966
Views
24
CrossRef citations to date
0
Altmetric
Review

Leucine-rich repeat kinase 2 inhibitors: a patent review (2014-present)

&
Pages 275-286 | Received 13 Dec 2019, Accepted 10 Feb 2020, Published online: 18 Feb 2020

References

  • Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2019;18(5):459–480.
  • Dorsey ER, Elbaz A, Nichols E, et al. Global, regional, and national burden of Parkinson’s disease, 1990-–016: A systematic analysis for the global burden of disease study 2016. Lancet Neurol. 2018;17(11):939–953.
  • Mulhearn RJ. The history of James Parkinson and his disease. Aust N Z J Med. 1971;1(Suppl 1):1–6.
  • Litvan I, Bhatia KP, Burn DJ, et al. Movement Disorders Society Scientific Issues C: movement disorders society scientific issues committee report: sic task force appraisal of clinical diagnostic criteria for parkinsonian disorders. Mov Disord. 2003;18(5):467–486.
  • Mullin S, Schapira AH. Pathogenic mechanisms of neurodegeneration in Parkinson disease. Neurol Clin. 2015;33(1):1–17.
  • Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90.
  • Kalia LV, Lang AE. Parkinson’s disease. Lancet. 2015;386(9996):896–912.
  • Kalia LV, Kalia SK, Lang AE. Disease-modifying strategies for parkinson’s disease. Mov Disord. 2015;30(11):1442–1450.
  • Lang AE, Espay AJ. Disease modification in Parkinson’s disease: current approaches, challenges, and future considerations. Mov Disord. 2018;33(5):660–677.
  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009;18(R1):R48–59.
  • Sardi SP, Simuni T. New era in disease modification in Parkinson’s disease: review of genetically targeted therapeutics. Parkinsonism Relat Disord. 2019;59:32–38.
  • Polymeropoulos MH, Higgins JJ, Golbe LI, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science. 1996;274(5290):1197–1199.
  • Deng H, Wang P, Jankovic J. The genetics of Parkinson’s disease. Ageing Res Rev. 2018;42:72–85.
  • Domingo A, Klein C. Genetics of Parkinson’s disease. Handb Clin Neurol. 2018;147:211–227.
  • Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause park8-linked Parkinson’s disease. Neuron. 2004;44(4):595–600.
  • Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44(4):601–607.
  • Funayama M, Hasegawa K, Ohta E, et al. An LRRK2 mutation as a cause for the Parkinsonism in the original park8 family. Ann Neurol. 2005;57(6):918–921.
  • Kumari U, Tan EK. LRRK2 in Parkinson’s disease: genetic and clinical studies from patients. Febs J. 2009;276(22):6455–6463.
  • Christensen KV, Smith GP, Williamson DS. Development of LRRK2 inhibitors for the treatment of parkinson’s disease. Prog Med Chem. 2017;56:37–80.
  • Monfrini E, Di Fonzo A. Leucine-rich repeat kinase (LRRK2) genetics and Parkinson’s disease. Adv Neurobiol. 2017;14:3–30.
  • Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: mendelian versus non-mendelian inheritance. J Neurochem. 2016;139(Suppl 1):59–74.
  • Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: A case-control study. Lancet Neurol. 2008;7(7):583–590.
  • Alessi DR, Sammler E. LRRK2 kinase in Parkinson’s disease. Science. 2018;360(6384):36–37.
  • Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson’s disease. Biochem Soc Trans. 2019;47(2):651–661.
  • Zhao Y, Dzamko N. Recent developments in LRRK2-targeted therapy for Parkinson’s disease. Drugs. 2019;79(10):1037–1051.
  • Deng X, Choi HG, Buhrlage SJ, et al. Leucine-rich repeat kinase 2 inhibitors: A patent review (2006–2011). Expert Opin Ther Pat. 2012;22(12):1415–1426.
  • Kethiri RR, Bakthavatchalam R. Leucine-rich repeat kinase 2 inhibitors: A review of recent patents (2011–2013). Expert Opin Ther Pat. 2014;24(7):745–757.
  • Galatsis P. Leucine-rich repeat kinase 2 inhibitors: A patent review (2014–2016). Expert Opin Ther Pat. 2017;27(6):667–676.
  • Domingos S, Duarte T, Saraiva L, et al. Targeting leucine-rich repeat kinase 2 (LRRK2) for the treatment of parkinson’s disease. Future Med Chem. 2019;11(15):1953–1977.
  • Estrada AA, Liu X, Baker-Glenn C, et al. Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2012;55(22):9416–9433.
  • Estrada AA, Chan BK, Baker-Glenn C, et al. Discovery of highly potent, selective, and brain-penetrant aminopyrazole leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. J Med Chem. 2014;57(3):921–936.
  • Henderson JL, Kormos BL, Hayward MM, et al. Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7h-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. J Med Chem. 2015;58(1):419–432.
  • Scott JD, DeMong DE, Greshock TJ, et al. Discovery of a 3-(4-pyrimidinyl) indazole (MLi-2), an orally available and selective leucine-rich repeat kinase 2 (LRRK2) inhibitor that reduces brain kinase activity. J Med Chem. 2017;60(7):2983–2992.
  • Fell MJ, Mirescu C, Basu K, et al. MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. J Pharmacol Exp Ther. 2015;355(3):397–409.
  • Reith AD, Bamborough P, Jandu K, et al. GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-n-arylbenzamide LRRK2 kinase inhibitor. Bioorg Med Chem Lett. 2012;22(17):5625–5629.
  • Hatcher JM, Zhang J, Choi HG, et al. Discovery of a pyrrolopyrimidine (JH-ii-127), a highly potent, selective, and brain penetrant LRRK2 inhibitor. ACS Med Chem Lett. 2015;6(5):584–589.
  • Denali therapeutics announces positive clinical results from LRRK2 inhibitor program for Parkinson’s disease. Denali Therapeutics Inc. 2018. [cited 2019 Feb 26]. Available from: http://investors.denalitherapeutics.com/news-releases/news-release-details/denali-therapeutics-announces-positive-clinical-results-lrrk2-ir-pages.
  • Ding X, Liu Q, Long K, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, UK; GlaxoSmithKline China R&D Company Limited. Assignee. Preparation of heterocycles as LRRK2 kinase inhibitors patent WO2015113451A1. 2015.
  • Ding X, Liu Q, Sang Y, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, UK; GlaxoSmithKline China R&D Company Limited. Assignee. Pyrrolo[2,3,d]piperidin-2-amine derivatives as LRRK2 kinase inhibitors and their preparation, pharmaceutical compositions and use in the treatment of Parkinson’s disease patent WO2015113452A1. 2015.
  • Ding X, Stasi LP, Ho MH, et al. Discovery of 4-ethoxy-7h-pyrrolo[2,3-d]pyrimidin-2-amines as potent, selective and orally bioavailable LRRK2 inhibitors. Bioorg Med Chem Lett. 2018;28(9):1615–1620.
  • Gray NS, Hatcher J, Choi HG, inventors; Dana-Farber Cancer Institute, Inc. assignee. LRRK2 inhibitors and methods of making and using the same patent WO2016130920. 2016.
  • Augelli-Szafran CE, Suto M, Galemmo R, et al., inventors; Southern Research Institute assignee. Preparation of pyrrolopyrimidines as inhibitors of LRRK2 kinase for the treatment of diseases patent WO2017106771A1. 2017.
  • Choi HG, Park JB, Ko E, et al., inventors; Daegu-Gyeongbuk Medical Innovation Foundation, Republic of National Cancer Center, assignee. Preparation of pyrrolopyrimidine derivatives for preventing or treating protein kinase-related disease patent WO2018155916A1. 2018.
  • Kim JH, Choi JS, Lee JS, et al., inventors; Oscotec Inc., assignee. Preparation of pyrrolo/pyrazolopyrimidine derivatives as LRRK2 inhibitors patent WO2019112269A1. 2019.
  • Galatsis P, Hayward MM, Kormos BL, et al., inventors; Pfizer Inc., USA. assignee. Preparation of novel 4-(substituted amino)-7H-pyrrolo[2,3-d]pyrimidines as LRRK2 inhibitors patent US20140005183A1. 2014.
  • Galatsis P, Hayward MM, Kormos BL, et al., inventors; Pfizer Inc., USA. assignee. Preparation of novel 3,4-disubstituted-1H-pyrrolo [2,3-b]pyridines and 4,5-disubstituted-7H-pyrrolo[2,3-c]pyridazines as LRRK2 inhibitors patent WO2015092592A1. 2015.
  • Andersen MA, Wegener KM, Larsen S, et al. PFE-360-induced LRRK2 inhibition induces reversible, non-adverse renal changes in rats. Toxicology. 2018;395:15–22.
  • Ramsden N, Perrin J, Ren Z, et al. Chemoproteomics-based design of potent LRR2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chem Biol. 2011;6(10):1021–1028.
  • Deng X, Dzamko N, Prescott A, et al. Characterization of a selective inhibitor of the Parkinson’s disease kinase LRR2. Nat Chem Biol. 2011;7(4):203–205.
  • Zhang J, Deng X, Choi HG, et al. Characterization of TEA684 as a potent LRRK2 kinase inhibitor. Bioorg Med Chem Lett. 2012;22(5):1864–1869.
  • Estrada AA, Feng JA, Lyssikatos JP, et al., Denali Therapeutics Inc. assignee. 3-Preparation of novel heteroaryl-substituted pyrimidines as inhibitors of LRRK2 patent WO2017156493A1. 2017.
  • Estrada AA, Feng JA, Lyssikatos JP, et al., inventors; Denali Therapeutics Inc. assignee. Preparation of heteroarylaminopyrazole compounds as LRRK2 inhibitors and therapeutic uses thereof patent WO2017087905. 2017A1.
  • Estrada AA, Feng JA, Lyssikatos JP, et al., inventors; Denali Therapeutics Inc. assignee. Preparation of pyrimidin-2-ylamino-1H-pyrazoles as LRRK2 inhibitors for use in the treatment of neurodegenerative disorders patent WO2017218843A1. 2017.
  • Estrada AA, Feng JA, Lyssikatos JP, et al., inventors; Denali Therapeutics Inc. assignee. Compounds, compositions and methods patent WO2018217946A1. 2018.
  • Miller M, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. 3-Pyrimidinylindazole compounds as inhibitors of leucine-rich repeat kinase enzyme activity and their preparation patent WO2014137719A1. 2014.
  • Miller M, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. Assignee. 3-Pyrimidinylindazole compounds as inhibitors of leucine-rich repeat kinase enzyme activity and their preparation patent WO2014137723A1. 2014.
  • Miller M, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. Assignee. 3-Pyrimidinylindazole compounds as inhibitors leucine-rich repeat kinase enzyme activity and their preparation patent WO2014134774A1. 2014.
  • Miller M, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. Assignee. 3-Pyridinylindazole compounds as inhibitors of leucine-rich repeat kinase enzyme activity and their preparation patent WO2014137728A1. 2014.
  • Miller M, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. Assignee. 3-Pyridinylindazole compounds as inhibitors of leucine-rich repeat kinase enzyme activity and their preparation patent WO2014137725A1. 2014.
  • Miller M, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. 3-Pyridinylindazole compounds as inhibitors of leucine-rich repeat kinase enzyme activity and their preparation patent WO2014134776A1. 2014.
  • Demong D, Greshock TJ, Chang RK, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. Compounds inhibiting leucinerich repeat kinase enzyme activity patent WO2015026683A1. 2015.
  • Demong D, Miller M, Liu H, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee Compounds inhibiting leucinerich repeat kinase enzyme activity patent WO2015073344A1. 2015.
  • Dai X, Basu K, Demong D, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. Compounds inhibiting leucine-rich repeat kinase enzyme activity patent WO2016036586A1. 2016.
  • Candito DA, Graham TH, Acton J, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. Preparation of indazolyl-spiro[2.2]pentane-carbonitrile derivatives as LRRK2 inhibitors patent WO2019074809A1. 2019.
  • Acton J, Candito DA, Ellis JM, et al., inventors; Merck Sharp & Dohme Corp., USA. assignee. Preparation of indazolyl-spiro[2.3]hexane-carbonitrile derivatives as LRRK2 inhibitors patent WO2019074810A1. 2019.
  • Ding X, Jin Y, Liu Q, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, GlaxoSmithKline (China) R & D Company Limited, UK. assignee. Preparation of heterocyclic compounds that inhibit LRRK2 kinase activity patent WO2017012576A1. 2017.
  • Ren F, Sang YX, Zhao BW, inventors; GlaxoSmithKline Intellectual Property Development Limited, GlaxoSmithKline (China) R & D Company Limited, UK. assignee. Preparation of tetrahydrifuranylpiperidinylindazolylpyrimidinylmorpholine derivatives for use as LRRK2 kinase activity inhibitors patent WO2018137573A1. 2018.
  • Ding X, Ren F, Sang YX, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, GlaxoSmithKline (China) R & D Company Limited, UK. assignee. Preparation of compounds useful as LRRK2 kinase inhibitors patent WO2018137593A1. 2018.
  • Cui HF, Ren F, Sang YX, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, GlaxoSmithKline (China) R & D Company Limited, UK. assignee. Preparation of 4-(1-(pyrimidin-4-yl)-1H-indazol-5-yl)piperidine compounds as LRRK2 kinase inhibitors for treatment of neurodegenerative disorders patent WO2018137607A1. 2018.
  • Ren F, Sang YX, Xing WQ, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, GlaxoSmithKline (China) R & D Company Limited, UK. assignee. 1-(Pyrimidin-4-yl)indazole compounds for inhibiting LRRK-2 kinase activity and their preparation patent WO2018137618A1. 2018.
  • Ren F, Sang YX, Xing WQ, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, GlaxoSmithKline (China) R & D Company Limited, UK. assignee. Preparation of indazolylpyrimidines as LRRK2 kinase inhibitors patent WO2018137619A1. 2018.
  • Giordanetto F, Kihlberg J. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties? J Med Chem. 2014;57(2):278–295.
  • Ermert P. Design, properties and recent application of macrocycles in medicinal chemistry. Chimia (Aarau). 2017;71(10):678–702.
  • Mackman RL, Steadman VA, Dean DK, et al. Discovery of a potent and orally bioavailable cyclophilin inhibitor derived from the sanglifehrin macrocycle. J Med Chem. 2018;61(21):9473–9499.
  • Cummings MD, Sekharan S. Structure-based macrocycle design in small-molecule drug discovery and simple metrics to identify opportunities for macrocyclization of small-molecule ligands. J Med Chem. 2019;62(15):6843–6853.
  • Breslin HJ, Lane BM, Ott GR, et al. Design, synthesis, and anaplastic lymphoma kinase (ALK) inhibitory activity for a novel series of 2,4,8,22-tetraazatetracyclo[14.3.1.1(3),(7).1(9),(1)(3)]docosa-1(20), 3(22),4,6,9(21),10,12,16,18-nonaenemacrocycles. J Med Chem. 2012;55(1):449–464.
  • William AD, Lee AC, Goh KC, et al. Discovery of kinase spectrum selective macrocycle (16e)-14-methyl-20-oxa-5,7,14,26-tetraazatetracyclo[19.3.1.1(2,6).1(8,12)]heptaco sa-1(25), 2(26),3,5,8(27),9,11,16,21,23-decaene(SB1317/TG02), a potent inhibitor of cyclin dependent kinases (CDKs), janus kinase 2 (JAK2), and fms-like tyrosine kinase-3 (FLT3) for the treatment of cancer. J Med Chem. 2012;55(1):169–196.
  • Konings IR, de Jonge MJ, Burger H, et al. Phase I and pharmacological study of the broad-spectrum tyrosine kinase inhibitor jnj-26483327 in patients with advanced solid tumours. Br J Cancer. 2010;103(7):987–992.
  • Hoflack J, Blom P, inventors; Ipsen Pharma S.a.S., Fr.; Oncodesign S.A. assignee. Preparation of macrocyclic compounds as LRRK2 kinase inhibitors patent WO2013046029A1. 2013.
  • Hoflack J, Blom P, Lavergne O, inventors; Ipsen Pharma S.a.S., Fr.; Oncodesign S.A. assignee. Preparation of macrocyclic compounds as LRRK2 kinase inhibitors patent WO2014140235A1. 2014.
  • Hoflack J, Blom P, Lavergne O, et al., inventors; Oncodesign S.A., Fr.; Ipsen Pharma S.A.S. assignee. Preparation of macrocyclic LRRK2 kinase inhibitors useful in the treatment and/or diagnosis of neurological disorders patent WO2016042089A1. 2016.
  • Ding X, MH H, Ren F, et al., inventors; GlaxoSmithKline Intellectual Property Development Limited, UK. assignee. Preparation of 8-oxa-2,5,6,12,16,17-hexaazatricyclo[11.3.1.03,7]heptadeca-1(16), 3,6,13(17),14-pentanesas leucine rich repeat kinase 2 inhibitors patent WO2019012093A1. 2019.
  • Di Maio R, Hoffman EK, Rocha EM, et al. LRRK2 activation in idiopathic Parkinson’s disease. Sci Transl Med. 2018;10(451):eaar5429.
  • Liu M, Bender SA, Cuny GD, et al. Type II kinase inhibitors show an unexpected inhibition mode against Parkinson’s disease-linked LRRK2 mutant G2019s. Biochemistry. 2013;52(10):1725–1736.
  • Davis MI, Hunt JP, Herrgard S, et al. Comprehensive analysis of kinase inhibitor selectivity. Nat Biotechnol. 2011;29(11):1046–1051.
  • Rankovic Z. CNS drug design: balancing physicochemical properties for optimal brain exposure. J Med Chem. 2015;58(6):2584–2608.
  • Ding X, Stasi LP, Dai X, et al. 5-substituted-n-pyridazinylbenzamides as potent and selective LRRK2 inhibitors: improved brain unbound fraction enables efficacy. Bioorg Med Chem Lett. 2019;29(2):212–215.
  • Han BS, Iacovitti L, Katano T, et al. Expression of the LRRK2 gene in the midbrain dopaminergic neurons of the substantia nigra. Neurosci Lett. 2008;442(3):190–194.
  • Hakimi M, Selvanantham T, Swinton E, et al. Parkinson’s disease-linked LRRK2 is expressed in circulating and tissue immune cells and upregulated following recognition of microbial structures. J Neural Transm (Vienna). 2011;118(5):795–808.
  • Baptista MA, Dave KD, Frasier MA, et al. Loss of leucine-rich repeat kinase 2 (LRRK2) in rats leads to progressive abnormal phenotypes in peripheral organs. PLoS One. 2013;8(11):e80705.
  • Herzig MC, Kolly C, Persohn E, et al. LRRK2 protein levels are determined by kinase function and are crucial for kidney and lung homeostasis in mice. Hum Mol Genet. 2011;20(21):4209–4223.
  • Fuji RN, Flagella M, Baca M, et al. Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med. 2015;7(273):273ra215.
  • Baptista MAS, Merchant K, Barrett T, et al. LRRK2 kinase inhibitors induce a reversible effect in the lungs of non-human primates with no measurable pulmonary deficits. bioRxiv. 2018.DOI:10.1101/390815.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.