412
Views
33
CrossRef citations to date
0
Altmetric
Review

Sirtuin modulators: where are we now? A review of patents from 2015 to 2019

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 389-407 | Received 01 Feb 2020, Accepted 26 Mar 2020, Published online: 13 Apr 2020

References

  • Carafa V, Rotili D, Forgione M, et al. Sirtuin functions and modulation: from chemistry to the clinic. Clin Epigenetics. 2016;8:61.
  • Wang Y, He J, Liao M, et al. An overview of sirtuins as potential therapeutic target: structure, function and modulators. Eur J Med Chem. 2019 1;161(161):48–77. .
  • Kosciuk T, Wang M, Hong JY, et al. Updates on the epigenetic roles of sirtuins. Curr Opin Chem Biol. 2019 Aug;51:18–29.
  • Jing H, Lin H. Sirtuins in epigenetic regulation. Chem Rev. 2015 Mar 25;115(6):2350–2375.
  • Dang W. The controversial world of sirtuins. Drug Discov Today Technol. 2014 Jun;12:e9–e17.
  • Zhao E, Hou J, Ke X, et al. The roles of sirtuin family proteins in cancer progression. Cancers (Basel). 2019 Dec 5;11(12):1949.
  • Kumar A, Chauhan S. How much successful are the medicinal chemists in modulation of SIRT1: A critical review. Eur J Med Chem. 2016 Aug 25;119:45–69.
  • Zhao X, Allison D, Condon B, et al. The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition. J Med Chem. 2013 Feb 14;56(3):963–969.
  • Dai H, Sinclair DA, Ellis JL, et al. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther. 2018;188:140–154.
  • Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell. 2001 Oct 19;107(2):137–148.
  • Wang R-H, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008 Oct 7;14(4):312–323.
  • McBurney MW, Clark-Knowles KV, Caron AZ, et al. SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress. Genes Cancer. 2013 Mar;4(3–4):125–134. .
  • Cohen HY, Miller C, Bitterman KJ, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science. 2004 Jul 16;305(5682):390–392.
  • Gan L, Mucke L. Paths of convergence: sirtuins in aging and neurodegeneration. Neuron. 2008 Apr 10;58(1):10–14.
  • Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth. Genes Dev. 2007 Oct 15;21(20):2644–2658.
  • Firestein R, Blander G, Michan S, et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One. 2008 Apr 16;3(4):e2020.
  • Lain S, Hollick JJ, Campbell J, et al. Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator. Cancer Cell. 2008 May;13(5):454–463. .
  • Mazumder S, Plesca D, Kinter M, et al. Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis. Mol Cell Biol. 2007 May;27(9):3511–3520. .
  • Song N-Y, Surh Y-J. Janus-faced role of SIRT1 in tumorigenesis. Ann N Y Acad Sci. 2012 Oct;1271:10–19.
  • Liu T, Liu PY, Marshall GM. The critical role of the class III histone deacetylase SIRT1 in cancer. Cancer Res. 2009 Mar 1;69(5):1702–1705.
  • Qin W, Yang T, Ho L, et al. Neuronal SIRT1 activation as a novel mechanism underlying the prevention of Alzheimer disease amyloid neuropathology by calorie restriction. J Biol Chem. 2006 Aug 4;281(31):21745–21754.
  • Donmez G, Arun A, Chung C-Y, et al. SIRT1 protects against -Synuclein aggregation by activating molecular chaperones. J Neurosci. 2012 Jan 4;32(1):124–132.
  • Jeong J-K, Moon M-H, Lee Y-J, et al. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol Aging. 2013 Jan;34(1):146–156. .
  • Jeong H, Cohen DE, Cui L, et al. Sirt1 mediates neuroprotection from mutant huntingtin by activation of the TORC1 and CREB transcriptional pathway. Nat Med. 2012 Dec 18;18(1):159–165.
  • Smith MR, Syed A, Lukacsovich T, et al. A potent and selective Sirtuin 1 inhibitor alleviates pathology in multiple animal and cell models of Huntington’s disease. Hum Mol Genet. 2014 Jun 1;23(11):2995–3007.
  • Napper AD, Hixon J, McDonagh T, et al. Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1. J Med Chem. 2005 Dec 15;48(25):8045–8054.
  • Sussmuth SD, Haider S, Landwehrmeyer GB, et al. An exploratory double-blind, randomized clinical trial with selisistat, a SirT1 inhibitor, in patients with Huntington’s disease. Br J Clin Pharmacol. 2015 Mar;79(3):465–476. .
  • Harting K, Knoll B. SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology. Eur J Cell Biol. 2010 Feb-Mar;89(2–3):262–269.
  • Outeiro TF, Kontopoulos E, Altmann SM, et al. Sirtuin 2 inhibitors rescue -synuclein-mediated toxicity in models of parkinson’s disease. Science. 2007 Jul 27;317(5837):516–519.
  • Chopra V, Quinti L, Kim J, et al. The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington’s disease mouse models. Cell Rep. 2012 Dec 27;2(6):1492–1497.
  • Rothgiesser KM, Erener S, Waibel S, et al. SIRT2 regulates NF- B-dependent gene expression through deacetylation of p65 Lys310. J Cell Sci. 2010 Dec 15;123(24):4251–4258.
  • Park SH, Zhu Y, Ozden O, et al. SIRT2 is a tumor suppressor that connects aging, acetylome, cell cycle signaling, and carcinogenesis. Transl Cancer Res. 2012 Jun 1;1(1):15–21.
  • McGlynn LM, Zino S, MacDonald AI, et al. SIRT2: tumour suppressor or tumour promoter in operable breast cancer? Eur J Cancer. 2014 Jan;50(2):290–301.
  • Jin L, Galonek H, Israelian K, et al. Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3. Protein Sci. 2009 Mar;18(3):514–525.
  • Someya S, Yu W, Hallows WC, et al. Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction. Cell. 2010 Nov 24;143(5):802–812.
  • Rangarajan P, Karthikeyan A, Lu J, et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia. Neuroscience. 2015 Dec 17;311:398–414.
  • Kincaid B, Bossy-Wetzel E. Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci. 2013 Sep 6;5:48.
  • Kim HS, Patel K, Muldoon-Jacobs K, et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell. 2010 Jan 19;17(1):41–52.
  • Alhazzazi TY, Kamarajan P, Verdin E, et al. Sirtuin-3 (SIRT3) and the Hallmarks of Cancer. Genes Cancer. 2013 Mar;4(3–4):164–171.
  • Haigis MC, Mostoslavsky R, Haigis KM, et al. SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells. Cell. 2006 Sep 8;126(5):941–954.
  • Pannek M, Simic Z, Fuszard M, et al. Crystal structures of the mitochondrial deacylase Sirtuin 4 reveal isoform-specific acyl recognition and regulation features. Nat Commun. 2017 Nov 15;8(1):1513.
  • Betsinger CN, Cristea IM. Mitochondrial Function, metabolic regulation, and human disease viewed through the prism of sirtuin 4 (SIRT4) functions. J Proteome Res. 2019 May 3;18(5):1929–1938.
  • Han Y, Zhou S, Coetzee S, et al. SIRT4 and its roles in energy and redox metabolism in health, disease and during exercise. Front Physiol. 2019;10:1006.
  • Nasrin N, Wu X, Fortier E, et al. SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells. J Biol Chem. 2010 Oct 15;285(42):31995–32002.
  • Miyo M, Yamamoto H, Konno M, et al. Tumour-suppressive function of SIRT4 in human colorectal cancer. Br J Cancer. 2015 Jul 28;113(3):492–499.
  • Nakagawa T, Lomb DJ, Haigis MC, et al. SIRT5 deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell. 2009 May 1;137(3):560–570.
  • Polletta L, Vernucci E, Carnevale I, et al. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy. 2015;11(2):253–270.
  • Rardin MJ, He W, Nishida Y, et al. SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks. Cell Metab. 2013 Dec 3;18(6):920–933.
  • Kumar S, Lombard DB. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology. Crit Rev Biochem Mol Biol. 2018 Jun;53(3):311–334.
  • Kumar S, Lombard DB. Mitochondrial sirtuins and their relationships with metabolic disease and cancer. Antioxid Redox Signal. 2015 Apr 20;22(12):1060–1077.
  • Liu L, Peritore C, Ginsberg J, et al. Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson’s disease. Behav Brain Res. 2015 Mar 15;281:215–221.
  • Mostoslavsky R, Chua KF, Lombard DB, et al. Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell. 2006 Jan 27;124(2):315–329.
  • Tasselli L, Zheng W, Chua KF. SIRT6: novel mechanisms and links to aging and disease. Trends Endocrinol Metab. 2017 Mar;28(3):168–185.
  • Tsai YC, Greco TM, Cristea IM. Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis. Mol Cell Proteomics. 2014 Jan;13(1):73–83.
  • Chen S, Blank MF, Iyer A, et al. SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing. Nat Commun. 2016 Feb 12;7:10734.
  • Li L, Shi L, Yang S, et al. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun. 2016 Jul 20;7:12235.
  • Barber MF, Michishita-Kioi E, Xi Y, et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature. 2012 Jul 5;487(7405):114–118.
  • Malik S, Villanova L, Tanaka S, et al. SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors. Sci Rep. 2015 Apr 29;5:9841.
  • Schutkowski M, Fischer F, Roessler C, et al. New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin Drug Discov. 2014 Feb;9(2):183–199.
  • Rauh D, Fischer F, Gertz M, et al. An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms. Nat Commun. 2013;4(1):1–10.
  • Rumpf T, Schiedel M, Karaman B, et al. Selective Sirt2 inhibition by ligand-induced rearrangement of the active site. Nat Commun. 2015 Feb 12;6:6263.
  • Gai W, Li H, Jiang H, et al. Crystal structures of SIRT3 reveal that the alpha2-alpha3 loop and alpha3-helix affect the interaction with long-chain acyl lysine. FEBS Lett. 2016 Sep;590(17):3019–3028.
  • Rajabi N, Auth M, Troelsen KR, et al. Mechanism-based inhibitors of the human sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic insight. Angew Chem Int Ed Engl. 2017 Nov 20;56(47):14836–14841.
  • You W, Rotili D, Li TM, et al. Structural basis of sirtuin 6 activation by synthetic small molecules. Angew Chem Int Ed Engl. 2017 Jan 19;56(4):1007–1011.
  • Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003 Sep 11;425(6954):191–196.
  • Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 2007 Nov 29;450(7170):712–716.
  • Ng P Y, E Bemis J, S Disch J, et al. The identification of the SIRT1 activator SRT2104 as a clinical candidate. Lett Drug Des Discovery. 2013;10(9):793–797.
  • Oalmann C, Disch JS, Ng PY; inventors; Sirtris Pharmaceuticals, Inc., USA. assignee, et al. Thiazolopyridine sirtuin modulating compounds patent US8343997B2. 2013.
  • Miranda MX, van Tits LJ, Lohmann C, et al. The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression. Eur Heart J. 2015 Jan 1;36(1):51–59.
  • Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1. J Biol Chem. 2010 Mar 12;285(11):8340–8351.
  • Dai H, Case AW, Riera TV, et al. Crystallographic structure of a small molecule SIRT1 activator-enzyme complex. Nat Commun. 2015 Jul 2;6:7645.
  • Krueger JG, Suarez-Farinas M, Cueto I, et al. A randomized, placebo-controlled study of SRT2104, a SIRT1 activator, in patients with moderate to severe psoriasis. PLoS One. 2015;10(11):e0142081.
  • Mai A, Valente S, Meade S, et al. Study of 1,4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J Med Chem. 2009 Sep 10;52(17):5496–5504.
  • Valente S, Mellini P, Spallotta F, et al. 1,4-dihydropyridines active on the SIRT1/AMPK pathway ameliorate skin repair and mitochondrial function and exhibit inhibition of proliferation in cancer cells. J Med Chem. 2016 Feb 25;59(4):1471–1491.
  • Iachettini S, Trisciuoglio D, Rotili D, et al. Pharmacological activation of SIRT6 triggers lethal autophagy in human cancer cells. Cell Death Dis. 2018 Sep 24;9(10):996.
  • Huang Z, Zhao J, Deng W, et al. Identification of a cellularly active SIRT6 allosteric activator. Nat Chem Biol. 2018 Dec;14(12):1118–1126.
  • Karaman B, Jung M, Sippl W. Structure-based design and computational studies of sirtuin inhibitors. In: Medina-Franco JL, editor. Epi-informatics. Boston: Academic Press; 2016. p. 297–325.
  • 2020 [cited 2020 March 05]. Available from: www.clinicaltrials.org
  • Carafa V, Nebbioso A, Cuomo F, et al. RIP1-HAT1-SIRT Complex identification and targeting in treatment and prevention of cancer. Clin Cancer Res. 2018 Jun 15;24(12):2886–2900.
  • Carafa V, Poziello A, Della Torre L, et al. Enzymatic and biological characterization of novel sirtuin modulators against cancer. Int J Mol Sci. 2019 Nov 12;20:22.
  • Lara E, Mai A, Calvanese V, et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene. 2009 Feb 12;28(6):781–791.
  • Rotili D, Tarantino D, Nebbioso A, et al. Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J Med Chem. 2012 Dec 27;55(24):10937–10947.
  • Pasco MY, Rotili D, Altucci L, et al. Characterization of sirtuin inhibitors in nematodes expressing a muscular dystrophy protein reveals muscle cell and behavioral protection by specific sirtinol analogues. J Med Chem. 2010 Feb 11;53(3):1407–1411.
  • Rotili D, Tarantino D, Carafa V, et al. Identification of tri- and tetracyclic pyrimidinediones as sirtuin inhibitors. ChemMedChem. 2010 May 3;5(5):674–677.
  • Rotili D, Carafa V, Tarantino D, et al. Simplification of the tetracyclic SIRT1-selective inhibitor MC2141: coumarin- and pyrimidine-based SIRT1/2 inhibitors with different selectivity profile. Bioorg Med Chem. 2011 Jun 15;19(12):3659–3668.
  • Rotili D, Tarantino D, Carafa V, et al. Benzodeazaoxaflavins as sirtuin inhibitors with antiproliferative properties in cancer stem cells. J Med Chem. 2012 Sep 27;55(18):8193–8197.
  • Schiedel M, Rumpf T, Karaman B, et al. Aminothiazoles as potent and selective Sirt2 inhibitors: a structure-activity relationship study. J Med Chem. 2016 Feb 25;59(4):1599–1612.
  • Schiedel M, Rumpf T, Karaman B, et al. Structure-Based Development of an Affinity Probe for Sirtuin 2. Angew Chem Int Ed Engl. 2016 Feb 5;55(6):2252–2256.
  • Schiedel M, Herp D, Hammelmann S, et al. Chemically induced degradation of sirtuin 2 (Sirt2) by a proteolysis targeting chimera (PROTAC) based on sirtuin rearranging ligands (SirReals). J Med Chem. 2018 Jan 25;61(2):482–491.
  • Schiedel M, Daub H, Itzen A, et al. Validation of the slow off-kinetics of sirtuin-rearranging ligands (SirReals) by means of label-free electrically switchable nanolever technology. Chembiochem. 2019 Nov 6. in press.
  • Swyter S, Schiedel M, Monaldi D, et al. New chemical tools for probing activity and inhibition of the NAD(+)-dependent lysine deacylase sirtuin 2. Philos Trans R Soc Lond B Biol Sci. 2018 Jun 5;373:1748.
  • Moniot S, Forgione M, Lucidi A, et al. Development of 1,2,4-oxadiazoles as potent and selective inhibitors of the human deacetylase sirtuin 2: structure-activity relationship, X-ray crystal structure, and anticancer activity. J Med Chem. 2017 Mar 23;60(6):2344–2360.
  • Chen B, Wang J, Huang Y, et al. Human SIRT3 tripeptidic inhibitors containing N(epsilon)-thioacetyl-lysine. Bioorg Med Chem Lett. 2015 Sep 1;25(17):3481–3487.
  • Patel K, Sherrill J, Mrksich M, et al. Discovery of SIRT3 inhibitors using SAMDI mass spectrometry. J Biomol Screen. 2015 Aug;20(7):842–848.
  • Kalbas D, Liebscher S, Nowak T, et al. Potent and selective inhibitors of human sirtuin 5. J Med Chem. 2018 Mar 22;61(6):2460–2471.
  • You W, Steegborn C. Structural basis of sirtuin 6 inhibition by the hydroxamate trichostatin a: implications for protein deacylase drug development. J Med Chem. 2018 Dec 13;61(23):10922–10928.
  • Sociali G, Galeno L, Parenti MD, et al. Quinazolinedione SIRT6 inhibitors sensitize cancer cells to chemotherapeutics. Eur J Med Chem. 2015 Sep 18;102:530–539.
  • Li S, Wu B, Zheng W. Cyclic tripeptide-based potent human SIRT7 inhibitors. Bioorg Med Chem Lett. 2019 Feb 1;29(3):461–465.
  • Lin H, inventor; Cornell University, USA. assignee. Modulators for sirt6 and assays for screening same patent US9249183B2. 2016.
  • Tan SC, Ali MA, Yeong KY, et al., inventors; Universiti Sains Malaysia, Malay. assignee. Preparation of arylbenzimidazolecarboxylates and method for inhibiting sirtuin activities patent WO2017007301A1. 2017.
  • Oon CE, Tan SC, Yeong KY, et al., inventors; Universiti Sains Malaysia, Malay. assignee. Compounds for use as anti-cancer agents patent WO2017052360A1. 2017.
  • Fuchter M, Di Fruscia P, Sternberg M, et al., inventors; Imperial Innovations Limited, UK. assignee. Preparation of thienopyrimidinone derivs. as SIRT2 inhibitors patent WO2016067012A1. 2016.
  • Chen L, Ai T, More S, inventors; University of Minnesota, USA. assignee. Preparation of heterocycle carboxamide derivatives useful as SIRT2 inhibitors patent US20160376238A1. 2016.
  • Zhang C, Laufer R, inventors; Auspex Pharmaceuticals, Inc., USA. assignee. Preparation of deuterated tetrahydrocarbazole derivatives as inhibitors of SIRT1 receptors patent US20170190664A1. 2017.
  • Lowe H, Toyang NJ, inventors; Jamaica. assignee. Compositions including cannabis flavonoid derivatives targeting kinases, sirtuins and oncogenic agents for the treatment of cancer patent US20180353462A1. 2018.
  • Elsohly MA, Slade D. Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci. 2005 Dec 22;78(5):539–548.
  • Ellis JL, Evans KA, Fox RM, et al., inventors; GlaxoSmithKline Intellectual Property No.2 Limited, UK. assignee. 3,4-Dihydro-1,4-methanopyrido[2,3-b][1,4]diazepine-5(2H)-carboxamide analogs as sirtuin modulators and their preparation patent WO2016079709A1. 2016.
  • Ellis JL, Evans KA, Fox RM, et al., inventors; GlaxoSmithKline Intellectual Property No.2 Limited, UK. assignee. Substituted 3,4-dihydro-1,4-methanopyrido[2,3-b][1,4]diazepine analogs as sirtuin modulators and their preparation patent WO2016079710A1. 2016.
  • Ellis JL, Evans KA, Fox RM, et al., inventors; GlaxoSmithKline Intellectual Property No.2 Limited, UK. assignee. Substituted methanopyridodiazocine analogs as sirtuin modulators and their preparation patent WO2016079711A1. 2016.
  • Ellis JL, Evans KA, Fox RM, et al., inventors; GlaxoSmithKline Intellectual Property No.2 Limited, UK. assignee. Substituted methanopyrimidodiazepine and methanopyrimidodiazocine analogs as sirtuin modulators and their preparation patent WO2016079712A1. 2016.
  • Blum CA, Caldwell RD, Casaubon R, et al., inventors; GlaxoSmithKline LLC, USA. assignee. Substituted bridged urea analogs as sirtuin modulators and their preparation patent US20150152108A1. 2015.
  • Belani JD, Pestell RG, inventors; Thomas Jefferson University, USA. assignee. Synthesis of tetracyclic flavonoids as Sirt1 activator patent WO2016025473A2. 2016.
  • Calderone V, Minutolo F, Tuccinardi T, et al., inventors; Universita di Pisa, Italy. assignee. Preparation of new activators of SIRT1 enzyme for the treatment of cardiovascular and cardiometabolic pathologies patent WO2019162911A1. 2019

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.