316
Views
57
CrossRef citations to date
0
Altmetric
Review

Antibacterial carbonic anhydrase inhibitors: an update on the recent literature

& ORCID Icon
Pages 963-982 | Received 08 Jul 2020, Accepted 14 Aug 2020, Published online: 03 Sep 2020

References

  • Gaynor M, Mankin AS. Macrolide antibiotics: binding site, mechanism of action, resistance [Research support, U.S. Gov’t, P.H.S. Review]. Curr Top Med Chem. 2003;3(9):949–961.
  • Khelaifia S, Drancourt M. Susceptibility of archaea to antimicrobial agents: applications to clinical microbiology. Clin Microbiol Infect. 2012 Sep;18(9):841–848.
  • Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477.
  • Li Z, Velkov T. Polymyxins: mode of action. Adv Exp Med Biol. 2019;1145:37–54.
  • Capasso C, Supuran CT. Sulfa and trimethoprim-like drugs - antimetabolites acting as carbonic anhydrase, dihydropteroate synthase and dihydrofolate reductase inhibitors. J Enzyme Inhib Med Chem. 2014 Jun;29(3):379–387.
  • Roemer T, Krysan DJ. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med. 2014 May 1;4(5):a019703-a019703.
  • Turk VE, Simic I, Likic R, et al. New drugs for bad bugs: what’s new and what’s in the pipeline? Clin Ther. 2016 Oct 06;38(10S):e9.
  • Decker B, Masur H. Bad bugs, no drugs: are we part of the problem, or leaders in developing solutions? Crit Care Med. 2015 Jun;43(6):1153–1155.
  • Annunziato G, Angeli A, D’Alba F, et al. Discovery of new potential anti-infective compounds based on carbonic anhydrase inhibitors by rational target-focused repurposing approaches. ChemMedChem. 2016 Sep 06;11(17):1904–1914.
  • Ozensoy Guler O, Capasso C, Supuran CT. A magnificent enzyme superfamily: carbonic anhydrases, their purification and characterization. J Enzyme Inhib Med Chem. 2016 Oct;31(5):689–694.
  • Del Prete S, Vullo D, De Luca V, et al. Sulfonamide inhibition studies of the beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Bioorg Med Chem. 2016 Mar 1;24(5):1115–1120.
  • Del Prete S, De Luca V, De Simone G, et al. Cloning, expression and purification of the complete domain of the eta-carbonic anhydrase from plasmodium falciparum. J Enzyme Inhib Med Chem. 2016;15:1–6.
  • Capasso C, Supuran CT. An overview of the carbonic anhydrases from two pathogens of the oral cavity: streptococcus mutans and porphyromonas gingivalis. Curr Top Med Chem. 2016;16(21):2359–2368.
  • Supuran CT, Capasso C. An overview of the bacterial carbonic anhydrases. Metabolites. 2017 Nov 11;7:4.
  • Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem. 2015 Apr;30(2):325–332.
  • Del Prete S, De Luca V, Nocentini A, et al. Anion inhibition studies of the beta-carbonic anhydrase from escherichia coli. Molecules. 2020 May 31;25:11.
  • Capasso C, Supuran CT. An overview of the selectivity and efficiency of the bacterial carbonic anhydrase inhibitors. Curr Med Chem. 2015;22(18):2130–2139.
  • Supuran CT. Structure and function of carbonic anhydrases. Biochem J. 2016 Jul 15;473(14):2023–2032.
  • Buzas GM, Supuran CT. The history and rationale of using carbonic anhydrase inhibitors in the treatment of peptic ulcers. In memoriam ioan Puscas (1932-2015). J Enzyme Inhib Med Chem. 2016 Aug;31(4):527–533.
  • Carta F, Supuran CT, Scozzafava A. Sulfonamides and their isosters as carbonic anhydrase inhibitors. Future Med Chem. 2014 6;Jun(10):1149–1165.
  • Pinard MA, Lotlikar SR, Boone CD, et al. Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa. Bioorg Med Chem. 2015 Aug 1;23(15):4831–4838.
  • Ferraroni M, Del Prete S, Vullo D, et al. Crystal structure and kinetic studies of a tetrameric type II beta-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae. Acta Crystallogr D Biol Crystallogr. 2015 Dec 1;71(Pt 12):2449–2456.
  • De Simone G, Monti SM, Alterio V, et al. Crystal structure of the most catalytically effective carbonic anhydrase enzyme known, SazCA from the thermophilic bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett. 2015 May 1;25(9):2002–2006.
  • Zolnowska B, Slawinski J, Pogorzelska A, et al. Carbonic anhydrase inhibitors. Synthesis, and molecular structure of novel series N-substituted N’-(2-arylmethylthio-4-chloro-5-methylbenzenesulfonyl)guanidines and their inhibition of human cytosolic isozymes I and II and the transmembrane tumor-associated isozymes IX and XII. Eur J Med Chem. 2014 Jan;71:135–147.
  • De Luca L, Ferro S, Damiano FM, et al. Structure-based screening for the discovery of new carbonic anhydrase VII inhibitors. Eur J Med Chem. 2014 Jan;71:105–111.
  • Di Fiore A, Capasso C, De Luca V, et al. X-ray structure of the first `extremo-alpha-carbonic anhydrase’, a dimeric enzyme from the thermophilic bacterium Sulfurihydrogenibium yellowstonense YO3AOP1. Acta Crystallogr D Biol Crystallogr. 2013 Jun;69(Pt 6):1150–1159.
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2012 Dec;27(6):759–772.
  • Supuran CT. Carbonic anhydrases–an overview. Curr Pharm Des. 2008;14(7):603–614.
  • Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov. 2017 Jan;12(1):61–88.
  • Bhatt A, Mahon BP, Cruzeiro VW, et al. Structure-activity relationships of benzenesulfonamide-based inhibitors towards carbonic anhydrase isoform specificity. Chembiochem Eur J Chem Biol. 2017 Nov;18(18):213–222.
  • Alterio V, Langella E, Viparelli F, et al. Structural and inhibition insights into carbonic anhydrase CDCA1 from the marine diatom Thalassiosira weissflogii. Biochimie. 2012 May;94(5):1232–1241.
  • Jensen EL, Clement R, Kosta A, et al. A new widespread subclass of carbonic anhydrase in marine phytoplankton. Isme J. 2019 Aug;13(8):2094–2106.
  • De Simone G, Di Fiore A, Capasso C, et al. The zinc coordination pattern in the eta-carbonic anhydrase from Plasmodium falciparum is different from all other carbonic anhydrase genetic families. Bioorg Med Chem Lett. 2015 Apr 1;25(7):1385–1389.
  • Lomelino CL, Mahon BP, McKenna R, et al. Kinetic and X-ray crystallographic investigations on carbonic anhydrase isoforms I, II, IX and XII of a thioureido analog of SLC-0111. Bioorg Med Chem. 2016 Mar 1;24(5):976–981.
  • Fu X, Yu LJ, Mao-Teng L, et al. Evolution of structure in gamma-class carbonic anhydrase and structurally related proteins. Mol Phylogenet Evol. 2008 Apr;47(1):211–220.
  • D’Ambrosio K, Di Fiore A, Buonanno M, et al. Eta and Teta-carbonic anhydrases. London (UK): Elsevier; 2019. (Supuran CT, Nocentini A, editors. Carbonic Anhydrases. Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target; Carbonic Anhydrases. Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target)
  • Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem. 2016;31(3):345–360.
  • Aspatwar A, Tolvanen ME, Ortutay C, et al. Carbonic anhydrase related proteins: molecular biology and evolution. Subcell Biochem. 2014;75:135–156.
  • Supuran CT. Carbonic anhydrases as drug targets–an overview [Research support, Non-U.S. Gov’t review]. Curr Top Med Chem. 2007;7(9):825–833.
  • Perfetto R, Del Prete S, Vullo D, et al. Biochemical characterization of the native alpha-carbonic anhydrase purified from the mantle of the mediterranean mussel, mytilus galloprovincialis. J Enzyme Inhib Med Chem. 2017 Dec;32(1):632–639.
  • Del Prete S, Vullo D, Zoccola D, et al. Kinetic properties and affinities for sulfonamide inhibitors of an alpha-carbonic anhydrase (CruCA4) involved in coral biomineralization in the mediterranean red coral corallium rubrum. Bioorg Med Chem. 2017 Jul 01;25(13):3525–3530.
  • Capasso C, Supuran CT. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets. 2015;19(12):1689–1704.
  • Supuran CT, Capasso C. The eta-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin Ther Targets. 2015 Apr;19(4):551–563.
  • Capasso C, Supuran CT. Anti-infective carbonic anhydrase inhibitors: a patent and literature review. Expert Opin Ther Pat. 2013;23(6):693–704.
  • Manchado E, Huang CH, Tasdemir N, et al. A pipeline for drug target identification and validation. Cold Spring Harb Symp Quant Biol. 2016;81:257–267.
  • Capasso C, Supuran CT. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr Top Med Chem. 2017;17(11):1237–1248.
  • Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother. 2016 Aug;16(8):961–968.
  • Supuran CT. Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol. 2016;12(4):423–431.
  • Otten H. Domagk and the development of the sulphonamides. J Antimicrob Chemother. 1986 Jun;17(6):689–696.
  • Achari A, Somers DO, Champness JN, et al. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat Struct Biol. 1997 Jun;4(6):490–497.
  • Vullo D, Del Prete S, Fisher GM, et al. Sulfonamide inhibition studies of the eta-class carbonic anhydrase from the malaria pathogen plasmodium falciparum. Bioorg Med Chem. 2015 Feb 1;23(3):526–531.
  • Vullo D, De Luca V, Del Prete S, et al. Sulfonamide inhibition studies of the gamma-carbonic anhydrase from the antarctic bacterium pseudoalteromonas haloplanktis. Bioorg Med Chem Lett. 2015 Sep 1;25(17):3550–3555.
  • Vullo D, De Luca V, Del Prete S, et al. Sulfonamide inhibition studies of the gamma-carbonic anhydrase from the antarctic cyanobacterium nostoc commune. Bioorg Med Chem. 2015 Apr 15;23(8):1728–1734.
  • Dedeoglu N, DeLuca V, Isik S, et al. Sulfonamide inhibition study of the beta-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans. Bioorg Med Chem Lett. 2015 Apr;17(25):2291–2297.
  • Alafeefy AM, Ceruso M, Al-Tamimi AM, et al. Inhibition studies of quinazoline-sulfonamide derivatives against the gamma-CA (PgiCA) from the pathogenic bacterium, Porphyromonas gingivalis. J Enzyme Inhib Med Chem. 2015;30(4):592–596.
  • Alafeefy AM, Abdel-Aziz HA, Vullo D, et al. Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or 2-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. J Enzyme Inhib Med Chem. 2015 Feb;30(1):52–56.
  • Diaz JR, Fernandez Baldo M, Echeverria G, et al. A substituted sulfonamide and its Co (II), Cu (II), and Zn (II) complexes as potential antifungal agents. J Enzyme Inhib Med Chem. 2016;31(sup2):51–62.
  • Del Prete S, Vullo D, De Luca V, et al. Comparison of the sulfonamide inhibition profiles of the alpha-, beta- and gamma-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae. Bioorg Med Chem Lett. 2016 Apr 15;26(8):1941–1946.
  • Del Prete S, Vullo D, De Luca V, et al. Cloning, expression, purification and sulfonamide inhibition profile of the complete domain of the eta-carbonic anhydrase from Plasmodium falciparum. Bioorg Med Chem Lett. 2016 Sep 1;26(17):4184–4190.
  • Abdel Gawad NM, Amin NH, Elsaadi MT, et al. Synthesis of 4-(thiazol-2-ylamino)-benzenesulfonamides with carbonic anhydrase I, II and IX inhibitory activity and cytotoxic effects against breast cancer cell lines. Bioorg Med Chem. 2016 Jul 01;24(13):3043–3051.
  • Supuran CT. Legionella pneumophila carbonic anhydrases: underexplored antibacterial drug targets. Pathogens. 2016;5:44.
  • Nishimori I, Vullo D, Minakuchi T, et al. Sulfonamide inhibition studies of two beta-carbonic anhydrases from the bacterial pathogen legionella pneumophila. Bioorg Med Chem. 2014 Jun 1;22(11):2939–2946.
  • Vullo D, Sai Kumar RS, Scozzafava A, et al. Anion inhibition studies of a beta-carbonic anhydrase from clostridium perfringens [Research support, Non-U.S. Gov’t]. Bioorg Med Chem Lett. 2013 Dec 15;23(24):6706–6710.
  • Nishimori I, Minakuchi T, Maresca A, et al. The beta-carbonic anhydrases from Mycobacterium tuberculosis as drug targets. Curr Pharm Des. 2010;16(29):3300–3309.
  • Carta F, Maresca A, Covarrubias AS, et al. Carbonic anhydrase inhibitors. Characterization and inhibition studies of the most active beta-carbonic anhydrase from mycobacterium tuberculosis, Rv3588c. Bioorg Med Chem Lett. 2009 Dec 1;19(23):6649–6654.
  • Nguyen K, Ahlawat R. Famotidine. Treasure Island (FL): StatPearls; 2020.
  • Komiya T, Huang CH. Updates in the clinical development of epacadostat and other indoleamine 2,3-dioxygenase 1 inhibitors (IDO1) for human cancers. Front Oncol. 2018;8:423.
  • De Simone G, Supuran CT. (In)organic anions as carbonic anhydrase inhibitors. J Inorg Biochem. 2012 Jun;111:117–129.
  • Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem. 2012 Feb 23;55(4):1721–1730.
  • Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates: a new class of carbonic anhydrase inhibitors. Crystallographic and kinetic investigations. Chem Comm. 2012 Feb 11;48(13):1868–1870.
  • Monti SM, Maresca A, Viparelli F, et al. Dithiocarbamates are strong inhibitors of the beta-class fungal carbonic anhydrases from cryptococcus neoformans, Candida albicans and Candida glabrata. Bioorg Med Chem Lett. 2012 Jan 15;22(2):859–862.
  • Maresca A, Carta F, Vullo D, et al. Dithiocarbamates strongly inhibit the beta-class carbonic anhydrases from mycobacterium tuberculosis. J Enzyme Inhib Med Chem. 2013 Apr;28(2):407–411.
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Arylsulfonyl-N,N-dialkyl-dithiocarbamates as tumor cell growth inhibitors: novel agents targeting beta-tubulin? J Enzym Inhib. 2001 Jan;16(1):55–63.
  • Scozzafava A, Mastrolorenzo A, Supuran CT. Arylsulfonyl-N,N-diethyl-dithiocarbamates: a novel class of antitumor agents. Bioorg Med Chem Lett. 2000 Aug 21;10(16):1887–1891.
  • Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of transmembrane isoforms IX, XII, and XIV with less investigated anions including trithiocarbonate and dithiocarbamate.Bioorg Med Chem Lett. 2010 Mar 1;20(5):1548–1550.
  • McKenna R, Supuran CT. Carbonic anhydrase inhibitors drug design. Subcell Biochem. 2014;75:291–323.
  • Adak AK, Leonov AP, Ding N, et al. Bishydrazide glycoconjugates for lectin recognition and capture of bacterial pathogens [Research Support, N.I.H., ExtramuralResearch support, U.S. Gov’t, Non-P.H.S.]. Bioconjug Chem. 2010 Nov 17;21(11):2065–2075.
  • Lomelino CL, Supuran CT, Non-Classical MR. Inhibition of Carbonic Anhydrase. Int J Mol Sci. 2016 Jul 16;17(7):1150.
  • Kusian B, Sultemeyer D, Bowien B. Carbonic anhydrase is essential for growth of ralstonia eutropha at ambient CO(2) concentrations. J Bacteriol. 2002 Sep;184(18):5018–5026.
  • Cronk JD, Endrizzi JA, Cronk MR, et al. Crystal structure of E. coli beta-carbonic anhydrase, an enzyme with an unusual pH-dependent activity. Protein Sci. 2001 May;10(5):911–922.
  • Merlin C, Masters M, McAteer S, et al. Why is carbonic anhydrase essential to escherichia coli? J Bacteriol. 2003 Nov;185(21):6415–6424.
  • Ueda K, Nishida H, Beppu T. Dispensabilities of carbonic anhydrase in proteobacteria. Int J Evol Biol. 2012;2012:324549.
  • Modak JK, Tikhomirova A, Gorrell RJ, et al. Anti-helicobacter pylori activity of ethoxzolamide. J Enzyme Inhib Med Chem. 2019 Dec;34(1):1660–1667.
  • Ronci M, Del Prete S, Puca V, et al. Identification and characterization of the alpha-CA in the outer membrane vesicles produced by helicobacter pylori. J Enzyme Inhib Med Chem. 2019 Dec;34(1):189–195.
  • Buzas GM. [Helicobacter pylori – 2010]. Orv Hetil. 2010 Dec 5;151(49):2003–2010.
  • Abuaita BH, Withey JH. Bicarbonate induces vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun. 2009 Sep;77(9):4111–4120.
  • Kohler S, Ouahrani-Bettache S, Winum JY. Brucella suis carbonic anhydrases and their inhibitors: towards alternative antibiotics? J Enzyme Inhib Med Chem. 2017 Dec;32(1):683–687.
  • Singh S, Supuran CT. 3D-QSAR CoMFA studies on sulfonamide inhibitors of the Rv3588c beta-carbonic anhydrase from mycobacterium tuberculosis and design of not yet synthesized new molecules. J Enzyme Inhib Med Chem. 2014 Jun;29(3):449–455.
  • Ceruso M, Vullo D, Scozzafava A, et al. Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three beta-class carbonic anhydrases from mycobacterium tuberculosis. J Enzyme Inhib Med Chem. 2014 Oct;29(5):686–689.
  • Rollenhagen C, Bumann D. Salmonella enterica highly expressed genes are disease specific. Infect Immun. 2006;74(3):1649–1660.
  • Lotlikar SR, Kayastha BB, Vullo D, et al. Pseudomonas aeruginosa β-carbonic anhydrase, psCA1, is required for calcium deposition and contributes to virulence. Cell calcium. 2019;84–101.
  • Del Prete S, De Luca V, Scozzafava A, et al. Biochemical properties of a new alpha-carbonic anhydrase from the human pathogenic bacterium, Vibrio cholerae. J Enzyme Inhib Med Chem. 2014 Feb;29(1):23–27.
  • Vullo D, Del Prete S, Di Fonzo P, et al. Comparison of the sulfonamide inhibition profiles of the beta- and gamma-carbonic anhydrases from the pathogenic bacterium burkholderia pseudomallei. Molecules. 2017 Mar 7;22(3). DOI:10.3390/molecules22030421
  • Del Prete S, Vullo D, Di Fonzo P, et al. Anion inhibition profiles of the gamma-carbonic anhydrase from the pathogenic bacterium burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics. Bioorg Med Chem. 2017 Jan 15;25(2):575–580.
  • Nishimori I, Minakuchi T, Vullo D, et al. Inhibition studies of the beta-carbonic anhydrases from the bacterial pathogen salmonella enterica serovar typhimurium with sulfonamides and sulfamates. Bioorg Med Chem. 2011 Aug 15;19(16):5023–5030.
  • Vullo D, Nishimori I, Minakuchi T, et al. Inhibition studies with anions and small molecules of two novel beta-carbonic anhydrases from the bacterial pathogen salmonella enterica serovar typhimurium. Bioorg Med Chem Lett. 2011 Jun 15;21(12):3591–3595.
  • Del Prete S, Vullo D, De Luca V, et al. Biochemical characterization of recombinant beta-carbonic anhydrase (PgiCAb) identified in the genome of the oral pathogenic bacterium porphyromonas gingivalis. J Enzyme Inhib Med Chem. 2015 Jun;30(3):366–370.
  • Del Prete S, De Luca V, Vullo D, et al. Biochemical characterization of the gamma-carbonic anhydrase from the oral pathogen porphyromonas gingivalis, PgiCA. J Enzyme Inhib Med Chem. 2014 Aug;29(4):532–537.
  • He J, Li Y, Cao Y, et al. The oral microbiome diversity and its relation to human diseases. Folia Microbiol (Praha). 2015 Jan;60(1):69–80.
  • Wade WG. The oral microbiome in health and disease. Pharmacol. Res. 2013 Mar;69(1):137–143.
  • Lif Holgerson P, Ohman C, Ronnlund A, et al. Maturation of oral microbiota in children with or without dental caries. PloS One. 2015;10(5):e0128534.
  • Georgios A, Vassiliki T, Sotirios K. Acidogenicity and acidurance of dental plaque and saliva sediment from adults in relation to caries activity and chlorhexidine exposure. J Oral Microbiol. 2015;7:26197.
  • Dedeoglu N, DeLuca V, Isik S, et al. Sulfonamide inhibition study of the beta-class carbonic anhydrase from the caries producing pathogen streptococcus mutans. Bioorg Med Chem Lett. 2015 Jun 1;25(11):2291–2297.
  • Dedeoglu N, De Luca V, Isik S, et al. Cloning, characterization and anion inhibition study of a beta-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans. Bioorg Med Chem. 2015 Jul 1;23(13):2995–3001.
  • Celli J, Zahrt TC. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb Perspect Med. 2013 Apr 01;3(4):a010314.
  • Kinkead LC, Allen LA. Multifaceted effects of Francisella tularensis on human neutrophil function and lifespan. Immunol Rev. 2016 Sep;273(1):266–281.
  • Del Prete S, Vullo D, Osman SM, et al. Anion inhibitors of the beta-carbonic anhydrase from the pathogenic bacterium responsible of tularemia, Francisella tularensis. Bioorg Med Chem. 2017 Sep 1;25(17):4800–4804.
  • Del Prete S, Perfetto R, Rossi M, et al. A one-step procedure for immobilising the thermostable carbonic anhydrase (SspCA) on the surface membrane of Escherichia coli. J Enzyme Inhib Med Chem. 2017 Dec;32(1):1120–1128.
  • Cordes LG, Wilkinson HW, Gorman GW, et al. Atypical legionella-like organisms: fastidious water-associated bacteria pathogenic for man. Lancet. 1979 Nov 3;2(8149):927–930.
  • Escoll P, Rolando M, Gomez-Valero L, et al. From amoeba to macrophages: exploring the molecular mechanisms of legionella pneumophila infection in both hosts. Curr Top Microbiol Immunol. 2013;376:1–34.
  • Backert S, Neddermann M, Maubach G, et al. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2016 Sep;21(Suppl 1):19–25.
  • Nishimori I, Onishi S, Takeuchi H, et al. The alpha and beta classes carbonic anhydrases from helicobacter pylori as novel drug targets. Curr Pharm Des. 2008;14(7):622–630.
  • Joseph P, Turtaut F, Ouahrani-Bettache S, et al. Cloning, characterization, and inhibition studies of a beta-carbonic anhydrase from brucella suis. J Med Chem. 2010 Mar 11;53(5):2277–2285.
  • Joseph P, Ouahrani-Bettache S, Montero JL, et al. A new beta-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth. Bioorg Med Chem. 2011 Feb 1;19(3):1172–1178.
  • Del Prete S, Isik S, Vullo D, et al. DNA cloning, characterization, and inhibition studies of an alpha-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. J Med Chem. 2012 Dec 13;55(23):10742–10748.
  • Alafeefy AM, Ceruso M, Al-Tamimi AM, et al. Quinazoline-sulfonamides with potent inhibitory activity against the alpha-carbonic anhydrase from vibrio cholerae. Bioorg Med Chem. 2014 Oct 1;22(19):5133–5140.
  • Ceruso M, Del Prete S, Alothman Z, et al. Sulfonamides with potent inhibitory action and selectivity against the alpha-carbonic anhydrase from vibrio cholerae. ACS Med Chem Lett. 2014 Jul 10;5(7):826–830.
  • Angeli A, Abbas G, Del Prete S, et al. Acyl selenoureido benzensulfonamides show potent inhibitory activity against carbonic anhydrases from the pathogenic bacterium vibrio cholerae. Bioorg Chem. 2017 Dec;75:170–172.
  • De Vita D, Angeli A, Pandolfi F, et al. Inhibition of the alpha-carbonic anhydrase from vibrio cholerae with amides and sulfonamides incorporating imidazole moieties. J Enzyme Inhib Med Chem. 2017 Dec;32(1):798–804.
  • Angeli A, Abbas G, Del Prete S, et al. Selenides bearing benzenesulfonamide show potent inhibition activity against carbonic anhydrases from pathogenic bacteria vibrio cholerae and burkholderia pseudomallei. Bioorg Chem. 2018 Sep;79:319–322.
  • Bua S, Berrino E, Del Prete S, et al. Synthesis of novel benzenesulfamide derivatives with inhibitory activity against human cytosolic carbonic anhydrase I and II and vibrio cholerae alpha- and beta-class enzymes. J Enzyme Inhib Med Chem. 2018 Dec;33(1):1125–1136.
  • Bua S, Osman SM, Del Prete S, et al. Click-tailed benzenesulfonamides as potent bacterial carbonic anhydrase inhibitors for targeting mycobacterium tuberculosis and vibrio cholerae. Bioorg Chem. 2019 May;86:183–186.
  • Del Prete S, Vullo D, Di Fonzo P, et al. Sulfonamide inhibition profile of the gamma-carbonic anhydrase identified in the genome of the pathogenic bacterium burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorg Med Chem Lett. 2017 Feb 1;27(3):490–495.
  • Del Prete S, Vullo D, Di Fonzo P, et al. Comparison of the anion inhibition profiles of the beta- and gamma-carbonic anhydrases from the pathogenic bacterium burkholderia pseudomallei. Bioorg Med Chem. 2017 Mar 15;25(6):2010–2015.
  • Maresca A, Carta F, Vullo D, et al. Carbonic anhydrase inhibitors. Inhibition of the Rv1284 and Rv3273 beta-carbonic anhydrases from mycobacterium tuberculosis with diazenylbenzenesulfonamides. Bioorg Med Chem Lett. 2009 Sep 1;19(17):4929–4932.
  • Minakuchi T, Nishimori I, Vullo D, et al. Molecular cloning, characterization, and inhibition studies of the Rv1284 beta-carbonic anhydrase from mycobacterium tuberculosis with sulfonamides and a sulfamate. J Med Chem. 2009 Apr 23;52(8):2226–2232.
  • Nishimori I, Minakuchi T, Vullo D, et al. Carbonic anhydrase inhibitors. Cloning, characterization, and inhibition studies of a new beta-carbonic anhydrase from mycobacterium tuberculosis. J Med Chem. 2009 May 14;52(9):3116–3120.
  • Wani TV, Bua S, Khude PS, et al. Evaluation of sulphonamide derivatives acting as inhibitors of human carbonic anhydrase isoforms I, II and mycobacterium tuberculosis beta-class enzyme Rv3273. J Enzyme Inhib Med Chem. 2018 Dec;33(1):962–971.
  • Maresca A, Vullo D, Scozzafava A, et al. Inhibition of the beta-class carbonic anhydrases from mycobacterium tuberculosis with carboxylic acids. J Enzyme Inhib Med Chem. 2013 Apr;28(2):392–396.
  • Prete SD, Vullo D, Osman SM, et al. Sulfonamide inhibition study of the carbonic anhydrases from the bacterial pathogen porphyromonas gingivalis: the beta-class (PgiCAb) versus the gamma-class (PgiCA) enzymes. Bioorg Med Chem. 2014 Sep 1;22(17):4537–4543.
  • Ceruso M, Del Prete S, AlOthman Z, et al. Synthesis of sulfonamides with effective inhibitory action against porphyromonas gingivalis gamma-carbonic anhydrase. Bioorg Med Chem Lett. 2014 Aug 15;24(16):4006–4010.
  • Nishimori I, Vullo D, Minakuchi T, et al. Carbonic anhydrase inhibitors: cloning and sulfonamide inhibition studies of a carboxyterminal truncated alpha-carbonic anhydrase from helicobacter pylori. Bioorg Med Chem Lett. 2006 Apr 15;16(8):2182–2188.
  • Modak JK, Liu YC, Machuca MA, et al. Structural basis for the inhibition of helicobacter pylori alpha-carbonic anhydrase by sulfonamides. PLoS One. 2015;10(5):e0127149.
  • Nishimori I, Minakuchi T, Kohsaki T, et al. Carbonic anhydrase inhibitors: the beta-carbonic anhydrase from helicobacter pylori is a new target for sulfonamide and sulfamate inhibitors. Bioorg Med Chem Lett. 2007 Jul 1;17(13):3585–3594.
  • Lotlikar SR, Kayastha BB, Vullo D, et al. Pseudomonas aeruginosa beta-carbonic anhydrase, psCA1, is required for calcium deposition and contributes to virulence. Cell Calcium. 2019 Dec;84:102080.
  • Vullo D, Nishimori I, Scozzafava A, et al. Inhibition studies of a beta-carbonic anhydrase from Brucella suis with a series of water soluble glycosyl sulfanilamides. Bioorg Med Chem Lett. 2010 Apr 1;20(7):2178–2182.
  • Ombouma J, Vullo D, Kohler S, et al. N-glycosyl-N-hydroxysulfamides as potent inhibitors of Brucella suis carbonic anhydrases. J Enzyme Inhib Med Chem. 2015 Dec;30(6):1010–1012.
  • Monti SM, Meccariello A, Ceruso M, et al. Inhibition studies of Brucella suis beta-carbonic anhydrases with a series of 4-substituted pyridine-3-sulphonamides. J Enzyme Inhib Med Chem. 2018 Dec;33(1):255–259.
  • Del Prete S, De Luca V, Bua S, et al. The effect of substituted benzene-sulfonamides and clinically licensed drugs on the catalytic activity of CynT2, a carbonic anhydrase crucial for escherichia coli life cycle. Int J Mol Sci. 2020 Jun 11;21:11.
  • Del Prete S, Bua S, Supuran CT, et al. Escherichia coli γ-carbonic anhydrase: characterisation and effects of simple aromatic/heterocyclic sulphonamide inhibitors. J Enzyme Inhib Med Chem. 2020;35(1):1545–1554.
  • Vullo D, Isik S, Del Prete S, et al. Anion inhibition studies of the alpha-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Bioorg Med Chem Lett. 2013 Mar 15;23(6):1636–1638.
  • Vullo D, Del Prete S, De Luca V, et al. Anion inhibition studies of the beta-carbonic anhydrase from the pathogenic bacterium vibrio cholerae. Bioorg Med Chem Lett. 2016 Mar 1;26(5):1406–1410.
  • Vullo D, Del Prete S, Osman SM, et al. Anion inhibition study of the beta-class carbonic anhydrase (PgiCAb) from the oral pathogen porphyromonas gingivalis. Bioorg Med Chem Lett. 2014 Sep 15;24(18):4402–4406.
  • Del Prete S, Vullo D, De Luca V, et al. A highly catalytically active gamma-carbonic anhydrase from the pathogenic anaerobe porphyromonas gingivalis and its inhibition profile with anions and small molecules. Bioorg Med Chem Lett. 2013 Jul 15;23(14):4067–4071.
  • Nishimori I, Vullo D, Minakuchi T, et al. Anion inhibition studies of two new beta-carbonic anhydrases from the bacterial pathogen legionella pneumophila. Bioorg Med Chem Lett. 2014;24(4):1127–1132.
  • Aspatwar A, Hammaren M, Parikka M, et al. In vitro inhibition of mycobacterium tuberculosis beta-carbonic anhydrase 3 with mono- and dithiocarbamates and evaluation of their toxicity using zebrafish developing embryos. J Enzyme Inhib Med Chem. 2020;35(1):65–71.
  • Aspatwar A, Kairys V, Rala S, et al. Mycobacterium tuberculosis beta-carbonic anhydrases: novel targets for developing antituberculosis drugs. Int J Mol Sci. 2019;20(20):5153.
  • Shahidzadeh R, Opekun A, Shiotani A, et al. Effect of the carbonic anhydrase inhibitor, acetazolamide, on helicobacter pylori infection in vivo: a pilot study. Helicobacter. 2005 Apr;10(2):136–138.
  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7(2):168–181.
  • Rahman MM, Tikhomirova A, Modak JK, et al. Antibacterial activity of ethoxzolamide against helicobacter pylori strains SS1 and 26695. Gut Pathog. 2020;12:20.
  • Kaur J, Cao X, Abutaleb NS, et al. Optimization of acetazolamide-based scaffold as potent inhibitors of vancomycin-resistant enterococcus. J Med Chem. 2020. in press. DOI:10.1021/acs.jmedchem.0c00734
  • Masereel B, Rolin S, Abbate F. Carbonic anhydrase inhibitors: anticonvulsant sulfonamides incorporating valproyl and other lipophilic moieties. J Med Chem. 2002;45(2):312–320.
  • Thiry A, Dogné JM, Supuran CT, et al. Carbonic anhydrase inhibitors as anticonvulsant agents. Curr Top Med Chem. 2007;7(9):855–864.
  • Thiry A, Dogné JM, Supuran CT, et al. Anticonvulsant sulfonamides/sulfamates/sulfamides with carbonic anhydrase inhibitory activity: drug design and mechanism of action. Curr Pharm Des. 2008;14(7):661–671.
  • Supuran CT. Bacterial carbonic anhydrases as drug targets: toward novel antibiotics? Front Pharmacol. 2011;2:34.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.