310
Views
6
CrossRef citations to date
0
Altmetric
Review

Biomedical applications of yeasts - a patent view, part two: era of humanized yeasts and expanded applications

, , , &
Pages 609-631 | Received 22 Feb 2020, Accepted 09 Jun 2020, Published online: 30 Jun 2020

References

  • Roohvand F, Shokri M, Abdollahpour-Alitappeh M, et al. Biomedical applications of yeast-a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines. Expert Opin Ther Pat. 2017;27(8):929–951.
  • Pretorius IS, Boeke JD. Yeast 2.0-connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 2018 1;18(4):1–15.
  • Nielsen J. Yeast. Biotechnol J. 2019 Sep;14(9):e1800421.
  • Mizukami A, Caron AL, Picanco-Castro V, et al. Platforms for recombinant therapeutic glycoprotein production. Methods Mol Biol. 2018;1674:1–14.
  • Spadiut O, Capone S, Krainer F, et al. Microbials for the production of monoclonal antibodies and antibody fragments. Trends Biotechnol. 2014;32(1):54–60.
  • Zhao YY, Cao CL, Liu YL, et al. Genetic analysis of oxidative and endoplasmic reticulum stress responses induced by cobalt toxicity in budding yeast. Biochim Biophys Acta Gen Subj. 2020;1864(3):129516.
  • Babele PK, Singh AK, Srivastava A. Bio-inspired silver nanoparticles impose metabolic and epigenetic toxicity to saccharomyces cerevisiae. Front Pharmacol. 2019;10:1016.
  • Palma ML, Zamith-Miranda D, Martins FS, et al. Probiotic Saccharomyces cerevisiae strains as biotherapeutic tools: is there room for improvement? Appl Microbiol Biotechnol. 2015;99(16):6563–6570.
  • Czerucka D, Piche T, Rampal P. Review article: yeast as probiotics – saccharomyces boulardii. Aliment Pharmacol Ther. 2007;26(6):767–778.
  • Hartwell LH. Yeast and cancer. Biosci Rep. 2002;22:373–394.
  • Sun S, Yang F, Tan G, et al. An extended set of yeast-based functional assays accurately identifies human disease mutations. Genome Res. 2016;26(5):670–680.
  • Laurent JM, Young JH, Kachroo AH, et al. Efforts to make and apply humanized yeast. Brief Funct Genomics. 2016;15(2):155–163.
  • Ferrer-Miralles N, Domingo-Espín J, Corchero JL, et al. Microbial factories for recombinant pharmaceuticals. Microb Cell Fact. 2009;8(1):17.
  • Martinez Ruiz J, Liu L, Petranovic D. Pharmaceutical protein production by yeast: towards production of human blood proteins by microbial fermentation”. Curr Opin Biotechnol. 2012;23(6):965–971.
  • Sanchez Garci L, Martín L, Mangues R, et al. Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Fact. 2016;15(33):1–7.
  • Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol. 2017;251:128–140.
  • De Wachter C, Van Landuyt L, Callewaert N. Engineering of yeast glycoprotein expression. A Adv Biochem Eng Biotechnol. 2018. Springer, Berlin, Heidelberg.
  • Reece-Hoyes JS, Marian Walhout AJ. Yeast one-hybrid assays: a historical and technical perspective. Methods. 2012;57(4):441–447.
  • Rajagopala SV. Mapping the protein-protein interactome networks using yeast two-hybrid screens. Adv Exp Med Biol. 2015;883:187–214.
  • Moosavi B, Mousavi B, Yang WC, et al. Yeast-based assays for detecting protein-protein/drug interactions and their inhibitors. Eur J Cell Biol. 2017;96(6):529–541.
  • Van Raamsdonk JM, Warby SC, Hayden MR. Selective degeneration in YAC mouse models of Huntington disease. Brain Res Bull. 2007;72(2–3):124–131.
  • Stovicek V, Holkenbrink C, Borodina I. CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res. 2017;17:5.
  • Bolotin‐Fukuhara M, Dumas B, Gaillardin C. Special issue: yeasts as a model for human diseases. 2010; 10(8):959–1089.
  • Maitreya D, Marc G, Robert W, et al. Methods in yeast genetics and genomics: a cold spring harbor laboratory course manual. USA: CSHL press; 2015.
  • Martinet W, Saelens X, Deroo T, et al. Protection of mice against a lethal influenza challenge by immunization with yeast-derived recombinant influenza neuraminidase. Eur J Biochem. 1997;247(1):332–338.
  • Yu Geng RJL, Inventor; ProSci, Inc., assignee. Glycosylated polypeptides produced in yeast mutants and methods of use thereof. patent US8202523B2. 2012.
  • Kopera E, Grzelak KM, Zagorski-Ostoja WW, et al., inventors; Antigen, influenza vaccine, system for vaccine manufacturing, method of antigen production, and use of antigen to produce an influenza vaccine. patent WO2015093996A1. 2015.
  • Ghaderi D, Zhang M, Hurtado-Ziola N, et al. Production platforms for biotherapeutic glycoproteins. Occurrence, impact, and challenges of non-human sialylation. Biotechnol Genet Eng Rev. 2012;28:147–175.
  • Maleki A, Roohvand F, Tajerzadeh H, et al. High expression of methylotrophic yeast-derived recombinant human erythropoietin in a pH-controlled batch system. Avicenna J Med Biotechnol. 2010;2(4):197–206.
  • Maleki A, Najafabadi AR, Roohvand F, et al. Evaluation of bioactivity and pharmacokinetic characteristics of PEGylated P.pastoris-expressed erythropoietin. Drug Deliv. 2011 Nov;18(8):570–577.
  • Maleki A, Madadkar-Sobhani A, Roohvand F, et al. Design, modeling, and expression of erythropoietin cysteine analogs in Pichia pastoris: improvement of mean residence times and in vivo activities through cysteine-specific PEGylation. Eur J Pharm Biopharm. 2012;80(3):499–507.
  • Grilo AL, Mantalaris A. The increasingly human and profitable monoclonal antibody market. Trends Biotechnol. 2019;37(1):9–16.
  • Jiang H, Horwitz AA, Wright C, et al. Challenging the workhorse: comparative analysis of eukaryotic micro-organisms for expressing monoclonal antibodies. Biotechnol Bioeng. 2019;116(6):1449–1462.
  • Chen X, Inventor; Novo Nordisk AS, assignee. Remodeling and glycoconjugation of peptides. patent WO2003031464A2. 2006.
  • Contreras R, Callewaert NLM, Geysens SCJ, inventors; Vib, Vzw, Research Corporation Technologies, Inc. Universiteit Gent, assignee. Protein glycosylation modification in methylotrophic yeast. patent US9359628B2 (EP2267135A3, WO2002000856A3). 2016.
  • Davis BG, Gamblin DP, Fairbanks AJ, et al., inventors; Oxford University Innovation Ltd, assignee. Reagents and methods for the formation of disulfide bonds and the glycosylation of proteins. patent US8637578B2. 2014.
  • Davidson R, Gerngross T, Wildt S, et al., inventors; GLYCOFI INC, assignee. Production of galactosylated glycoproteins in lower eukaryotes. patent WO2005100584A2. 2005.
  • Javaud C, Carre V, inventors; GLYCODE, assignee. A yeast artificial chromosome carrying the mammalian glycosylation pathway. patent EP2598638A2. 2013.
  • Javaud C, Carre V, inventors; Société Industrielle Limousine d’Application Biologique (SILAB), assignee. Genetically modified yeasts for the production of homogeneous glycoproteins. patent EP2111454B1 (US20100137565, WO2008095797A1). 2015.
  • Aebi M. N-linked protein glycosylation in the ER. Biochim Biophys Acta. 2013;1833(11):2430–2437.
  • Munro S. What can yeast tell us about N-linked glycosylation in the Golgi apparatus? FEBS Lett. 2001;498(2–3):223–227.
  • Chiba Y, Akeboshi H. Glycan engineering and production of ‘humanized’ glycoprotein in yeast cells. Biol Pharm Bull. 2009;32(5):786–795.
  • Contreras R, Callewaert Nico LM, Vervecken W, et al., inventors; RES Corp Technologies Inc, assignee. Modification of protein glycosylation in methylotrophic yeast patent WO2005049807A1 (US 20040037936). 2005.
  • Chen MT, Choi BK, inventors; Merck Sharp and Dohme Corp, assignee. Engineered pichia strains with improved fermentation yield and n-glycosylation quality. patent EP 2780462 A1 (WO2013066685A1). 2015.
  • Jozef Geysens SV, Vervecken W, inventors; Oxyrane UK Ltd, assignee. Yeast strains producing mammalian-like complex n-glycans. patent US20130053550A1 (US10287557B2). 2013.
  • Wang S, Rong Y, Wang Y, et al. Homogeneous production and characterization of recombinant N-GlcNAc-protein in pichia pastoris. Microb Cell Fact. 2020;19(1):7.
  • Goto M. Protein O-glycosylation in fungi: diverse structures and multiple functions. Biosci Biotechnol Biochem. 2007;71(6):1415–1427.
  • Bennett EP, Mandel U, Clausen H, et al. Control of mucin-type O-glycosylation: a classification of the polypeptide GalNAc-transferase gene family. Glycobiology. 2012;22(6):736–756.
  • Neubert P, Halim A, Zauser M, et al. Mapping the O-mannose glycoproteome in saccharomyces cerevisiae. Mol Cell Proteomics. 2016;15(4):1323–1337.
  • Govindappa N, Kanojia K, Venkatesan K, et al., inventors; BIOCON LTD, assignee. Method of reducing glycosylation of proteins, processes and proteins thereof. patent US8778659B2. 2014.
  • Desai R, Yang L, inventors; Merck SHARP & DOHME, assignee. Efficient production of heterologous proteins using mannosyl transferase inhibitors. patent US8309325B2 (EP2300446B1, WO2009143041A1). 2012.
  • Abe H, Tomimoto K, Fujita Y, et al., inventors; National Institute Of Advanced Industrial Science And Technology, assignee. Sugar-chain modified yeast and method for producing glycoprotein using the same. patent US9017969B2. 2015.
  • Meehl M, Lin H, Choi BK, inventors; Merck Sharp and Dohme Corp, assignee. Methods for the production of recombinant proteins with improved secretion efficiencies. patent US20130011875A1 (WO2011053541A1). 2013.
  • Holgersson J, Gustavsson A, inventors. Production of proteins carrying oligomannose or human-like glycans in yeast and methods of use thereof. patent WO2007087420A2. 2007.
  • Chigira Y, Oka T, Okajima T, et al. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains. Glycobiology. 2008;18(4):303–314.
  • Ray K. From fission to fusion: a perspective on the research that won the nobel prize in physiology or medicine, 2013. J Biosci. 2014;39(1):3–12.
  • Kachroo AH, Laurent JM, Yellman CM, et al. Evolution. Systematic humanization of yeast genes reveals conserved functions and genetic modularity. Science. 2015;348(6237):921–925.
  • Singh S, Tank NK, Dwiwedi P, et al. Monoclonal antibodies: a review. Curr Clin Pharmacol. 2018;13(2):85–99.
  • da Silva FA, Corte-Real S, Goncalves J. Recombinant antibodies as therapeutic agents. BioDrugs. 2008;22(5):301–314.
  • Jolliffe LK, Zivin RA, Adair JR, et al., inventors; Celltech Limited, assignee. Cd3 specific recombinant antibody. patent WO1991009968A1. 1991.
  • Holliger P. Expression of antibody fragments in pichia pastoris. Methods Mol Biol. 2002;178:349–357.
  • Gorlani A, de Haard H, Verrips T. Expression of VHHs in saccharomyces cerevisiae. Single domain antibodies. Methods Mol Biol. 2012;911:277–286.
  • Liu Y, Huang H. Expression of single-domain antibody in different systems. Appl Microbiol Biotechnol. 2017;102(2):539–551.
  • Neslund GHG, Stefan A, inventors. Aglycosylated antibodies and methods of making and using those antibodies. WO2008030564A3. 2008.
  • Gupta SK, Shukla P. Glycosylation control technologies for recombinant therapeutic proteins. Appl Microbiol Biotechnol. 2018;102(24):10457–10468.
  • Swennen D, Paul M-F, Vernis L, et al. Secretion of active anti-Ras single-chain Fv antibody by the yeasts Yarrowia lipolytica and Kluyveromyces lactis. Microbiology. 2002;148(1):41–50.
  • Motwani N, Blackburn R, inventors; Apolife, Inc., assignee. Expression of heterologous multi-domain proteins in yeast. patentUS6358733B1. 2002.
  • Garcia-Martinez L, Carvalho Jensen AE, Olson K, et al., inventors; Alderbio Holdings Llc, assignee. Antibodies to IL-6 and use thereof. patent US8323649B2. 2012.
  • Garcia-Martinez L, Carvalho Jensen AE, Olson K, et al., inventors; Alderbio Holdings Llc, assignee. In vivo imaging using anti-IL-6 antibodies. patent US20180201668A1. 2018.
  • Shusta EV, Wentz AE, inventors; Wisconsin Alumni Research Foundation, assignee. Methods of enhanced heterologous protein secretion. patent US20090258388A1. 2009.
  • Rakestraw JA, Sazinsky SL, Piatesi A, et al. Directed evolution of a secretory leader for the improved expression of heterologous proteins and full-length antibodies in Saccharomyces cerevisiae. Biotechnol Bioeng. 2009;103(6):1192–1201.
  • Wang KC, Luo PP, Zhong P, et al., inventors; Merck Sharp & Dohme Corp., assignee. Eukaryotic cell display systems. patent US8637435B2. 2014.
  • Prinz B, Sethuraman N, Zha D, et al., inventors; Merck Sharp & Dohme Corp., assignee. Surface display of whole antibodies in eukaryotes. patent US9260712B2. 2016.
  • Cregg JM, JL ML, Litton M. et al., inventors; Methods of synthesizing heteromultimeric polypeptides in yeast using a haploid mating strategy. patent US20110183402A1. 2011.
  • Rosowski S, Becker S, Toleikis L, et al. A novel one-step approach for the construction of yeast surface display Fab antibody libraries. Microb Cell Fact. 2018;17(1):3.
  • Cabilly S, Heyneke H, Holmes WE, et al., inventors; genentech inc city of hope national medical center, assignee. Methods of making antibody heavy and light chains having specificity for a desired antigen. patent US7923221B1 (EP0125023A1). 2011.
  • Guenther R, Hock B, Becker S, inventors; Merck patent GmbH, assignee. Method of producing secretable antibodies by expression in saccharomyces cerevisiae. patent EP2941441A1 (US20150337292, WO2014106527A1). 2014.
  • Chang MM, Gaidukov L, Jung G, et al. Small-molecule control of antibody N-glycosylation in engineered mammalian cells. Nat Chem Biol. 2019;15(7):730–736.
  • Higel F, Seidl A, Sorgel F, et al. N-glycosylation heterogeneity and the influence on structure, function and pharmacokinetics of monoclonal antibodies and Fc fusion proteins. Eur J Pharm Biopharm. 2016;100:94–100.
  • Davis BG, inventor; ISIS innovation, assignee. Protein glycosylation. patent WO2006106348A2. 2006.
  • Hiatt A, Zeitlin L, inventors; icon genetics AG, MAPP biopharmaceutical inc, assignee. Monoclonal antibodies with altered affinities for human fcyri, fcyrllla, and c1q proteins patent US20130149300A1 (WO2013095738A2). 2012.
  • Ciplys E, Slibinskas R, Sasnauskas K, et al., inventors; UAB baltymas, assignee. Generation of native recombinant secreted human endoplasmic reticulum chaperones by using their native signal sequences in yeast expression systems. patent US20150191713A1. 2015.
  • Dos Santos SC, Teixeira MC, Cabrito TR, et al. Yeast toxicogenomics: genome-wide responses to chemical stresses with impact in environmental health, pharmacology, and biotechnology. Front Genet. 2012;3:63.
  • Guengerich FP, Waterman MR, Egli M. Recent structural insights into cytochrome P450 function. Trends Pharmacol Sci. 2016;37(8):625–640.
  • Hinnebusch AG, Johnston M. YeastBook: an encyclopedia of the reference eukaryotic cell. Genetics. 2011;189(3):683–684.
  • Feldmann H. Yeast: molecular and cell biology. USA: John Wiley & Sons; 2011.
  • van Leeuwen S, Vermeulen PE, Chris VJ. Yeast as a humanized model organism for biotransformation-related toxicity. Curr Drug Metab. 2012;13(10):1464–1475.
  • Hayashi Koji TS, Yabusaki Y, Komai K, et al., inventors; sumitomo chemical co ltd, assignee. Method for safety evaluation of chemical compound using recombinant yeast expressing human cytochrome P450. patent EP0644267B1 (US6620593B1, CA2128399A1). 2012.
  • Soni RKP, Arora K, inventors; premas biotech pvt ltd, assignee. Yeast strain expressing modified human cytochrome p450 reductase and/or cytochrome p450 gene. patent WO2010134095A3. 2011.
  • Wolf CR, Jowett T, Beggs JD, inventors; imperial cancer research technology limited, assignee. In vivo assay systems for metabolic routes. patent WO1992014817A1. 1992.
  • Bellamine A, Delorme F, Perret A, et al., inventors; Centre National de la Recherche Scientifique CNRS, Aventis Pharma SA, assignee. Genetically engineered yeast strains. patent US6117649. 2000.
  • Saghbini M, Wing L, inventors; transgenomic inc, assignee. Methods and kits for testing mutagenicity. patent WO2003087123A3 (US20030211457A1). 2004.
  • Schiestl RH, Gietz RD, Mehta R, et al. Carcinogens induce intrachromosomal recombination in yeast. Carcinogenesis. 1989;10(8):1445–1455.
  • Schiestl RHHN, Hafer KM, Hafer KM, et al., inventors; University of California, assignee. Assays for mutagenesis detection. patent US9193983B2 (WO2011066571A3). 2015.
  • Walmsley RM, Heyer WD, inventors; gentronix ltd, assignee. Detection of DNA damaging agents. patent US7049071B2 (WO1998044149A1, EP1561822A1). 2006.
  • Rabinowitz A, Walmsley R, Tate M, inventors; gentronix ltd, assignee. genotoxicity testing. patent US20140302512A1 (EP2411540A1, WO2010112821A1). 2014.
  • Adames NR, Gallegos JE, Peccoud J. Yeast genetic interaction screens in the age of CRISPR/Cas. Curr Genet. 2019;65(2):307–327.
  • Yousefi B, Eslami M, Ghasemian A, et al. Probiotics importance and their immunomodulatory properties. J Cell Physiol. 2019;234(6):8008–8018.
  • Trush EA, Poluektova EA, Beniashvilli AG, et al. The evolution of human probiotics: challenges and prospects. Probiotics Antimicrob Proteins. 2020.
  • Clancy R. Immunobiotics and the probiotic evolution. Pathog Dis. 2003;38(1):9–12.
  • Peters V, van de Steeg E, van Bilsen J, et al. Mechanisms and immunomodulatory properties of pre-and probiotics. Benef Microbes. 2019;10(3):225–236.
  • Kiousi DE, Karapetsas A, Karolidou K, et al. Probiotics in extraintestinal diseases: current trends and new directions. Nutrients. 2019;11:4.
  • Courie PA Jr, Patelakis S, Miles AJ, inventors; progressive bioactives Inc, assignee. Process for producing natural immunobiotic extract and uses thereof. patent US2009/0227535A1 (WO2006042403A1, EP1809674A1). 2009.
  • Sabu C, Mufeedha P, Pramod K. Yeast-inspired drug delivery: biotechnology meets bioengineering and synthetic biology. Expert Opin Drug Deliv. 2019;16(1):27–41.
  • Szajewska H, Kolodziej M. Systematic review with meta-analysis: saccharomyces boulardii in the prevention of antibiotic-associated diarrhoea. Aliment Pharmacol Ther. 2015;42(7):793–801.
  • Wang F, Feng J, Chen P, et al. Probiotics in helicobacter pylori eradication therapy: systematic review and network meta-analysis. C Clin Res Hepatol Gastroenterol. 2017;41(4):466–475.
  • Gut AM, Vasiljevic T, Yeager T, et al. Salmonella infection – prevention and treatment by antibiotics and probiotic yeasts: a review. Microbiology. 2018;164(11):1327–1344.
  • Brun P, Scarpa M, Marchiori C, et al. Saccharomyces boulardii CNCM I-745 supplementation reduces gastrointestinal dysfunction in an animal model of IBS. PLoS One. 2017;12(7):e0181863.
  • Simon JL, Pignede G, Vandekerckove P, et al., inventors; Lesaffre Et Compagnie, Universite D’auvergne Clermont 1, Université Du Droit Et De La Santé Lille 2, assignee. Composition for human and/or animal nutrition, uses thereof and yeasts. WO2009103884A3 (EP2227539 A2, US8476058). 2009.
  • Simon JL, Pignede G, Vandekerckove P, et al., inventors; Lesaffre et Cie, Universite Lille 2 Droit et Sante, Universite d’Auvergne Clermont 1, assignee. Probiotic yeast compositions and methods for inflammatory diseases. US8476058 (EP2227539A2, WO2009103884A2). 2013.
  • Girard P, Le Guern M-E, Verleye M, et al., inventors; BIOCODEX, assignee. Medicinal product for treating gastrointestinal ulcers. US20110135616A1 (CA2724937A1, EP2332556A1). 2011.
  • Dikovski AV, Rudoy BA, inventors;. pharmaceutical composition for use in the prophylaxis and treatment of infectious and non-infectious diarrhoea. WO2011043695A1 (EP2486943B1). 2014.
  • D’souza AL, Rajkumar C, Cooke J, et al. Probiotics in prevention of antibiotic associated diarrhoea: meta-analysis. Bmj. 2002;324(7350):1361.
  • Can M, Besirbellioglu BA, Avci IY, et al. Prophylactic saccharomyces boulardii in the prevention of antibiotic-associated diarrhea: a prospective study. Med Sci Monit. 2006;12(4):PI19–22.
  • McFarland LV. Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol. 2006;101(4):812–822.
  • Blaabjerg S, Artzi D, Aabenhus R. Probiotics for the prevention of antibiotic-associated diarrhea in outpatients—a systematic review and meta-analysis. Antibiotics (Basel). 2017;6(4):21.
  • McFarland LV, Goh S. Are probiotics and prebiotics effective in the prevention of travellers’ diarrhea: a systematic review and meta-analysis. Travel Med Infect Dis. 2019;27:11–19.
  • Allen SJ. The potential of probiotics to prevent clostridium difficile infection. Infect Dis Clin North Am. 2015;29(1):135–144.
  • Sivananthan K, Petersen AM. Review of saccharomyces boulardii as a treatment option in IBD. Immunopharmacol Immunotoxicol. 2018;40(6):465–475.
  • Liu GL, Chi Z, Wang GY, et al. Yeast killer toxins, molecular mechanisms of their action and their applications. Crit Rev Biotechnol. 2015;35(2):222–234.
  • Hodgson VJ, Button D, Walker GM. Anti-Candida activity of a novel killer toxin from the yeast Williopsis mrakii. Microbiology. 1995;141(Pt 8):2003–2012.
  • Weiler F, Schmitt MJ. Zygocin, a secreted antifungal toxin of the yeast Zygosaccharomyces bailii, and its effect on sensitive fungal cells. FEMS Yeast Res. 2003;3(1):69–76.
  • Hatoum R, Labrie S, Fliss I. Antimicrobial and probiotic properties of yeasts: from fundamental to novel applications. Front Microbiol. 2012;3:421.
  • Psani MKP. Technological characteristics of yeast strains and their potential as starter adjuncts in Greek-style black olive fermentation. World J Microbiol Biotechnol. 2006;22:1329–1336.
  • Kumura H, Tanoue Y, Tsukahara M, et al. Screening of dairy yeast strains for probiotic applications. J Dairy Sci. 2004;87(12):4050–4056.
  • Etienne-Mesmin L, Livrelli V, Privat M, et al. Effect of a new probiotic Saccharomyces cerevisiae strain on survival of escherichia coli O157: H7in a dynamic gastrointestinal model. Appl Environ Microbiol. 2011;77(3):1127–1131.
  • Spangler DA, Brown PK, Witzig TE, et al., inventors. Probiotic mixture intended for monogastric animals to control intestinal flora populations. US6841149B1. 2005.
  • Sugimoto K, Hanai H, Tozawa K, et al. Curcumin prevents and ameliorates trinitrobenzene sulfonic acid-induced colitis in mice. Gastroenterology. 2002;123(6):1912–1922.
  • Dahan S, Dalmasso G, Imbert V, et al. Saccharomyces boulardii interferes with enterohemorrhagic escherichia coli-induced signaling pathways in T84 cells. Infect Immun. 2003;71(2):766–773.
  • Zhou H, Zhang HJ, Guan L, et al. Mechanism and therapeutic effects of saccharomyces boulardii on experimental colitis in mice. Mol Med Rep. 2018;18(6):5652–5662.
  • More MI, Vandenplas Y. Saccharomyces boulardii CNCM I-745 improves intestinal enzyme function: a trophic effects review. Clin Med Insights Gastroenterol. 2018;11:1179552217752679.
  • Douradinha B, Reis VC, Rogers MB, et al. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii. Bioengineered. 2014;5(1):21–29.
  • Hudson LE, Fasken MB, McDermott CD, et al. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii. PloS One. 2014;9(11):e112660.
  • Wang L, Sun H, Zhang J, et al. Establishment and application of target gene disruption system in Saccharomyces boulardii. Biotechnol Bioproc E. 2015;20(1):26–36.
  • Liu JJ, Kong II, Zhang GC, et al. Metabolic engineering of probiotic saccharomyces boulardii. Appl Environ Microbiol. 2016;82(8):2280–2287.
  • Bagherpour G, Ghasemi H, Zand B, et al. Oral administration of recombinant saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces antibody response in mice. Front Microbiol. 2018;9:723.
  • Wang T, Sun H, Zhang J, et al. The establishment of Saccharomyces boulardii surface display system using a single expression vector. Fungal Genet Biol. 2014;64:1–10.
  • Smith MG, Snyder M. Yeast as a model for human disease. Curr Protoc Hum Genet.2006;48(1):1–8. Chapter 15:Unit15.6.
  • Dunham MJ, Fowler DM. Contemporary, yeast-based approaches to understanding human genetic variation. Curr Opin Genet Dev. 2013;23(6):658–664.
  • Ferreira R, Limeta A, Nielsen J. Tackling cancer with yeast-based technologies. Trends Biotechnol. 2019;37(6):592–603.
  • Winzeler EA, Shoemaker DD, Astromoff A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999;285(5429):901–906.
  • Ahmad K, Baig MH, Mushtaq G, et al. Commonalities in biological pathways, genetics, and cellular mechanism between alzheimer disease and other neurodegenerative diseases: an in silico-updated overview. Curr Alzheimer Res. 2017;14(11):1190–1197.
  • Ciccocioppo F, Bologna G, Ercolino E, et al. Neurodegenerative diseases as proteinopathies-driven immune disorders. Neural Regen Res. 2020;15(5):850.
  • Gupta A, Bansal A, Hashimoto-Torii K. HSP70 and HSP90 in neurodegenerative diseases. Neurosci Lett. 2020;716:134678.
  • Cai Q, Jeong YY. Mitophagy in alzheimer’s disease and other age-related neurodegenerative diseases. Cells. 2020;9:1.
  • Djajadikerta A, Keshri S, Pavel M, et al. Autophagy induction as a therapeutic strategy for neurodegenerative diseases. J Mol Biol. 2019;S0022-2836(19):30745.
  • Zimmermann A, Kainz K, Andryushkova A, et al. Autophagy: one more nobel prize for yeast. Microb Cell. 2016;3(12):579–581.
  • Sherman MY, Muchowski PJ. Making yeast tremble. Neuromolecular Med. 2003;4(1–2):133–146.
  • Miyawaki A, Katayama H, inventors; Japan Science and Technology Agency, assignee. Method for measuring autophagy. patent EP2466294B1 (US9989518B2, WO2011019082A1). 2014.
  • Valionyte E, Yang Y, Roberts SL, et al. Lowering mutant huntingtin levels and toxicity: autophagy-endolysosome pathways in huntington’s disease. J Mol Biol. 2019;S0022-2836(19):30677.
  • Lindquist S, Krobitsch S, Outeiro TF, inventors; University of Chicago, assignee. Yeast screens for treatment of human disease. patent US9518284B2. 2016.
  • Matlack KES, Lindquist SL, Treusch S, inventors; Whitehead Insititute for Biomedical Research Whitehead Institute for Biomedical Research, assignee. Yeast cells expressing amyloid beta and uses therefor. patent US9677079B2 (WO2011088059A1). 2017.
  • Cullin C, Verduyckt M, Vignaud H, et al., inventors; A yeast model for synergistic toxicity. patent WO2015066776A2. 2015.
  • Billant O, Blondel M, Voisset C. p53, p63 and p73 in the wonderland of S. cerevisiae. Oncotarget. 2017;8(34):57855–57869.
  • Resnick MA, Inga A, inventors; Health and human services government of United States, As represented by department of National Institutes of Health (NIH), assignee. Human p53 mutations and a genetic system in yeast for functional identification of human p53 mutations. patent US7256260B1. 2007.
  • Lasserre J-P, Dautant A, Aiyar RS et al., Yeast as a system for modeling mitochondrial disease mechanisms and discovering therapies. The Company of Biologists Ltd Disease Models & Mechanisms, 2015: 8, 509–526.
  • Di K, Lomeli N, Bota DA, et al. Magmas inhibition as a potential treatment strategy in malignant glioma. J Neurooncol. 2019;141(2):267–276.
  • Jubinsky P, Das BC, Short MK, inventors; mitochondrial inhibitors to treat human disease. patent US8581005B2 (WO2010120337A1). 2013.
  • Hassan M, Watari H, AbuAlmaaty A, et al. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.
  • Polčic P, Mentel M. Reconstituting the mammalian apoptotic switch in yeast. Genes (Basel). 2020;11(2):145.
  • Contreras RH, Eberhardt I, Herman W, et al., inventors; janssen pharmaceutica NV, assignee. Bax-responsive genes for drug target identification in yeast and fungi. patent US7101990B2 (WO2002064766A2). 2006.
  • Lupoli F, Vannocci T, Longo G, et al. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett. 2018;592(5):718–727.
  • Meier T, Jauslin M, Nuoffer CA, inventors; drug screening using yeast cells. patent WO2002008445A2. 2002.
  • Lynch HT, Snyder CL, Shaw TG, et al. Milestones of Lynch syndrome: 1895-2015. Nat Rev Cancer. 2015;15(3):181–194.
  • Bitter G, Ellison A, inventors; Bittech Oncologic Corp assignee. Functional assessment of DNA mismatch repair gene variants. patent US20080038723A1. 2008.
  • Mukherjee S, Sinha D, Bhattacharya S, et al. Werner syndrome protein and DNA replication. Int J Mol Sci. 2018;19:11.
  • Burmer GC, Brown JP, inventors; LifeSpan BioSciences Inc, assignee. Nucleic acid sequences and proteins associated with aging. patent CA2323934A1. 1999.
  • Guarente LP, Sinclair DA, inventors; Massachusetts Institute of Technology, assignee. Assays for compounds which extend life span. patent US6228583B1. 2001.
  • Warda AS, Freytag B, Haag S, et al. Effects of the Bowen-Conradi syndrome mutation in EMG1 on its nuclear import, stability and nucleolar recruitment. Hum Mol Genet. 2016;25(24):5353–5364.
  • Thiele DJ, Liu PCC, inventors; University of Michigan, assignee. Yeast mammalian regulators of cell proliferation. patent US6383753B1. 2002.
  • Mole SE, Cotman SL. Genetics of the neuronal ceroid lipofuscinoses (Batten disease). Biochim Biophys Acta. 2015;1852(10 Pt B):2237–2241.
  • Rajakumar T, Munkacsi AB, Sturley SL. Exacerbating and reversing lysosomal storage diseases: from yeast to humans. Microb Cell. 2017;4(9):278.
  • Lerner TJ, Taschner PEM, Breuning MH, et al., inventors; Batten disease gene. patent WO1997008308A1. 1997.
  • Fanen P, Wohlhuter-Haddad A, Hinzpeter A. Genetics of cystic fibrosis: CFTR mutation classifications toward genotype-based CF therapies. Int J Biochem Cell Biol. 2014;52:94–102.
  • Szczypka MS, Wemmie JA, Moye-Rowley WS, et al. A yeast metal resistance protein similar to human cystic fibrosis transmembrane conductance regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem. 1994;269(36):22853–22857.
  • Ferreira T, Ferru-Clement R, Vanderbrouck C, inventors; Centre National de la Recherche Scientifique CNRS Universite de Poitiers, assignee. Compounds, compositions and uses thereof for the prevention and/or treatment of dyslipidemia. patent US9821000B2 (WO2015052237A1). 2016.
  • Bandmann O, Weiss KH, Kaler SG. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 2015;14(1):103–113.
  • Ben Lagha I, Ashack K, Khachemoune A. Hailey-Hailey disease: an update review with a focus on treatment data. Am J Clin Dermatol. 2020;21(1):49–68.
  • Verbandt S, Cammue BP, Thevissen K. Yeast as a model for the identification of novel survival-promoting compounds applicable to treat degenerative diseases. Mech Ageing Dev. 2017;161:306–316.
  • Voisset C, García-Rodríguez N, Birkmire A, et al. Using yeast to model calcium-related diseases: example of the Hailey–Hailey disease. Biochim Biophys Acta. 2014;1843(10):2315–2321.
  • Narayan DS, Wood JP, Chidlow G, et al. A review of the mechanisms of cone degeneration in retinitis pigmentosa. Acta Ophthalmol. 2016;94(8):748–754.
  • Towns KV, Kipioti A, Long V, et al. Prognosis for splicing factor PRPF8 retinitis pigmentosa, novel mutations and correlation between human and yeast phenotypes. Hum Mutat. 2010;31(5):E1361–76.
  • Amano K, Chiba Y, Kasahara Y, et al. Engineering of mucin-type human glycoproteins in yeast cells. Proc Natl Acad Sci U S A. 2008;105(9):3232–3237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.