2,103
Views
16
CrossRef citations to date
0
Altmetric
Review

Inhibitors of type II transmembrane serine proteases in the treatment of diseases of the respiratory tract – A review of patent literature

, , , , &
Pages 807-824 | Received 11 Jun 2020, Accepted 25 Aug 2020, Published online: 12 Oct 2020

References

  • Rawlings ND, Barrett AJ, Thomas PD, et al. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46(D1):D624–D632.
  • Antalis TM, Bugge TH, Wu Q. Membrane-anchored serine proteases in health and disease. Prog Mol Biol Transl Sci. 2011;99:1–50.
  • Hooper JD, Clements JA, Quigley JP, et al. Type II transmembrane serine proteases. Insights into an emerging class of cell surface proteolytic enzymes. J Biol Chem. 2001;276(2):857–860.
  • Antalis TM, Conway GD, Peroutka RJ, et al. Membrane-anchored proteases in endothelial cell biology. Curr Opin Hematol. 2016;23(3):243–252.
  • Szabo R, Bugge TH. Membrane-anchored serine proteases in vertebrate cell and developmental biology. Annu Rev Cell Dev Biol. 2011;27(1):213–235.
  • Antalis TM, Buzza MS, Hodge KM, et al. The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J. 2010;428:325–346.
  • Liu M, Hu Z, Qi L, et al. Scanning of novel cancer/testis proteins by human testis proteomic analysis. Proteomics. 2013;13(7):1200–1210.
  • Finberg KE, Heeney MM, Campagna DR, et al. Mutations in TMPRSS6 cause iron-refractory iron deficiency anemia (IRIDA). Nat Genet. 2008;40(5):569–571.
  • Zoratti GL, Tanabe LM, Hyland TE, et al. Matriptase regulates c-Met mediated proliferation and invasion in inflammatory breast cancer. Oncotarget. 2016;7(36):58162–58173.
  • Webb SL. Type II transmembrane serine protease (TTSP) deregulation in cancer. Front Biosci. 2011;16(1):539.
  • Milner JM, Patel A, Davidson RK, et al. Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum. 2010;62(7):1955-1966.
  • Youssefian L, Touati A, Saeidian AH, et al. A novel mutation in ST14 at a functionally significant amino acid residue expands the spectrum of ichthyosis-hypotrichosis syndrome. Orphanet J Rare Dis. 2017;12(1):176.
  • Désilets A, Béliveau F, Vandal G, et al. Mutation G827R in matriptase causing autosomal recessive ichthyosis with hypotrichosis yields an inactive protease. J Biol Chem. 2008;283(16):10535–10542.
  • Wu Q. The serine protease corin in cardiovascular biology and disease. Front Biosci. 2007;12(8–12):4179–4190.
  • Peng H, Zhang Q, Shen H, et al. Association between serum soluble corin and obesity in Chinese adults: a cross-sectional study. Obesity (Silver Spring). 2015;23(4):856–861.
  • Folgueras AR, Freitas-Rodríguez S, Ramsay AJ, et al. Matriptase-2 deficiency protects from obesity by modulating iron homeostasis. Nat Commun. 2018;9(1):1350.
  • Dion SP, Béliveau F, Désilets A, et al. Transcriptome analysis reveals TMPRSS6 isoforms with distinct functionalities. J Cell Mol Med. 2018;22(4):2498–2509.
  • Dion SP, Béliveau F, Morency L-P, et al. Functional diversity of TMPRSS6 isoforms and variants expressed in hepatocellular carcinoma cell lines. Sci Rep. 2018;8(1):12562.
  • Claborn MK, Stevens DL, Walker CK, et al. Nusinersen: A treatment for spinal muscular atrophy. Ann Pharmacother. 2019;53(1):61–69.
  • Béliveau F. Spécificité enzymatique et régulation fonctionnelle de la matriptase-2, une protéase à sérine transmembranaire de type II essentielle à l’homéostasie du fer: Université de Sherbrooke, Sherbrooke (Qc), Canada, 2012. [Internet]
  • Consortium G. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:580–585.
  • Kim DR, Sharmin S, Inoue M, et al. Cloning and expression of novel mosaic serine proteases with and without a transmembrane domain from human lung. Biochim Biophys Acta - Gene Struct Expr. 2001;1518:204–209.
  • Donaldson SH, Hirsh A, Li DC, et al. Regulation of the epithelial sodium channel by serine proteases in human airways. J Biol Chem. 2002;277(10):8338–8345.
  • Fasquelle L, Scott HS, Lenoir M, et al. Tmprss3, a transmembrane serine protease deficient in human DFNB8/10 deafness, is critical for cochlear hair cell survival at the onset of hearing. J Biol Chem. 2011;286(19):17383–17397.
  • Beaulieu A, Gravel E, Cloutier A, et al. Matriptase proteolytically activates influenza virus and promotes multicycle replication in the human airway epithelium. J Virol. 2013;87(8):4237–4251.
  • Tsuji A, Torres-Rosado A, Arai T, et al. Hepsin, a cell membrane-associated protease: characterization, tissue distribution, and gene localization. J Biol Chem. 1991;266:16948–16953.
  • Zmora P, Blazejewska P, Moldenhauer A-S, et al. DESC1 and MSPL activate influenza a viruses and emerging coronaviruses for host cell entry. J Virol. 2014;88(20):12087–12097.
  • Yamaoka K, Masuda KI, Ogawa H, et al. Cloning and characterization of the cDNA for human airway trypsin-like protease. J Biol Chem. 1998;273(19):11895–11901.
  • Zmora P, Hoffmann M, Kollmus H, et al. TMPRSS11A activates the influenza A virus hemagglutinin and the MERS coronavirus spike protein and is insensitive against blockade by HAI-1. J Biol Chem. 2018;293(36):13863–13873.
  • Bardou O, Menou A, François C, et al. Membrane-anchored serine protease matriptase is a trigger of pulmonary fibrogenesis. Am J Respir Crit Care Med. 2016;193(8):847–860.
  • Valero-Jiménez A, Zúñiga J, Cisneros J, et al. Transmembrane protease, serine 4 (TMPRSS4) is upregulated in IPF lungs and increases the fibrotic response in bleomycin-induced lung injury. PLoS One. 2018;13(3):e0192963.
  • Laporte M, Naesens L. Airway proteases: an emerging drug target for influenza and other respiratory virus infections. Curr Opin Virol. 2017;24:16–24.
  • Böttcher-Friebertshäuser E. Membrane-anchored serine proteases: host cell factors in proteolytic activation of viral glycoproteins. Activation of viruses by host proteases. Springer International Publishing; 2018. p. 153–203.
  • Murray AS, Varela FA, List K. Type II transmembrane serine proteases as potential targets for cancer therapy. Biol Chem. 2016;397:815–826.
  • Tanabe LM, List K. The role of type II transmembrane serine protease-mediated signaling in cancer. Febs J. 2017;284(10):1421–1436.
  • Bertram S, Dijkman R, Habjan M, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013;87(11):6150–6160.
  • Gierer S, Bertram S, Kaup F, et al. The spike protein of the emerging betacoronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol. 2013;87(10):5502–5511.
  • Glowacka I, Bertram S, Muller MA, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011;85(9):4122–4134.
  • Shirato K, Kawase M, Matsuyama S. Middle east respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2. J Virol. 2013;87:12552–12561.
  • Whittaker GR, Millet JK. Biochemical characterization of middle east respiratory syndrome coronavirus spike protein proteolytic processing. Methods Mol Biol. 2020;2099:21–37.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2): 271–280.e8.
  • Millet JK, Whittaker GR. Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells. Virology. 2018;517:3–8.
  • Park JE, Li K, Barlan A, et al. Proteolytic processing of middle east respiratory syndrome coronavirus spikes expands virus tropism. Proc Natl Acad Sci U S A. 2016;113(43):12262–12267.
  • White JM, Whittaker GR. Fusion of enveloped viruses in endosomes. Traffic. 2016;17:593–614.
  • Shin W-J, Seong BL. Type II transmembrane serine proteases as potential target for anti-influenza drug discovery. Expert Opin Drug Discov. 2017;12(11):1139–1152.
  • Bottcher-Friebertshauser E, Stein DA, Klenk H-D, et al. Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol. 2011;85(4):1554–1562.
  • Böttcher-Friebertshäuser E, Lu Y, Meyer D, et al. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012;30(51):7374–7380.
  • Meyer D, Sielaff F, Hammami M, et al. Identification of the first synthetic inhibitors of the type II transmembrane serine protease TMPRSS2 suitable for inhibition of influenza virus activation. Biochem J. 2013;452(2): 331–343.
  • Sielaff F, Böttcher-Friebertshäuser E, Meyer D, et al. Development of substrate analogue inhibitors for the human airway trypsin-like protease HAT. Bioorganic Med Chem Lett. 2011;21(16):4860–4864.
  • Nygaard RM, Golden JW, Schiff LA. Impact of host proteases on reovirus infection in the respiratory tract. J Virol. 2012;86(2):1238–1243.
  • Menou A, Duitman J, Flajolet P, et al. Human airway trypsin-like protease, a serine protease involved in respiratory diseases. Am J Lung Cell Mol Physiol. 2017;312(5):657–668.
  • Jung H, Lee KP, Park SJ, et al. TMPRSS4 promotes invasion, migration and metastasis of human tumor cells by facilitating an epithelial–mesenchymal transition. Oncogene. 2008;27(18):2635–2647.
  • Exposito F, Villalba M, Redrado M, et al. Targeting of TMPRSS4 sensitizes lung cancer cells to chemotherapy by impairing the proliferation machinery. Cancer Lett. 2019;453:21–33.
  • Larzabal L, Nguewa PA, Pio R, et al. Overexpression of TMPRSS4 in non-small cell lung cancer is associated with poor prognosis in patients with squamous histology. Br J Cancer. 2011;105(10):1608–1614.
  • Iwakiri K, Ghazizadeh M, Jin E, et al. Human airway trypsin-like protease induces PAR-2-mediated IL-8 release in psoriasis vulgaris. J Invest Dermatol. 2004;122(4):937–944.
  • Chen C-J, Wu B-Y, Tsao P-I, et al. Increased matriptase zymogen activation in inflammatory skin disorders. Am J Physiol Physiol. 2011;300(3):C406–C415.
  • Wilkinson DJ, Desilets A, Lin H, et al. The serine proteinase hepsin is an activator of pro-matrix metalloproteinases: molecular mechanisms and implications for extracellular matrix turnover. Sci Rep. 2017;7(1):16693.
  • Wilkinson DJ, Habgood A, Lamb HK, et al. Matriptase induction of metalloproteinase-dependent aggrecanolysis in vitro and in vivo: promotion of osteoarthritic cartilage damage by multiple mechanisms. Arthritis Rheumatol. 2017;69(8):1601–1611.
  • Rather GM, Lin S-Y, Lin H, et al. Activated matriptase as a target to treat breast cancer with a drug conjugate. Oncotarget. 2018;9(40):25983–25992.
  • Zoratti GL, Tanabe LM, Varela FA, et al. Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun. 2015;6(1):6776.
  • Xing P, Li JG, Jin F, et al. Clinical and biological significance of hepsin overexpression in breast cancer. J Investig Med. 2011;59(5):803–810.
  • Wu S-R, Cheng T-S, Chen W-C, et al. Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol. 2010;177(6):3145–3158.
  • Förbs D, Thiel S, Stella MC, et al. In vitro inhibition of matriptase prevents invasive growth of cell lines of prostate and colon carcinoma. Int J Oncol. 2005;27:1061–1070.
  • Magee JA, Araki T, Patil S, et al. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 2001;61:5692–5696.
  • Wu Q, Parry G. Hepsin and prostate cancer. Front. Biosci. Front Biosci. 2007;12(12):5052–5059.
  • Damalanka VC, Han Z, Karmakar P, et al. Discovery of selective matriptase and hepsin serine protease inhibitors: useful chemical tools for cancer cell biology. J Med Chem. 2019;62(2):480–490.
  • Koschubs T, Dengl S, Dürr H, et al. Allosteric antibody inhibition of human hepsin protease. Biochem J. 2012;442(3):483–494.
  • Wang Z, Wang Y, Zhang J, et al. Significance of the TMPRSS2: ERG gene fusion in prostate cancer. Mol Med Rep. 2017;16(4):5450–5458.
  • Lucas JM, Heinlein C, Kim T, et al. The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis. Cancer Discov. 2014;4(11):1310–1325.
  • Obinata D, Ito A, Fujiwara K, et al. Pyrrole-imidazole polyamide targeted to break fusion sites in TMPRSS2 and ERG gene fusion represses prostate tumor growth. Cancer Sci. 2014;105(10):1272–1278.
  • Wambier CG, Goren A. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is likely to be androgen mediated. J Am Acad Dermatol. 2020;83(1):308–309.
  • Azouz NP, Klingler AM, Rothenberg ME. Alpha 1 antitrypsin is an inhibitor of the SARS-CoV2–priming protease TMPRSS2. bioRxiv. 2020 May 04:077826; doi: https://doi.org/10.1101/2020.05.04.077826.
  • Luke Danahay H, Mark LeGrand D, Tully DC, et al. Organic compounds. US20120208882. 2012.
  • Kawase M, Shirato K, van der Hoek L, et al. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 2012;86(12):6537–6545.
  • Asakura H, Ogawa H. Potential of heparin and nafamostat combination therapy for COVID‐19. J Thromb Haemost. 2020;18(6):1521-1522.
  • Jang S, Rhee J-Y. Three cases of treatment with Nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. Int J Infect Dis. 2020;96:500–502.
  • Hoffmann M, Schroeder S, Kleine-Weber H, et al. Nafamostat mesylate blocks activation of SARS-CoV-2: new treatment option for COVID-19. Antimicrob Agents Chemother. 2020;64(6):19–21.
  • AOYAMA T, INO Y, OZEKI M, et al. Pharmacological studies of FUT-175, nafamstat mesilate. I. Inhibition of protease activity in in vitro and in vivo experiments. Jpn J Pharmacol. 1984;35(3):203–227.
  • Steinmetzer T, Meyer D, Hammami M, et al. Use of tmprss2 inhibitors as medicaments. WO2013014074. 2013.
  • Steinmetzer T, Schweinitz A, Donnecke D Meta-substituted phenyl sulfonyl amides of secondary amino acid amides, the production thereof, and use thereof as matriptase inhibitors. US8569313. 2013.
  • Steinmetzer T, Sielaff F, Garten W, et al. Use of hat inhibitors and tmprss2 inhibitors as medicaments. EP2435064 . 2010. [Internet]
  • Tully DC, Chatterjee AK, Vidal A, et al. Compounds and compositions as channel activating protease inhibitors. US8338469 . 2012. [Internet]
  • Richter M, Leduc R, Colombo E, et al. Matriptase inhibitors and uses thereof against orthomyxoviridae infections. US10208308 . 2019. [Internet]
  • Colombo E, Désilets A, Duchêne D, et al. Design and synthesis of potent, selective inhibitors of matriptase. ACS Med Chem Lett. 2012;3(7):530–534.
  • St-Georges C, Désilets A, Béliveau F, et al. Modulating the selectivity of matriptase-2 inhibitors with unnatural amino acids. Eur J Med Chem. 2017;129:110–123.
  • Duchêne D, Colombo E, Désilets A, et al. Analysis of subpocket selectivity and identification of potent selective inhibitors for matriptase and matriptase-2. J Med Chem. 2014;57(23):10198–10204.
  • Boudreault P-L, Colombo É, Leduc R, et al. Matriptase inhibitors and uses thereof. US20190337981 . 2019. [Internet]
  • Janetka JW, Han Z, Harris P, et al. Inhibitors of growth factor activation enzymes. US20180066015 . 2018. [Internet]
  • List K. Matriptase: A culprit in cancer? Futur. Oncol. Future Oncol. 2009;5(1):97–104.
  • Tseng I-C, Xu H, Chou F-P, et al. Matriptase activation, an early cellular response to acidosis. J Biol Chem. 2010;285(5):3261–3270.
  • Lin C-Y, Dickson RB, Wang S, et al. Structure based discovery of inhibitors of matriptase for the treatment of cancer and other conditions. US6677377 [Internet]. 2004.
  • Duncan DF, Alfaro-Lopez LJ, Komandla M, et al. Matriptase inhibitors and methods of use. US7019019 . 2006. [Internet]
  • Joossens J, Augustyns K, Lambeir A-M, et al. KLK4 inhibitors. US10017527 . 2018. [Internet]
  • Obiezu CV, Diamandis EP. Human tissue kallikrein gene family: applications in cancer. Cancer Lett. Elsevier. 2005;224(1):1–22.
  • Walker B, Martin L, Ferguson T. Binding Compound and Uses Thereof. US20200010505 . 2020. [Internet]
  • Luckett S, Garcia RS, Barker JJ, et al. High-resolution structure of a potent, cyclic proteinase inhibitor from sunflower seeds. J Mol Biol. 1999;290(2):525–533.
  • Kennedy AR. The Bowman-Birk inhibitor from soybeans as an anticarcinogenic agent. Am J Clin Nutr. 1998;68(6):1406S-1412S. American Society for Nutrition.
  • Korsinczky M, Schirra H, Craik D. Sunflower Trypsin Inhibitor-1. Curr Protein Pept Sci. 2005;5(5):351–364.
  • Long YQ, Lee SL, Lin CY, et al. Synthesis and evaluation of the sunflower derived trypsin inhibitor as a potent inhibitor of the type II transmembrane serine protease, matriptase. Bioorganic Med Chem Lett. 2001;11(18):2515–2519.
  • Roller PP, Li P Serine protease inhibitors. US7439226 . 2008. [Internet]
  • Harris JM, Swedberg JE Novel protease inhibitors. WO2010017587 . 2010. [Internet]
  • Harris JM, De Veer SJ, Swedberg JE Serine protease inhibitors. WO2012083385 . 2012. [Internet]
  • Galemmo RA, Bansal N, Klampfer L, et al. Inhibitors of hepatocyte growth factor [hgf] and macrophage stimulating protein [msp] maturation. WO2015184222 . 2015. [Internet]
  • Venukadasula PKM, Owusu BY, Bansal N, et al. Design and Synthesis of Nonpeptide Inhibitors of Hepatocyte Growth Factor Activation. ACS Med Chem Lett. 2016;7(2):177–181.
  • Youngjoo B Hepsin inhibitors and pharmaceutical composition for prevention and treatment of the metastasis of prostate cancer. KR1020170045574 . 2017. [Internet]
  • Kwon H, Kim YH, Park K, et al. Structure-based design, synthesis, and biological evaluation of Leu-Arg dipeptide analogs as novel hepsin inhibitors. Bioorganic Med Chem Lett. 2016;26(2):310–314.
  • Vasioukhin VI, Chevillet JR Hepsin inhibitors. US9182402 . 2015. [Internet]
  • Chevillet JR, Park GJ, Bedalov A, et al. Identification and characterization of small-molecule inhibitors of hepsin. Mol Cancer Ther. 2008;7(10):3343–3351.
  • Rowan AD, Cawston TE, Milner JM, et al. Screening methods. WO2011023958 . 2011. [Internet]
  • Yuan C, Chen L, Meehan EJ, et al. Structure of catalytic domain of Matriptase in complex with Sunflower trypsin inhibitor-1. BMC Struct Biol. 2011;11(1):30.
  • Béliveau F, Tarkar A, Dion SP, et al. Discovery and development of TMPRSS6 inhibitors modulating hepcidin levels in human hepatocytes. Cell Chem Biol. 2019.
  • Goswami R, Mukherjee S, Ghadiyaram C, et al. Structure-guided discovery of 1,3,5 tri-substituted benzenes as potent and selective matriptase inhibitors exhibiting in vivo antitumor efficacy. Bioorg Med Chem. 2014;22(12):3187–3203.
  • Steinmetzer T, Schweinitz A, Stürzebecher A, et al. Secondary Amides of Sulfonylated 3-Amidinophenylalanine. New Potent and Selective Inhibitors of Matriptase †. J Med Chem. 2006;49(14):4116–4126.
  • Park YW, Kim S, Jo K, et al. Anticancer drug comprising inhibitor of TMPRSS4. US8778901 . 2014. [Internet]
  • Kang S, Min HJ, Kang MS, et al. Discovery of novel 2-hydroxydiarylamide derivatives as TMPRSS4 inhibitors. Bioorganic Med Chem Lett. 2013;23(6):1748–1751.
  • Kim S, Ko D, Lee Y, et al. Anti-cancer activity of the novel 2-hydroxydiarylamide derivatives IMD-0354 and KRT1853 through suppression of cancer cell invasion, proliferation, and survival mediated by TMPRSS4. Sci Rep. 2019;9(1):10003.
  • Benam KH 2-naphthimidamides, analogues thereof, and methods of treatment using same. WO2019241213 . 2019. [Internet]
  • Search of: Camostat | SARS-CoV-2 - List Results. ClinicalTrials.gov [Internet].
  • Search of: Nafamostat | SARS-CoV-2 - List Results. ClinicalTrials.gov [Internet].
  • Menou A, Duitman JW, Crestani B. The impaired proteases and anti-proteases balance in Idiopathic Pulmonary Fibrosis. Matrix Biol. 2018;68–69:382–403.
  • Sisson TH, Spagnolo P. Matriptase, protease-activated receptor 2, and idiopathic pulmonary fibrosis: further evidence for signaling pathway redundancy in this difficult-to-treat disease? Am J Respir Crit Care Med. 2016;193(8):816–817. American Thoracic Society.
  • Owusu BY, Thomas S, Venukadasula P, et al. Targeting the tumor-promoting microenvironment in METamplified NSCLC cells with a novel inhibitor of pro-HGF activation. Oncotarget. 2017;8(38):63014–63025.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.