748
Views
27
CrossRef citations to date
0
Altmetric
Review

N-Methyl-D-Aspartate (NMDA) receptor modulators: a patent review (2015-present)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 743-767 | Received 20 May 2020, Accepted 13 Aug 2020, Published online: 14 Sep 2020

References

  • Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62(3):405–496.
  • Meldrum BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000 Apr;130(4SSuppl):1007s–15s.
  • Kritis AA, Stamoula EG, Paniskaki KA, et al. Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci. 2015;9:91.
  • Mayer ML. Structure and mechanism of glutamate receptor ion channel assembly, activation and modulation. Curr Opin Neurobiol. 2011 Apr;21(2):283–290.
  • Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013 Jun;14(6):383–400.
  • Paoletti P. Molecular basis of NMDA receptor functional diversity. Eur J Neurosci. 2011 Apr;33(8):1351–1365.
  • Salinska E, Danysz W, Lazarewicz JW. The role of excitotoxicity in neurodegeneration. Folia Neuropathol. 2005;43(4):322–339.
  • Mehta A, Prabhakar M, Kumar P, et al. Excitotoxicity: bridge to various triggers in neurodegenerative disorders. Eur J Pharmacol. 2013 Jan 5;698(1–3):6–18.
  • Hardingham GE. Coupling of the NMDA receptor to neuroprotective and neurodestructive events. Biochem Soc Trans. 2009 Dec;37(Pt 6):1147–1160.
  • Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci. 2010 Oct 01; 11(10):682–696.
  • Stroebel D, Casado M, Paoletti P. Triheteromeric NMDA receptors: from structure to synaptic physiology. Curr Opin Physiol. 2018;2:1–12.
  • Wyllie DJA, Livesey MR, Hardingham GE. Influence of GluN2 subunit identity on NMDA receptor function. Neuropharmacology. 2013 Nov 01;74:4–17.
  • Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol. 2007 Feb 01;7(1):39–47.
  • Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2-8;307(5950):462–465.
  • Martina M, Turcotte M-EB, Halman S, et al. The sigma-1 receptor modulates NMDA receptor synaptic transmission and plasticity via SK channels in rat hippocampus. J Physiol. 2007;578(1):143–157.
  • Balasuriya D, Stewart AP, Edwardson JM. The σ-1 receptor interacts directly with GluN1 But Not GluN2A in the GluN1/GluN2A NMDA receptor. J Neurosci. 2013;33(46):18219–18224.
  • Groc L, Choquet D, Stephenson FA, et al. NMDA receptor surface trafficking and synaptic subunit composition are developmentally regulated by the extracellular matrix protein Reelin. J Neurosci. 2007;27(38):10165–10175.
  • Chen Y, Beffert U, Ertunc M, et al. Reelin modulates NMDA receptor activity in cortical neurons. J Neurosci. 2005;25(36):8209–8216.
  • Hawasli AH, Benavides DR, Nguyen C, et al. Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci. 2007;10(7):880–886.
  • Zhang S, Edelmann L, Liu J, et al. Cdk5 regulates the phosphorylation of tyrosine 1472 NR2B and the surface expression of NMDA receptors. J Neurosci. 2008;28(2):415–424.
  • Lüscher C, Malenka RC. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harb Perspect Biol. 2012;4(6):a005710.
  • Ikonomidou C, Bosch F, Miksa M, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science (New York, NY). 1999 Jan 1;283(5398):70–74.
  • Papadia S, Soriano FX, Léveillé F, et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008;11(4):476–487.
  • Lau D, Bading H. Synaptic activity-mediated suppression of p53 and induction of nuclear calcium-regulated neuroprotective genes promote survival through inhibition of mitochondrial permeability transition. J Neurosci. 2009;29(14):4420–4429.
  • Zhang S-J, Zou M, Lu L, et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genet. 2009;5(8):e1000604.
  • Xu J, Kurup P, Zhang Y, et al. Extrasynaptic NMDA receptors couple preferentially to excitotoxicity via calpain-mediated cleavage of STEP. J Neurosci. 2009 Jul 22;29(29):9330–9343.
  • Dick O, Bading H. Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem. 2010 Jun 18;285(25):19354–19361.
  • Waagepetersen HS, Shimamoto K, Schousboe A. Comparison of effects of DL-threo-beta-benzyloxyaspartate (DL-TBOA) and L-trans-pyrrolidine-2,4-dicarboxylate (t-2,4-PDC) on uptake and release of [3h]D-aspartate in astrocytes and glutamatergic neurons. Neurochem Res. 2001 Jun;26(6):661–666.
  • Divito CB, Underhill SM. Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int. 2014 Jul;73:172–180.
  • Wroge CM, Hogins J, Eisenman L, et al. Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci. 2012 May 9;32(19):6732–6742.
  • Zhou X, Hollern D, Liao J, et al. NMDA receptor-mediated excitotoxicity depends on the coactivation of synaptic and extrasynaptic receptors. Cell Death Dis. 2013 Mar 01;4(3):e560.
  • Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014 Apr 01;115:157–188.
  • Rodenas-Ruano A, Chávez AE, Cossio MJ, et al. REST-dependent epigenetic remodeling promotes the developmental switch in synaptic NMDA receptors. Nat Neurosci. 2012;15(10):1382–1390.
  • Matsumura S, Kunori S, Mabuchi T, et al. Impairment of CaMKII activation and attenuation of neuropathic pain in mice lacking NR2B phosphorylated at Tyr1472. Eur J Neurosci. 2010 Sep;32(5):798–810.
  • Petrenko AB, Yamakura T, Baba H, et al. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. 2003 Oct;97(4):1108–1116.
  • Heng MY, Detloff PJ, Wang PL, et al. In vivo evidence for NMDA receptor-mediated excitotoxicity in a murine genetic model of Huntington disease. J Neurosci. 2009 Mar 11;29(10):3200–3205.
  • Zarate CA Jr., Singh JB, Quiroz JA, et al. A double-blind, placebo-controlled study of memantine in the treatment of major depression. Am J Psychiatry. 2006 Jan;163(1):153–155.
  • Li N, Lee B, Liu RJ, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science (New York, NY). 2010 Aug 20;329(5994):959–964.
  • Autry AE, Adachi M, Nosyreva E, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011 Jun 15;475(7354):91–95.
  • Henson MA, Roberts AC, Perez-Otano I, et al. Influence of the NR3A subunit on NMDA receptor functions. Prog Neurobiol. 2010 May;91(1):23–37.
  • Pina-Crespo JC, Talantova M, Micu I, et al. Excitatory glycine responses of CNS myelin mediated by NR1/NR3 “NMDA” receptor subunits. J Neurosci. 2010 Aug 25;30(34):11501–11505.
  • Burzomato V, Frugier G, Perez-Otano I, et al. The receptor subunits generating NMDA receptor mediated currents in oligodendrocytes. J Physiol. 2010 Sep 15;588(Pt 18):3403–3414.
  • Won H, Lee HR, Gee HY, et al. Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature. 2012 Jun 13;486(7402):261–265.
  • Schmeisser MJ, Ey E, Wegener S, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012 Apr 29;486(7402):256–260.
  • Haider A, Spinelli F, Herde AM, et al. Evaluation of 4-oxo-quinoline-based CB2 PET radioligands in R6/2 chorea huntington mouse model and human ALS spinal cord tissue. Eur J Med Chem. 2018 Feb 10;145:746–759.
  • Taylor CP, Traynelis SF, Siffert J, et al. Pharmacology of dextromethorphan: relevance to dextromethorphan/quinidine (Nuedexta®) clinical use. Pharmacol Ther. 2016;164:170–182.
  • Pioro EP. Review of Dextromethorphan 20 mg/Quinidine 10 mg (NUEDEXTA(®)) for pseudobulbar affect. Neurol Ther. 2014;3(1):15–28.
  • Huettner JE, Bean BP. Block of N-methyl-D-aspartate-activated current by the anticonvulsant MK-801: selective binding to open channels. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1307–1311.
  • Roth BL, Gibbons S, Arunotayanun W, et al. The ketamine analogue methoxetamine and 3- and 4-methoxy analogues of phencyclidine are high affinity and selective ligands for the glutamate NMDA receptor. PLoS One. 2013;8(3):e59334.
  • Zanos P, Moaddel R, Morris PJ, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016 May 26;533(7604):481–486.
  • Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018 Apr 01; 23(4):801–811.
  • Xia P, Chen HS, Zhang D, et al. Memantine preferentially blocks extrasynaptic over synaptic NMDA receptor currents in hippocampal autapses. J Neurosci. 2010 Aug 18;30(33):11246–11250.
  • Wu YN, Johnson SW. Memantine selectively blocks extrasynaptic NMDA receptors in rat substantia nigra dopamine neurons. Brain Res. 2015 Apr;7(1603):1–7.
  • Duan W, Hu J, Liu Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor. Exp Mol Pathol. 2019 Apr;107:171–178.
  • Morelli MB, Amantini C, Nabissi M, et al. Role of the NMDA receptor in the antitumor activity of chiral 1,4-dioxane ligands in MCF-7 and SKBR3 breast cancer cells. ACS Med Chem Lett. 2019 Apr 11;10(4):511–516.
  • North WG, Liu F, Dragnev KH, et al. Small-cell lung cancer growth inhibition: synergism between NMDA receptor blockade and chemotherapy. Clin Pharmacol. 2019;11:15–23.
  • Monyer H, Burnashev N, Laurie DJ, et al. Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron. 1994 Mar;12(3):529–540.
  • Akazawa C, Shigemoto R, Bessho Y, et al. Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol. 1994;347(1):150–160.
  • Watanabe M, Inoue Y, Sakimura K, et al. Developmental changes in distribution of NMDA receptor channel subunit mRNAs. Neuroreport. 1992 Dec;3(12):1138–1140.
  • Gladding CM, Raymond LA. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci. 2011 Dec;48(4):308–320.
  • Martel MA, Wyllie DJA, Hardingham GE. In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death. Neuroscience. 2009;158(1):334–343.
  • Martel MA, Ryan TJ, Bell KF, et al. The subtype of GluN2 C-terminal domain determines the response to excitotoxic insults. Neuron. 2012 May 10;74(3):543–556.
  • Kemp JA, McKernan RM. NMDA receptor pathways as drug targets. Nat Neurosci. 2002 Nov;5(Suppl):1039–1042.
  • Williams K. Ifenprodil, a novel NMDA receptor antagonist: site and mechanism of action. Curr Drug Targets. 2001 Sep;2(3):285–298.
  • Karakas E, Simorowski N, Furukawa H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature. 2011 Jun 15;475(7355):249–253.
  • Falck E, Begrow F, Verspohl E, et al. Metabolism studies of ifenprodil, a potent GluN2B receptor antagonist. J Pharm Biomed Anal. 2014;88:96–105.
  • Mony L, Kew JN, Gunthorpe MJ, et al. Allosteric modulators of NR2B-containing NMDA receptors: molecular mechanisms and therapeutic potential. Br J Pharmacol. 2009 Aug;157(8):1301–1317.
  • Addy C, Assaid C, Hreniuk D, et al. Single-dose administration of MK-0657, an NR2B-selective NMDA antagonist, does not result in clinically meaningful improvement in motor function in patients with moderate Parkinson’s disease. J Clin Pharmacol. 2009 Jul;49(7):856–864.
  • Herring WJ, Assaid C, Budd K, et al. A phase Ib randomized controlled study to evaluate the effectiveness of a single-dose of the NR2B selective N-methyl-D-aspartate antagonist MK-0657 on levodopa-induced dyskinesias and motor symptoms in patients with Parkinson disease. Clin Neuropharmacol. 2017 Nov/Dec;40(6):255–260.
  • Yurkewicz L, Weaver J, Bullock MR, et al. The effect of the selective NMDA receptor antagonist traxoprodil in the treatment of traumatic brain injury. J Neurotrauma. 2005 Dec;22(12):1428–1443.
  • Sasaki T, Hashimoto K, Okawada K, et al. Ifenprodil for the treatment of flashbacks in adolescent female posttraumatic stress disorder patients with a history of abuse. Psychother Psychosom. 2013;82(5):344–345.
  • Preskorn SH, Baker B, Kolluri S, et al. An innovative design to establish proof of concept of the antidepressant effects of the NR2B subunit selective N-methyl-D-aspartate antagonist, CP-101,606, in patients with treatment-refractory major depressive disorder. J Clin Psychopharmacol. 2008 Dec;28(6):631–637.
  • Nutt JG, Gunzler SA, Kirchhoff T, et al. Effects of a NR2B selective NMDA glutamate antagonist, CP-101,606, on dyskinesia and Parkinsonism. Mov Disord. 2008 Oct 15;23(13):1860–1866.
  • Bullock MR, Merchant RE, Carmack CA, et al. An open-label study of CP-101,606 in subjects with a severe traumatic head injury or spontaneous intracerebral hemorrhage. Ann N Y Acad Sci. 1999;890:51–58.
  • Machado-Vieira R, Henter ID, Zarate CA Jr. New targets for rapid antidepressant action. Prog Neurobiol. 2017;152:21–37.
  • Auvin S, Dozieres-Puyravel B, Avbersek A, et al. Radiprodil, a NR2B negative allosteric modulator, from bench to bedside in infantile spasm syndrome. Ann Clin Transl Neurol. 2020 Mar;7(3):343–352.
  • Simon GM, Niphakis MJ, Cravatt BF. Determining target engagement in living systems. Nat Chem Biol. 2013 Apr;9(4):200–205.
  • Takano A, Varrone A, Gulyás B, et al. Guidelines to PET measurements of the target occupancy in the brain for drug development. Eur J Nucl Med Mol Imaging. 2016;43(12):2255–2262.
  • Fuchigami T, Nakayama M, Yoshida S. Development of PET and SPECT probes for glutamate receptors. ScientificWorldJournal. 2015;2015:716514.
  • Christiaans JA, Klein PJ, Metaxas A, et al. Synthesis and preclinical evaluation of carbon-11 labelled N-((5-(4-fluoro-2-[(11)C]methoxyphenyl)pyridin-3-yl)methyl)cyclopentanamine as a PET tracer for NR2B subunit-containing NMDA receptors. Nucl Med Biol. 2014 Sep;41(8):670–680.
  • Koudih R, Gilbert G, Dhilly M, et al. Synthesis and in vitro characterization of trans- and cis-[(18)F]-4-methylbenzyl 4-[(pyrimidin-2-ylamino)methyl]-3-fluoropiperidine-1-carboxylates as new potential PET radiotracer candidates for the NR2B subtype N-methyl-D-aspartate receptor. Eur J Med Chem. 2012;53:408–415.
  • Labas R, Gilbert G, Nicole O, et al. Synthesis, evaluation and metabolic studies of radiotracers containing a 4-(4-[18F]-fluorobenzyl)piperidin-1-yl moiety for the PET imaging of NR2B NMDA receptors. Eur J Med Chem. 2011 Jun 01;46(6):2295–2309.
  • Arstad E, Platzer S, Berthele A, et al. Towards NR2B receptor selective imaging agents for PET-synthesis and evaluation of N-[11C]-(2-methoxy)benzyl (E)-styrene-, 2-naphthyl- and 4-trifluoromethoxyphenylamidine. Bioorg Med Chem. 2006 Sep 15;14(18):6307–6313.
  • Dollé F, Valette H, Demphel S, et al. Radiosynthesis and in vivo evaluation of [11C]Ro-647312: a novel NR1/2B subtype selective NMDA receptor radioligand. J Labelled Comp Radiopharm. 2004;47(13):911–920.
  • Roger G, Dolle F, De Bruin B, et al. Radiosynthesis and pharmacological evaluation of [11C]EMD-95885: a high affinity ligand for NR2B-containing NMDA receptors. Bioorg Med Chem. 2004 Jun 15;12(12):3229–3237.
  • Haradahira T, Maeda J, Okauchi T, et al. Synthesis, in vitro and in vivo pharmacology of a C-11 labeled analog of CP-101,606, (±)threo-1-(4-hydroxyphenyl)-2-[4-hydroxy-4-(p-[11C]methoxyphenyl)piperidino]-1 -propanol, as a PET tracer for NR2B subunit-containing NMDA receptors. Nucl Med Biol. 2002 Jul;29(5):517–525.
  • Szermerski M, Borgel F, Schepmann D, et al. Fluorinated GluN2B receptor antagonists with a 3-benzazepine scaffold designed for PET studies. ChemMedChem. 2018 May 23;13(10):1058–1068.
  • Haider A, Iten I, Ahmed H, et al. Identification and preclinical evaluation of a radiofluorinated benzazepine derivative for imaging the GluN2B subunit of the ionotropic NMDA receptor. J Nucl Med. 2019 Feb 1;60(2):259–266.
  • Haider A, Herde AM, Krämer SD, et al. Preclinical evaluation of benzazepine-based PET radioligands (R)- and (S)-11C-Me-NB1 reveals distinct enantiomeric binding patterns and a tightrope walk between GluN2B- and σ1-receptor–targeted PET imaging. J Nucl Med. 2019 Aug 1;60(8):1167–1173.
  • Ahmed H, Haider A, Varisco J, et al. Structure–affinity relationships of 2,3,4,5-tetrahydro-1H-3-benzazepine and 6,7,8,9-tetrahydro-5H-benzo[7]annulen-7-amine analogues and the discovery of a radiofluorinated 2,3,4,5-tetrahydro-1H-3-benzazepine congener for imaging GluN2B subunit-containing N-Methyl-d-aspartate receptors. J Med Chem. 2019 Nov 14;62(21):9450–9470.
  • Romero-Hernandez A, Simorowski N, Karakas E, et al. Molecular basis for subtype specificity and high-affinity zinc inhibition in the GluN1-GluN2A NMDA receptor amino-terminal domain. Neuron. 2016 Dec 21;92(6):1324–1336.
  • Chen N, Luo T, Raymond LA. Subtype-dependence of NMDA receptor channel open probability. J Neurosci. 1999 Aug 15;19(16):6844–6854.
  • Erreger K, Dravid SM, Banke TG, et al. Subunit-specific gating controls rat NR1/NR2A and NR1/NR2B NMDA channel kinetics and synaptic signalling profiles. J Physiol. 2005 Mar 1;563(Pt 2):345–358.
  • Sun Y, Cheng X, Zhang L, et al. The functional and molecular properties, physiological functions, and pathophysiological roles of GluN2A in the central nervous system. Mol Neurobiol. 2017 Mar;54(2):1008–1021.
  • He Y, Mu L, Ametamey SM, et al. Recent progress in allosteric modulators for GluN2A subunit and development of GluN2A-selective nuclear imaging probes. J Labelled Comp Radiopharm. 2019;62(8):552–560.
  • Bettini E, Sava A, Griffante C, et al. Identification and characterization of novel NMDA receptor antagonists selective for NR2A- over NR2B-containing receptors. J Pharmacol Exp Ther. 2010 Dec;335(3):636–644.
  • Hackos DH, Lupardus PJ, Grand T, et al. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron. 2016 Mar 2;89(5):983–999.
  • Lind GE, Mou T-C, Tamborini L, et al. Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Proc Natl Acad Sci U S A. 2017;114(33):E6942–51.
  • Frizelle PA, Chen PE, Wyllie DJA. Equilibrium constants for (R)-[(S)-1-(4-Bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) acting at recombinant NR1/NR2A and NR1/NR2B N-Methyl-d-aspartate receptors: implications for studies of synaptic transmission. Mol Pharmacol. 2006;70(3):1022–1032.
  • Wyllie DJA, Chen PE. Taking the time to study competitive antagonism. Br J Pharmacol. 2007;150(5):541–551.
  • Zimmerman SS, Khatri A, Garnier-Amblard EC, et al. Design, synthesis, and structure–activity relationship of a novel series of GluN2C-selective potentiators. J Med Chem. 2014 Mar 27;57(6):2334–2356.
  • Mullasseril P, Hansen KB, Vance KM, et al. A subunit-selective potentiator of NR2C- and NR2D-containing NMDA receptors. Nat Commun. 2010 Oct 05;1(1):90.
  • Mosley CA, Acker TM, Hansen KB, et al. Quinazolin-4-one derivatives: a novel class of noncompetitive NR2C/D subunit-selective N-methyl-d-aspartate receptor antagonists. J Med Chem. 2010 Aug 12;53(15):5476–5490.
  • Acker TM, Yuan H, Hansen KB, et al. Mechanism for noncompetitive inhibition by novel GluN2C/D N-methyl-d-aspartate receptor subunit-selective modulators. Mol Pharmacol. 2011;80(5):782–795.
  • Khatri A, Burger PB, Swanger SA, et al. Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol. 2014;86(5):548–560.
  • Santangelo Freel RM, Ogden KK, Strong KL, et al. Synthesis and structure activity relationship of tetrahydroisoquinoline-based potentiators of GluN2C and GluN2D containing n-methyl-d-aspartate receptors. J Med Chem. 2013 Jul 11;56(13):5351–5381.
  • Jessen M, Frederiksen K, Yi F, et al. Identification of AICP as a GluN2C-selective N-methyl-d-aspartate receptor superagonist at the GluN1 glycine site. Mol Pharmacol. 2017;92(2):151–161.
  • Yi F, Rouzbeh N, Hansen KB, et al. PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits. Neuropharmacology. 2020;25:107971.
  • Irvine MW, Fang G, Sapkota K, et al. Investigation of the structural requirements for N-methyl-D-aspartate receptor positive and negative allosteric modulators based on 2-naphthoic acid. Eur J Med Chem. 2019 Feb 15;164:471–498.
  • Morris PG, Mishina M, Jones S. Altered synaptic and extrasynaptic NMDA receptor properties in substantia nigra dopaminergic neurons from mice lacking the GluN2D subunit. Front Cell Neurosci. 2018;12:354.
  • Swanger SA, Vance KM, Pare JF, et al. NMDA receptors containing the GluN2D subunit control neuronal function in the subthalamic nucleus. J Neurosci. 2015 Dec 2;35(48):15971–15983.
  • Callahan PM, Terry AV Jr., Nelson FR, et al. Modulating inhibitory response control through potentiation of GluN2D subunit-containing NMDA receptors. Neuropharmacology. 2020;11:107994.
  • Ravikrishnan A, Gandhi PJ, Shelkar GP, et al. Region-specific expression of NMDA receptor GluN2C subunit in parvalbumin-positive neurons and astrocytes: analysis of GluN2C expression using a novel reporter model. Neuroscience. 2018 Jun 1;380:49–62.
  • Liu J, Shelkar GP, Zhao F, et al. Modulation of burst firing of neurons in nucleus reticularis of the thalamus by GluN2C-containing NMDA receptors. Mol Pharmacol. 2019 Aug;96:193–203.
  • Camp CR, Yuan H. GRIN2D/GluN2D NMDA receptor: unique features and its contribution to pediatric developmental and epileptic encephalopathy. Eur J Paediatr Neurol. 2020 Jan;24:89–99.
  • Hillman BG, Gupta SC, Stairs DJ, et al. Behavioral analysis of NR2C knockout mouse reveals deficit in acquisition of conditioned fear and working memory. Neurobiol Learn Mem. 2011 May;95(4):404–414.
  • Ogden KK, Traynelis SF. Contribution of the M1 transmembrane helix and pre-M1 region to positive allosteric modulation and gating of N-methyl-D-aspartate receptors. Mol Pharmacol. 2013 May;83(5):1045–1056.
  • Suryavanshi PS, Ugale RR, Yilmazer-Hanke D, et al. GluN2C/GluN2D subunit-selective NMDA receptor potentiator CIQ reverses MK-801-induced impairment in prepulse inhibition and working memory in Y-maze test in mice. Br J Pharmacol. 2014 Feb;171(3):799–809.
  • Gupta SC, Ravikrishnan A, Liu J, et al. The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Sci Rep. 2016 Dec 6;6:38321.
  • Fernandez LMJ, Pellegrini C, Vantomme G, et al. Cortical afferents onto the nucleus Reticularis thalami promote plasticity of low-threshold excitability through GluN2C-NMDARs. Sci Rep. 2017 Sep 25;7(1):12271.
  • Hanson E, Armbruster M, Lau LA, et al. Tonic activation of GluN2C/GluN2D-Containing NMDA receptors by ambient glutamate facilitates cortical interneuron maturation. J Neurosci. 2019 May 8;39(19):3611–3626.
  • Mao Z, He S, Mesnard C, et al. NMDA receptors containing GluN2C and GluN2D subunits have opposing roles in modulating neuronal oscillations; potential mechanism for bidirectional feedback. Brain Res. 2020 Jan 15;1727:146571.
  • Chung C, Marson JD, Zhang QG, et al. Neuroprotection mediated through GluN2C-containing N-methyl-D-aspartate (NMDA) receptors following ischemia. Sci Rep. 2016 Nov 15;6:37033.
  • Nouhi M, Zhang X, Yao N, et al. CIQ, a positive allosteric modulator of GluN2C/D-containing N-methyl-d-aspartate receptors, rescues striatal synaptic plasticity deficit in a mouse model of Parkinson’s disease. CNS Neurosci Ther. 2018 Feb;24(2):144–153.
  • Yamamoto H, Kamegaya E, Hagino Y, et al. Loss of GluN2D subunit results in social recognition deficit, social stress, 5-HT2C receptor dysfunction, and anhedonia in mice. Neuropharmacology. 2017;112(Pt:A):188–97.
  • Holmes A, Zhou N, Donahue DL, et al. A deficiency of the GluN2C subunit of the N-methyl-D-aspartate receptor is neuroprotective in a mouse model of ischemic stroke. Biochem Biophys Res Commun. 2018 Jan 1;495(1):136–144.
  • Li D, Yuan H, Ortiz-Gonzalez XR, et al. GRIN2D recurrent de novo dominant mutation causes a severe epileptic encephalopathy treatable with NMDA receptor channel blockers. Am J Hum Genet. 2016 Oct 6;99(4):802–816.
  • XiangWei W, Kannan V, Xu Y, et al. Heterogeneous clinical and functional features of GRIN2D-related developmental and epileptic encephalopathy. Brain. 2019 Oct 1;142(10):3009–3027.
  • Mellone M, Zianni E, Stanic J, et al. NMDA receptor GluN2D subunit participates to levodopa-induced dyskinesia pathophysiology. Neurobiol Dis. 2019;121:338–349.
  • Ding Y, Wang L, Huo Y, et al. Roles of GluN2C in cerebral ischemia: gluN2C expressed in different cell types plays different role in ischemic damage. J Neurosci Res. 2020;98(6):1188–1197.
  • Pérez-Otaño I, Larsen RS, Wesseling JF. Emerging roles of GluN3-containing NMDA receptors in the CNS. Nat Rev Neurosci. 2016 Oct 01; 17(10):623–635.
  • Zhu Z, Yi F, Epplin MP, et al. Negative allosteric modulation of GluN1/GluN3 NMDA receptors. Neuropharmacology. 2020 May 07;176:108117.
  • Abbaszadeh S, Javidmehr A, Askari B, et al. Memantine, an NMDA receptor antagonist, attenuates cardiac remodeling, lipid peroxidation and neutrophil recruitment in heart failure: a cardioprotective agent? Biomed Pharmacother. 2018;108:1237–1243.
  • Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective. Psychiatry Clin Neurosci. 2019;73(10):613–627.
  • Salituro FG, Robichaud AJ, Botella GM, et al., inventors; Sage Therapeutics, Inc., assignee. C7 substituted oxysterols and methods as NMDA modulators. Patent WO2018064649A1. 2018.
  • Upasani RB, Harrison BL, Askew BC Jr., et al., inventors; Sage Therapeutics, Inc., assignee. Neuroactive steroids, compositions, and uses thereof. Patent WO2013036835A1. 2013.
  • Vyomakesannair OR, Chittalakkottu S, Anwar S, et al., inventors; Rajiv Gandhi Centre for Biotechnology, assignee. Tacrine derivatives targeting NMDA receptor, acetylcholine esterase, butyryl choline and beta secretase activity. Patent WO2019207604A1. 2019.
  • Kurz A. The therapeutic potential of tacrine. J Neural Transm Suppl. 1998;54:295–299.
  • Horak M, Holubova K, Nepovimova E, et al. The pharmacology of tacrine at N-methyl-d-aspartate receptors. Prog Neuropsychopharmacol Biol Psychiatry. 2017 Apr 03;75:54–62.
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984 May;11(1):47–60.
  • Scully KR, King RS, Worthen DR, inventors; Rhode Island board of education state of Rhode Island and providence plantations, assignee. Diindole compounds useful in treatment of nervous system disorders. Patent US20200095200A1. 2020.
  • Armand V, Burban-Prevost A, Faucard R, et al., inventors; institut national de la santé et de la recherche médicale, Universite Paris-Sud, Universite Paris descartes, assignee. Agonists or partial agonists of the histamine site of the NMDA receptor for use in the treatment of central nervous system diseases. Patent WO2018033525A1. 2018.
  • Burban A, Faucard R, Armand V, et al. Histamine potentiates N-methyl-D-aspartate receptors by interacting with an allosteric site distinct from the polyamine binding site. J Pharmacol Exp Ther. 2010 Mar;332(3):912–921.
  • Becker CK, Venkatraman MS, Zhang X, et al., inventors; Panorama Research, Inc., assignee. Aminoadamantyl nitrate compounds and their use to treat CNS disorders. Patent WO2019104020A1. 2019.
  • Lipton SA. Pathologically-activated therapeutics for neuroprotection: mechanism of NMDA receptor block by memantine and S-nitrosylation. Curr Drug Targets. 2007 May;8(5):621–632.
  • Anderson DR, Volkmann RA, Keaney GF, et al., inventors; Cadent Therapeutics, Inc., assignee. Heteroaromatic NMDA receptor modulators and uses thereof. Patent US10584131B2. 2020.
  • Anderson DR, Volkmann RA, Mennite FS, et al., inventors; Cadent Therapeutics, Inc., assignee. Thienopyrimidinone NMDA receptor modulators and uses thereof. Patent US10500205B2. 2019.
  • Moskal JR, Khan MA, inventors; Northwestern University, assignee. Secondary structure stabilized NMDA receptor modulators and uses thereof. Patent US9593145B2. 2017.
  • Khan MA, inventor; Aptinyx, Inc., assignee. Spiro-lactam NMDA receptor modulators and uses thereof. Patent US20190175588A1. 2019.
  • Lowe JA, Khan MA, inventors; Aptinyx, Inc., assignee. Spiro-lactam NMDA receptor modulators and uses thereof. Patent US10273239B2. 2019.
  • Khan MA, inventor; Aptinyx, Inc., assignee. Spiro-lactam and bis-spiro-lactam NMDA receptor modulators and uses thereof. Patent WO2018026792A1. 2018.
  • Khan MA, Houck DR, Gross AL, et al. NYX-2925 Is a novel NMDA receptor-specific spirocyclic-beta-lactam that modulates synaptic plasticity processes associated with learning and memory. Int J Neuropsychopharmacol. 2018 Mar 1;21(3):242–254.
  • Ghoreishi H, Priebe JM, Aguado JD, et al. NYX-2925 Is a novel N-methyl-d-aspartate receptor modulator that induces rapid and long-lasting analgesia in rat models of neuropathic pain. J Pharmacol Exp Ther. 2018 Sep;366(3):485–497.
  • Barth AL, Schneider JS, Johnston TH, et al. NYX-458 improves cognitive performance in a primate Parkinson’s disease model. Mov Disord. 2020 Apr;35(4):640–649.
  • STRONG KL, Menaldino D, Liotta DC, et al., inventors; Emory University, assignee. N-methyl-D-aspartate receptor (NMDAR) potentiators, pharmaceutical compositions, and uses related thereto. Patent US10647679B2. 2020.
  • Anderson DR, Volkmann RA, inventors; Cadent Therapeutics, Inc., assignee. N-arylmethyl sulfonamide negative modulators of NR2A. Patent US9963434B2. 2018.
  • Volkmann RA, Fanger CM, Anderson DR, et al. MPX-004 and MPX-007: new Pharmacological Tools to Study the Physiology of NMDA Receptors Containing the GluN2A Subunit. PLoS One. 2016;11(2):e0148129.
  • Jiang Y, Wu G, Yuen PW, et al., inventors; Genentech, Inc., assignee. Thiazolopyrimidinones and methods of use thereof. Patent US10647731B2. 2020.
  • Yu J, Wu G, Yuen PW, et al., inventors; F. Hoffmann-La Roche AG, assignee. Thiazolopyrimidinones as modulators of NMDA receptor activity. Patent EP3055315B1. 2018.
  • Volgraf M, Jiang Y, Villemure E, et al., inventors; Genentech, Inc., assignee. Pyridopyrimidinones and methods of use thereof. Patent US10280165B2. 2019.
  • Wang YT, Axerio-Cilies P, inventors; Qingdao Primedicine Pharmaceutical Company, Ltd., assignee. N-methyl-d-aspartate receptor allosteric modulators and methods for their use. Patent US20190216753A1. 2019.
  • Chrovian CC, Letavic MA, Rech JC, et al., inventors; Janssen Pharmaceutica, assignee. Substituted 4-azaindoles and their use as GluN2B receptor modulators. Patent US9963447B2. 2018.
  • Schindler R, Lankau HJ, Höfgen N, et al., inventors; Janssen Pharmaceutica, assignee. Pyrazoles. Patent US10155727B2. 2018.
  • Schindler R, Lankau HJ, Höfgen N, et al., inventors; Janssen Pharmaceutica, assignee. Triazoles as NR2B receptor inhibitors. Patent US10323021B2. 2019.
  • Chen G, Chrovian CC, Coate HR, et al., inventors; Janssen Pharmaceutica, assignee. Substituted 1,2,3-triazoles as NR2B-selective NMDA modulators. Patent US10233173B2. 2019.
  • Chrovian CC, Letavic MA, Rech JC, et al., inventors; Janssen Pharmaceutica, assignee. Substituted 1H-Imidazo[4,5-b]pyridin-2(3H)-ones and their use as GluN2B receptor modulators. Patent US10617676B2. 2020.
  • Ziff JM, Preville C, Shireman BT, inventors; Janssen Pharmaceutica, assignee. Substituted pyridine and pyrimidines and their use as GluN2B receptor modulators. Patent US20190308950A1. 2019.
  • Porsolt RD, Bertin A, Jalfre M. Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther. 1977 Oct;229(2):327–336.
  • Fu H, Tang W, Chen Z, et al. Synthesis and Preliminary Evaluations of a Triazole-Cored Antagonist as a PET Imaging Probe ([18F]N2B-0518) for GluN2B Subunit in the Brain. ACS Chem Neurosci. 2019 May 15;10(5):2263–2275.
  • Shapiro G, inventor; Rugen Holdings, assignee. Difluoroethylpyridine derivatives as NR2B NMDA receptor antagonists. Patent US10030026B2. 2018.
  • Lucki I, Dalvi A, Mayorga AJ. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl). 2001 May;155(3):315–322.
  • Shapiro G, inventor; Rugen Holdings, assignee. Pyrrolopyrimidine derivatives as NR2B NMDA receptor antagonists. Patent US10420768B2. 2019.
  • Shapiro G, inventor; Rugen Holdings, assignee. Bicyclic azaheterocyclic compounds as NR2B NMDA receptor antagonists patent WO2016100349A3. 2016.
  • Steece-Collier K, Chambers LK, Jaw-Tsai SS, et al. Antiparkinsonian actions of CP-101,606, an antagonist of NR2B subunit-containing N-Methyl-d-aspartate receptors. Exp Neurol. 2000 May 01;163(1):239–243.
  • Swinyard EA, Brown WC, Goodman LS. Comparative assays of antiepileptic drugs in mice and rats. J Pharmacol Exp Ther. 1952 Nov;106(3):319–330.
  • Dalby NO, Nielsen EB. Comparison of the preclinical anticonvulsant profiles of tiagabine, lamotrigine, gabapentin and vigabatrin. Epilepsy Res. 1997 Jul;28(1):63–72.
  • Esneault E, Peyon G, Froger-Colleaux C, et al. Evaluation of pro-convulsant risk in the rat: spontaneous and provoked convulsions. J Pharmacol Toxicol Methods. 2015;72:59–66.
  • Barton ME, Klein BD, Wolf HH, et al. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001 Dec;47(3):217–227.
  • Kimura E, Miyanohana Y, Ogino M, et al., inventors; Takeda Pharmaceutical Co, assignee. Heterocyclic compound. Patent US10202376B2. 2019.
  • Oguro Y, Matsumoto S, Wakabayashi T, et al., inventors; Takeda Pharmaceutical Co, assignee. Heterocyclic compound and use thereof. Patent US20190300536A1. 2019.
  • Anderson DR, Volkmann RA, Menniti FS, inventors; Cadent Therapeutics, Inc. assignee. Selective octahydro-cyclopenta[c]pyrrole negative modulators of NR2B. Patent US20180325868A1. 2018.
  • Anderson DR, Volkmann RA, Mennite FS, et al., inventors; Cadent Therapeutics, Inc. assignee. Heteroaromatic NMDA receptor modulators and uses thereof. Patent US10626122B2. 2020.
  • Islam I, Thangathirupathy S, Warrier JS, et al., inventors; Bristol Myers Squibb, assignee. Selective NR2B antagonists. Patent US10501451B2. 2019.
  • Luo G, Chen L, Dubowchik GM, et al., inventors; Bristol Myers Squibb, assignee. Substituted pyridine derivatives useful as GSK-3 inhibitors. Patent US9809573B2. 2017.
  • King D, Thompson LA, Shi J, et al., inventors; Bristol Myers Squibb, assignee. Selective NR2B antagonists. Patent US20190314358A1. 2019.
  • Wildburger NC, Laezza F. Control of neuronal ion channel function by glycogen synthase kinase-3: new prospective for an old kinase. Front Mol Neurosci. 2012;5:80.
  • Giovannini R, Ceci A, Dahmann G, et al., inventors; Boehringer Ingelheim, assignee. Imidazopyridine derivatives and the use thereof as medicament. Patent WO2019110703A1. 2019.
  • Traynelis SF, Liebeskind LS, Liotta DC, et al., inventors; Emory University, assignee. Thieno[2,3-D]pyrimidin-4-one derivatives as NMDAR modulators and uses related thereto. Patent US20170313719A1. 2017.
  • Liotta Dennis C, Traynelis SF, Jing Y, inventors; Emory University, assignee. GluN2C/D subunit selective antagonists of the N-Methyl-D-aspartate receptor. Patent WO2019191424A1. 2019.
  • Acker TM, Khatri A, Vance KM, et al. Structure–activity relationships and pharmacophore model of a noncompetitive pyrazoline containing class of GluN2C/GluN2D selective antagonists. J Med Chem. 2013 Aug 22;56(16):6434–6456.
  • Swanger SA, Vance KM, Acker TM, et al. A novel negative allosteric modulator selective for GluN2C/2D-containing NMDA receptors inhibits synaptic transmission in hippocampal interneurons. ACS Chem Neurosci. 2018 Feb 21;9(2):306–319.
  • Liotta DC, Traynelis SF, Menaldino D, et al., inventors; Emory University, assignee. N-methyl-d-aspartic acid receptor modulators. Patent WO2019157014A1. 2019.
  • Anderson DR, Volkmann RA, Menniti F, et al., inventors; Cadent Therapeutics, assignee. NMDA receptor modulators and uses thereof. Patent WO2018119374A1. 2018.
  • Monaghan DT, Irvine MW, Costa BM, et al. Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int. 2012 Sep;61(4):581–592.
  • Bittner S, Meuth S, Wunsch B, et al., inventors; Westfaelische Wilhelms Universitaet Muenster, assignee. NR2B selective NMDA-receptor antagonists for treatment of immune-mediated inflammatory diseases. Patent US20180250308A1. 2018.
  • Wunsch B, Tewes B, Schepmann D, inventors; Westfaelische Wilhelms Universitaet Muenster, assignee. NR2B-selective NMDA-receptor antagonists. Patent WO2010122134A1. 2010.
  • Tewes B, Frehland B, Schepmann D, et al. Design, synthesis, and biological evaluation of 3-benzazepin-1-ols as NR2B-selective NMDA receptor antagonists. ChemMedChem. 2010 May 3;5(5):687–695.
  • Calabresi PA. Diagnosis and management of multiple sclerosis. Am Fam Physician. 2004 Nov 15;70(10):1935–1944.
  • Laudanski K, Qing M, Oszkiel H, et al. Ketamine affects in vitro differentiation of monocyte into immature dendritic cells. Anesthesiology. 2015 Sep;123(3):628–641.
  • Raghunatha P, Vosoughi A, Kauppinen TM, et al. Microglial NMDA receptors drive pro-inflammatory responses via PARP-1/TRMP2 signaling. Glia. 2020 Jul;68:1421–1434.
  • Bittner S, Afzali AM, Wiendl H, et al. Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J Vis Exp. 2014;86:51275.
  • Kumar SS, inventor; Florida State University Research Foundation, assignee. D-serine treatment for neurological disorders that cause seizures. Patent US20190183826A1. 2019.
  • Kumar SS, inventor; Florida State University Research Foundation, assignee. Methods of treatment using D-serine. Patent US9040581B1. 2015.
  • Strong KL, Jing Y, Prosser AR, et al. NMDA receptor modulators: an updated patent review (2013-2014). Expert Opin Ther Pat. 2014;24(12):1349–1366.
  • Pilli J, Kumar SS. Triheteromeric N-methyl-D-aspartate receptors differentiate synaptic inputs onto pyramidal neurons in somatosensory cortex: involvement of the GluN3A subunit. Neuroscience. 2012 Oct;222:75–88.
  • Pilli J, Kumar SS. Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition. Neuroscience. 2014 Jul;11(272):271–285.
  • Lane HY, Chang YC, Liu YC, et al. Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry. 2005 Nov;62(11):1196–1204.
  • Heresco-Levy U, Javitt DC, Ebstein R, et al. D-serine efficacy as add-on pharmacotherapy to risperidone and olanzapine for treatment-refractory schizophrenia. Biol Psychiatry. 2005 Mar 15;57(6):577–585.
  • Tsai GE, Yang P, Chung LC, et al. D-serine added to clozapine for the treatment of schizophrenia. Am J Psychiatry. 1999 Nov;156(11):1822–1825.
  • Tsai G, Yang P, Chung LC, et al. D-serine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry. 1998 Dec 1;44(11):1081–1089.
  • Lane HY, Lin CH, Huang YJ, et al. A randomized, double-blind, placebo-controlled comparison study of sarcosine (N-methylglycine) and D-serine add-on treatment for schizophrenia. Int J Neuropsychopharmacol. 2010 May;13(4):451–460.
  • Kantrowitz JT, Malhotra AK, Cornblatt B, et al. High dose D-serine in the treatment of schizophrenia. Schizophr Res. 2010 Aug;121(1–3):125–130.
  • Weiser M, Heresco-Levy U, Davidson M, et al. A multicenter, add-on randomized controlled trial of low-dose d-serine for negative and cognitive symptoms of schizophrenia. J Clin Psychiatry. 2012 Jun;73(6):e728–34.
  • D’Souza DC, Radhakrishnan R, Perry E, et al. Feasibility, safety, and efficacy of the combination of D-serine and computerized cognitive retraining in schizophrenia: an international collaborative pilot study. Neuropsychopharmacology. 2013 Feb;38(3):492–503.
  • Ermilov M, Gelfin E, Levin R, et al. A pilot double-blind comparison of d-serine and high-dose olanzapine in treatment-resistant patients with schizophrenia. Schizophr Res. 2013 Nov;150(2–3):604–605.
  • Kantrowitz JT, Epstein ML, Beggel O, et al. Neurophysiological mechanisms of cortical plasticity impairments in schizophrenia and modulation by the NMDA receptor agonist D-serine. Brain. 2016 Dec;139(Pt 12):3281–3295.
  • Ohnuma T, Sakai Y, Maeshima H, et al. Changes in plasma glycine, L-serine, and D-serine levels in patients with schizophrenia as their clinical symptoms improve: results from the Juntendo university schizophrenia projects (JUSP). Prog Neuropsychopharmacol Biol Psychiatry. 2008 Dec 12;32(8):1905–1912.
  • Kantrowitz JT, Epstein ML, Lee M, et al. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: correlation with symptoms. Schizophr Res. 2018;191:70–79.
  • Kantrowitz JT, Woods SW, Petkova E, et al. D-serine for the treatment of negative symptoms in individuals at clinical high risk of schizophrenia: a pilot, double-blind, placebo-controlled, randomised parallel group mechanistic proof-of-concept trial. Lancet Psychiatry. 2015 May;2(5):403–412.
  • Pradhan B, Mitrev L, Moaddell R, et al. d-Serine is a potential biomarker for clinical response in treatment of post-traumatic stress disorder using (R,S)-ketamine infusion and TIMBER psychotherapy: a pilot study. Biochim Biophys Acta Proteins Proteom. 2018 Jul;1866(7):831–839.
  • Heresco-Levy U, Vass A, Bloch B, et al. Pilot controlled trial of D-serine for the treatment of post-traumatic stress disorder. Int J Neuropsychopharmacol. 2009 Oct;12(9):1275–1282.
  • Moaddel R, Luckenbaugh DA, Xie Y, et al. D-serine plasma concentration is a potential biomarker of (R,S)-ketamine antidepressant response in subjects with treatment-resistant depression. Psychopharmacology (Berl). 2015 Jan;232(2):399–409.
  • Lemmon ME, Grados M, Kline T, et al. Efficacy of glutamate modulators in tic suppression: a double-blind, randomized control trial of D-serine and riluzole in tourette syndrome. Pediatr Neurol. 2015 Jun;52(6):629–634.
  • Gelfin E, Kaufman Y, Korn-Lubetzki I, et al. D-serine adjuvant treatment alleviates behavioural and motor symptoms in Parkinson’s disease. Int J Neuropsychopharmacol. 2012 May;15(4):543–549.
  • Levin R, Dor-Abarbanel AE, Edelman S, et al. Behavioral and cognitive effects of the N-methyl-D-aspartate receptor co-agonist D-serine in healthy humans: initial findings. J Psychiatr Res. 2015;61:188–195.
  • Avellar M, Scoriels L, Madeira C, et al. The effect of D-serine administration on cognition and mood in older adults. Oncotarget. 2016 Mar 15;7(11):11881–11888.
  • Humbert M, Cohen-Kaminsky S, Dumas S, et al., inventors; Centre National de la Recherche Scientifique, Assistance Publique Hopitaux de Paris, Institut National de la Sante et de la Recherche Medicale, Universite Paris Sud, assignee. Novel adamantane and memantine derivatives as peripheral NMDA receptor antagonists. Patent US10538482B2. 2020.
  • McLaughlin VV, Shah SJ, Souza R, et al. Management of pulmonary arterial hypertension. J Am Coll Cardiol. 2015 May 12;65(18):1976–1997.
  • Dumas SJ, Bru-Mercier G, Courboulin A, et al. NMDA-type glutamate receptor activation promotes vascular remodeling and pulmonary arterial hypertension. Circulation. 2018 May 29;137(22):2371–2389.
  • Cohen-Kaminsky S, Humbert M, Dumas S, et al., inventors; Institut National De La Santé Et De La Recherche Médicale, Centre National De La Recherche Scientifique, Universite Paris Sud, Assistance Publique-Hopitaux De Paris, Hopital Marie Lannelongue, assignee. Novel dizocilpine derivatives as peripheral NMDA receptor antagonists. Patent WO2017216159A1. 2017.
  • Pulley JM, inventor; Vanderbilt University, assignee. Methods of treating anti-NMDAR-associated neuropsychiatric disorders. Patent WO2019161391A1. 2019.
  • Pouget P, Missal M, inventors; Universite Catholique de Louvain, Institut du Cerveau et de la Moelle Epiniere, Centre National de la Recherche Scientifique, Universite Pierre et Marie Curie, Assistance Publique Hopitaux de Paris, Institut National de la Sante et de la Recherche Medicale, assignee. NMDA antagonists for the treatment of mental disorders with occurrence of aggressive and/or impulsive behavior. Patent US20180110742A1. 2018.
  • Ameqrane I, Wattiez N, Pouget P, et al. A subanesthetic dose of ketamine in the Rhesus monkey reduces the occurrence of anticipatory saccades. Psychopharmacology (Berl). 2015 Oct;232(19):3563–3572.
  • Shapiro G, Flood DG, inventors; Rugen Holdings, assignee. Treatment of autism spectrum disorders, obsessive-compulsive disorder and anxiety disorders. Patent US20190298725A1. 2019.
  • Durand CM, Betancur C, Boeckers TM, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet. 2007 Jan;39(1):25–27.
  • Crane J, Fagerness J, Osiecki L, et al. Family-based genetic association study of DLGAP3 in tourette syndrome. Am J Med Genet B Neuropsychiatr Genet. 2011 Jan;156b(1):108–114.
  • Futerman A, Klein AD, inventors; Yeda Research and Development, assignee. NMDA receptor antagonists for treating gaucher disease. Patent US20170273917A1. 2017.
  • Klein AD, Ferreira NS, Ben-Dor S, et al. Identification of modifier genes in a mouse model of gaucher disease. Cell Rep. 2016 Sep 6;16(10):2546–2553.
  • Krämer SD, Betzel T, Mu L, et al. Evaluation of (11)C-Me-NB1 as a potential PET radioligand for measuring GluN2B-Containing NMDA receptors, drug occupancy, and receptor cross talk. J Nucl Med. 2018 Apr;59(4):698–703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.