; 2016. (CN107805213).
  • Wang X, Xu Y, Feng S, et al. A potent free fatty acid receptor 1 agonist with a glucose-dependent antihyperglycemic effect. Chem Commun. 2019;55:8975–8978.
  • Janssen Pharmaceutica NV. GPR40 agonists in anti-diabetic drug combinations; 2017. (US201700290800).
  • Janssen Pharmaceutica NV. Substituted benzothiophenyl derivatives as GPR40 agonists for the treatment of Type II diabetes; 2017. (US201700291908).
  • Huang H, Winters MP, Meegalla SK, et al. Discovery of novel benzo[b]thiophene tetrazoles as non-carboxylate GPR40 agonists. Bioorg Med Chem Lett. 2018;28:429–436.
  • Li Z, Pan M, Su X, et al. Discovery of novel pyrrole-based scaffold as potent and orally bioavailable free fatty acid receptor 1 agonists for the treatment of type 2 diabetes. Bioorg Med Chem. 2016;24:1981–1987.
  • China Pharmaceutical University. Novel nitrogen-containing heterocyclic derivative and preparation method thereof and application of derivative by serving as drug; 2016. (CN105566263).
  • Yang L, Zhang J, Si L, et al. Synthesis and biological evaluation of GPR40/FFAR1 agonists containing 3,5-dimethylisoxazole. Eur J Med Chem. 2016;116:46–58.
  • Li Z, Liu C, Shi W, et al. Identification of highly potent and orally available free fatty acid receptor 1 agonists bearing isoxazole scaffold. Bioorg Med Chem. 2018;26:703–711.
  • Shanghai institute of materia medica. A class of GPR40 agonist compounds with amide structure, and uses thereof CN109666027; 2017.
  • Chen T, Ning M, Ye Y, et al. Design, synthesis and structure-activity relationship studies of GPR40 agonists containing amide linker. Eur J Med Chem. 2018;152:175–194.
  • Luo J, Swaminath G, Brown SP, et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PloS One. 2012;7:e46300.
  • Brown SP, Dransfield PJ, Vimolratana M, et al. Discovery of AM-1638: a potent and orally bioavailable GPR40/FFA1 full agonist. ACS Med Chem Lett. 2012;3:726–730.
  • Merck Sharp. Dohme Antidiabetic heterocyclic compounds WO2018106518; 2018.
  • Merck Sharp. Dohme, Antidiabetic bicyclic compounds WO2017172505; 2017.
  • Merck Sharp. Dohme, [7, 6]-Fused bicyclic antidiabetic compounds WO2016019587; 2016.
  • Merck Sharp. Dohme, Antidiabetic bicyclic compounds WO2016022448; 2016.
  • Plummer CW, Clements MJ, Chen H, et al. Design and synthesis of novel, selective GPR40 AgoPAMs. ACS Med Chem Lett. 2017;8:221–226.
  • Merck Sharp. Dohme, Antidiabetic bicyclic compounds WO2016022742; 2016.
  • Merck Sharp. Dohme, Antidiabetic bicyclic compounds WO2019099315; 2019.
  • Janssen Pharma. Cyclohexyl GPR40 agonists for the treatment of type II diabetes WO2018081047; 2018.
  • Rives ML, Rady B, Swanson N, et al. GPR40-mediated galpha12 activation by allosteric full agonists highly efficacious at potentiating glucose-stimulated insulin secretion in human Islets. Mol Pharmacol. 2018;93:581–591.
  • Janssen Pharma. GPR40 agonists for the treatment of type II diabetes WO2017027312; 2017.
  • Janssen Pharma GPR. 40 agonists for the treatment of type II diabetes WO2017027310; 2017.
  • Janssen Pharma. GPR40 agonists for the treatment of type II diabetes WO2017027309; 2017.
  • Janssen Pharma. Pyrazine GPR40 Agonists for the Treatment of Type II Diabetes WO2016007714; 2016.
  • Meegalla SK, Huang H, Martin T, et al. Discovery of a novel potent GPR40 full agonist. Bioorg Med Chem Lett. 2018;28:720–726.
  • Takeda Pharma. Aromatic compound WO2018181847; 2018.
  • Takeda Pharma. Substituted cyclyl-acetic acid derivatives for the treatment of metabolic disorders WO2018182050; 2018.
  • Shanghai Institute of Materia Medica. Phenylpropionic acid compounds containing link of pyrazine ring, and pharmaceutical composition, preparation method and use of compounds; 2016. (CN107556252).
  • Guo D-Y, Li D-W, Ning M-M, et al. Yhhu4488, a novel GPR40 agonist, promotes GLP-1 secretion and exerts anti-diabetic effect in rodent models. Biochem Biophys Res Co. 2015;466:740–747.
  • Shanghai Institute of Materia Medica. Aromatic propionic acid derivative as well as preparation method and application thereof CN110092774; 2018.
  • East China Normal University. Phenylpropiolic acid small molecular organic compounds and synthetic method and application thereof CN109516914; 2017.
  • Shanghai University. Heterocyclic acene propanoic derivative as well as preparation method and application thereof CN107266413; 2017.
  • Yoon DO, Zhao X, Son D, et al. SAR studies of Indole-5-propanoic acid derivatives to develop novel GPR40 agonists. ACS Med Chem Lett. 2017;8:1336–1340.
  • Celon Pharma. 3-Phenyl-4-hexynoic acid derivatives as GPR40 agonists WO2019134984; 2019.
  • Hirasawa A, Tsumaya K, Awaji T, et al. Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med. 2005;11:90–94.
  • Oh DY, Walenta E, Akiyama TE, et al. A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med. 2014;20:942–947.
  • Janssen Pharma. Cylcoalkenyl derivatives useful as agonists of the GPR120 and/or GPR40 receptors WO2019171277; 2019.
  • Janssen Pharma. Heterocylcoalkenyl derivatives useful as agonists of the GPR120 and/or GPR40 WO2019171278; 2019.
  • Dompe Farmaceutici S.P.A.. Sulfonamides as GPR40- and GPR120-agonists; 2018. (WO2018029150).
  • Verges B. Clinical interest of PPARs ligands-Particular benefit in type 2 diabetes and metabolic syndrome. Diabetes Metab. 2004;30:7–12.
  • Yasmin S, Jayaprakash V. Thiazolidinediones and PPAR orchestra as antidiabetic agents: from past to present. Eur J Med Chem. 2017;126:879–893.
  • Takahashi S, Tanaka T, Kodama T, et al. Peroxisome proliferator-activated receptor delta (PPAR delta), a novel target site for drug discovery in metabolic syndrome. Pharmacol Res. 2006;53:501–507.
  • Helal MA, Darwish KM, Hammad MA. Homology modeling and explicit membrane molecular dynamics simulation to delineate the mode of binding of thiazolidinediones into FFAR1 and the mechanism of receptor activation. Bioorg Med Chem Lett. 2014;24:5330–5336.
  • Darwish KM, Salama I, Mostafa S, et al. Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-gamma/FFAR1 agonists. Bioorg Med Chem Lett. 2018;28:1595–1602.
  • Hidalgo-Figueroa S, Navarrete-Vazquez G, Estrada-Soto S, et al. Discovery of new dual PPAR gamma-GPR40 agonists with robust antidiabetic activity: design, synthesis and in combo drug evaluation. Biomed Pharmacother. 2017;90:53–61.
  • Darwish KM, Salama I, Mostafa S, et al. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPAR gamma/FFAR1 dual agonists. Eur J Med Chem. 2016;109:157–172.
  • Li Z, Zhou Z, Deng F, et al. Design, synthesis, and biological evaluation of novel pan agonists of FFA1, PPARgamma and PPARdelta. Eur J Med Chem. 2018;159:267–276.
  • INST Pharm & Toxicology AMMS. Resveratrol derivative and application thereof to medicament CN102040517; 2009.
  • Li MH, Chen W, Wang LL, et al. RLA8-A new and highly effective quadruple PPAR-alpha/gamma/delta and GPR40 agonist to reverse nonalcoholic steatohepatitis and fibrosis. J Pharmacol Exp Ther. 2019;369:67–77.
  • Li Z, Chen Y, Zhou Z, et al. Discovery of first-in-class thiazole-based dual FFA1/PPARdelta agonists as potential anti-diabetic agents. Eur J Med Chem. 2019;164:352–365.
  • Li Z, Hu L, Wang X, et al. Design, synthesis, and biological evaluation of novel dual FFA1 (GPR40)/PPARdelta agonists as potential anti-diabetic agents. Bioorg Chem. 2019;92:103254.
  • Ueno H, Ito R, Abe SI, et al. SCO-267, a GPR40 full agonist, improves glycemic and body weight control in rat models of diabetes and obesity. J Pharmacol Exp Ther. 2019;370:172–181.
  • Gorski JN, Pachanski MJ, Mane J, et al. GPR40 reduces food intake and body weight through GLP-1. Am J Physiol Endocrinol Metab. 2017;313:E37–E47.
  • Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003;278:11303–11311.
  • Nakashima R, Yano T, Ogawa J, et al. Potentiation of insulin secretion and improvement of glucose intolerance by combining a novel G protein-coupled receptor 40 agonist DS-1558 with glucagon-like peptide-1 receptor agonists. Eur J Pharmacol. 2014;737:194–201.
  • Tanaka H, Yoshida S, Minoura H, et al. Novel GPR40 agonist AS2575959 exhibits glucose metabolism improvement and synergistic effect with sitagliptin on insulin and incretin secretion. Life Sci. 2014;94:115–121.
  • Watterson KR, Hudson BD, Ulven T, et al. Treatment of type 2 diabetes by free fatty acid receptor agonists. Front Endocrinol. 2014;5:137.
  • Wang S, Awad KS, Elinoff JM, et al. G protein-coupled receptor 40 (GPR40) and peroxisome proliferator-activated receptor gamma (PPAR gamma) an integrated two-receptor signaling pathway. J Biol Chem. 2015;290:19544–19557.
  • Kaku K, Enya K, Nakaya R, et al. Long-term safety and efficacy of fasiglifam (TAK-875), a G-protein-coupled receptor 40 agonist, as monotherapy and combination therapy in Japanese patients with type 2 diabetes: a 52-week open-label phase III study. Diabetes Obes Metab. 2016;18:925–929.
  • Tomita T, Hosoda K, Fujikura J, et al. The G-protein-coupled long-chain fatty acid receptor GPR40 and glucose metabolism. Front Endocrinol. 2014;5:152.
  • Li X, Zhong K, Guo Z, et al. Fasiglifam (TAK-875) inhibits hepatobiliary transporters: a possible factor contributing to fasiglifam-induced liver injury. Drug Metab Dispos. 2015;43:1751–1759.
  • Sugihara K, Kitamura S, Sanoh S, et al. Metabolic activation of the proestrogens trans-stilbene and trans-stilbene oxide by rat liver microsomes. Toxicol Appl Pharm. 2000;167:46–54.
  • Kuo CH, Hook JB, Bernstein J. Induction of drug-metabolizing enzymes and toxicity of trans-stilbene oxide in rat liver and kidney. Toxicology. 1981;22:149–160.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.