742
Views
34
CrossRef citations to date
0
Altmetric
Review

Antimicrobial peptides (AMPs): a patent review (2015–2020)

&
Pages 931-947 | Received 15 Aug 2020, Accepted 12 Nov 2020, Published online: 07 Dec 2020

References

  • Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev. 2010 Sep;74(3):417–433.
  • Theuretzbacher U, Outterson K, Engel A, et al. The global preclinical antibacterial pipeline. Nat Rev Microbiol. 2020 May;18(5):275–285.
  • Hahn AW, Jain R, Spach DH. New approaches to antibiotic use and review of recently approved antimicrobial agents. Med Clin North Am. 2016 Jul;100(4):911–926.
  • Annunziato G. Strategies to overcome antimicrobial resistance (AMR) making use of non-essential target inhibitors: a review. Int J Mol Sci. 2019 Nov;20(23):5844–5869.
  • Annunziato G, Angeli A, D’Alba F, et al. Discovery of new potential anti-infective compounds based on carbonic anhydrase inhibitors by rational target-focused repurposing approaches. ChemMedChem. 2016 Jun;11(17):1904–1914.
  • Magalhães J, Annunziato G, Franko N, et al. Integration of Enhanced Sampling Methods with Saturation Transfer Difference Experiments to Identify Protein Druggable Pockets. J Chem Inf Model. 2018 Mar;58(3):710–723.
  • Annunziato G, Pieroni M, Benoni R, et al. Cyclopropane-1,2-dicarboxylic acids as new tools for the biophysical investigation of O -acetylserine sulfhydrylases by fluorimetric methods and saturation transfer difference (STD) NMR. J Enzyme Inhib Med Chem. 2016 Nov;31(4):78–87.
  • Magalhães J, Franko N, Annunziato G, et al. Discovery of novel fragments inhibiting O-acetylserine sulphhydrylase by combining scaffold hopping and ligand–based drug design. J Enzyme Inhib Med Chem. 2018 Sep;33(1):1444–1452.
  • Magalhães J, Franko N, Annunziato G, et al. Refining the structure−activity relationships of 2-phenylcyclopropane carboxylic acids as inhibitors of o-acetylserine sulfhydrylase isoforms. J Enzyme Inhib Med Chem. 2019 Dec;34(1):31–43.
  • Annunziato G, Giovati L, Angeli A, et al. Discovering a new class of antifungal agents that selectively inhibits microbial carbonic anhydrases. J Enzyme Inhib Med Chem. 2018 Dec;33(1):1537–1544.
  • Dindo M, Costanzi E, Pieroni M, et al. Biochemical characterization of aspergillus fumigatus AroH, a putative aromatic amino acid aminotransferase. Front Mol Biosci. 2018 Nov;5:104–116.
  • Pieroni M, Annunziato G, Beato C, et al. Rational design, synthesis, and preliminary structure–activity relationships of α-substituted-2-phenylcyclopropane carboxylic acids as inhibitors of salmonella typhimurium O-acetylserine sulfhydrylase. J Med Chem. 2016 Mar;59(6):2567–2578.
  • Magalhães J, Franko N, Raboni S, et al. Inhibition of nonessential bacterial targets: discovery of a novel serine O -acetyltransferase inhibitor. ACS Med Chem Lett. 2020;11(5):790–797.
  • Campanini B, Benoni R, Bettati S, et al. Moonlighting O-acetylserine sulfhydrylase: new functions for an old protein. Biochim Biophys Acta BBA Proteins Proteomics. 2015 Sep; 1854(9):1184–1193. .
  • Magana M, Pushpanathan M, Santos AL, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020 Sep;3099(20):30327–30333.
  • Mahlapuu M, Håkansson J, Ringstad L, et al. Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol. 2016 Dec;6:194–206.
  • Diamond G, Beckloff N, Weinberg A, et al. The roles of antimicrobial peptides in innate host defense. Curr Pharm Des. 2009 Sep;15(21):2377–2392.
  • Kondejewski LH, Farmer SW, Wishart DS, et al. Gramicidin S is active against both gram-positive and gram-negative bacteria. Int J Pept Protein Res. 2009 Jun; 47(6):460–466. .
  • Hultmark D, Steiner H, Rasmuson T, et al. Insect immunity. purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of hyalophora cecropia. Eur J Biochem. 1980 May;106(1):7–16.
  • Zasloff M, Matsuzaki K. Antimicrobial peptides of multicellular organisms: my perspective. Adv Exp Med Biol. 2019;1117:3–6.
  • Cardoso MH, Orozco RQ, Rezende SB, et al. Computer-aided design of antimicrobial peptides: are we generating effective drug candidates? Front Microbiol. 2020 Jan;10:3097–3112.
  • Som A, Vemparala S, Ivanov I, et al. Synthetic mimics of antimicrobial peptides. Biopolymers. 2008 Jan;90(2):83–93.
  • Bahar A, Ren D. Antimicrobial peptides. Pharmaceuticals. 2013 Nov;6(12):1543–1575.
  • Haney EF, Straus SK, Hancock REW. Reassessing the host defense peptide landscape. Front Chem. 2019 Feb;7:43–65.
  • Wang Z, Wang G. APD: the antimicrobial peptide database. Nucleic Acids Res. 2004;32:D590–D592. .
  • Dathe M, Nikolenko H, Meyer J, et al. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Lett. 2001;501(2–3):146–150.
  • Kumar P, Kizhakkedathu J, Straus S. Antimicrobial peptides: diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018 Jan;8(1):4–28.
  • Lei J, Sun L, Huang S, et al. The antimicrobial peptides and their potential clinical applications. Am J Transl Res. 2019 Jul;11(7):3919–3931.
  • Toke O. Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers. 2005;80(6):717–735.
  • Sato H, Feix JB. Peptide–membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim Biophys Acta BBA Biomembr. 2006 Sep; 1758(9):1245–1256. .
  • Chang WK, Wimley WC, Searson PC, et al. Characterization of antimicrobial peptide activity by electrochemical impedance spectroscopy. Biochim Biophys Acta BBA Biomembr. 2008 Oct; 1778(10):2430–2436.
  • Wimley WC. Describing the mechanism of antimicrobial peptide action with the interfacial activity model. ACS Chem Biol. 2010 Aug;5(10):905–917.
  • Yount N, Yeaman M. Immunocontinuum: perspectives in antimicrobial peptide mechanisms of action and resistance. Protein Pept Lett. 2005 Jan;12(1):49–67.
  • Le CF, Fang CM, Sekaran SD. Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother. 2017;61(4):e02340–16.
  • Schauber J, Gallo RL. Antimicrobial peptides and the skin immune defense system. J Allergy Clin Immunol. 2008 Aug;122(2):261–266.
  • Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002 Jan;415(6870):389–395.
  • Abraham SN, Miao Y. The nature of immune responses to urinary tract infections. Nat Rev Immunol. 2015 Oct;15(10):655–663.
  • Hamilos G, Samonis G, Kontoyiannis DP. Recent advances in the use of Drosophila Melanogaster as a model to study immunopathogenesis of medically important filamentous fungi. Int J Microbiol. 2012 Feb;2012:1–10.
  • Van Compernolle SE, Taylor RJ, Oswald-Richter K, et al. Antimicrobial peptides from amphibian skin potently inhibit human immunodeficiency virus infection and transfer of virus from dendritic cells to T cells. J Virol. 2005;79(18):11598–11606.
  • Elinson RP, Del Pino EM. Developmental diversity of amphibians: developmental diversity of amphibians. Wiley Interdiscip Rev Dev Biol. 2012 Jun;1(3):345–369.
  • Helbing CC, Hammond SA, Jackman SH, et al. Antimicrobial peptides from rana [Lithobates] catesbeiana: gene structure and bioinformatic identification of novel forms from tadpoles. Sci Rep. 2019 Feb;9(1):1529–1541.
  • Calhoun DM, Woodhams D, Howard C, et al. Role of antimicrobial peptides in amphibian defense against trematode infection. EcoHealth. 2016 Jun;13(2):383–391.
  • Patocka J, Nepovimova E, Klimova B, et al. Antimicrobial peptides: amphibian host defense peptides. Curr Med Chem. 2019;26(32):5924–5946.
  • Birol I, Hammond SA, Helbing CC, et al. Antimicrobial peptide. WO2020118427A1. 2020.
  • Kumar KS Therapeutic compositions of antimicrobial peptides. WO2019077634A2. 2019.
  • Abraham P, George S, Kumar KS. Novel antibacterial peptides from the skin secretion of the indian bicoloured frog clinotarsus curtipes. Biochimie. 2014;97:44–151.
  • Gebreyohannes G, Nyerere A, Bii C, et al. Challenges of intervention, treatment, and antibiotic resistance of biofilm-forming microorganisms. Heliyon. 2019;5(8):e02192.
  • Abraham P, Sundaram ARA, George S, et al. Structure-activity relationship and mode of action of a frog secreted antibacterial peptide B1CTcu5 using synthetically and modularly modified or deleted (SMMD) peptides. Plos One. 2015;10(5):e0124210.
  • Kumar V, Holthausen D, Jacob J, et al. Host defense peptides from asian frogs as potential clinical therapies. Antibiotics. 2015;4(2):136–159.
  • Zaet A, Dartevelle P, Daouad F, et al. D-Cateslytin, a new antimicrobial peptide with therapeutic potential. Sci Rep. 2017;7(1):15199. .
  • Sanil G, Vineethkumar TV Therapeutic compositions from the Brevinin-1 family of peptides and uses thereof. WO2017216810A1. 2017.
  • Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server. In: Walker JM, editor. The proteomics protocols handbook. Totowa, NJ.: Humana Press; 2005. p. 571–607.
  • Cherkasov A, Fjell C, Hancock REW, et al. Small cationic antimicrobial peptides. US9707282B2. 2017.
  • Haney EF, Hancock REW. Peptide design for antimicrobial and immunomodulatory applications: antimicrobial and immunomodulatory applications of peptides. Biopolymers. 2013;100(6):572–583.
  • Kościuczuk EM, Lisowski P, Jarczak J, et al. Cathelicidins: family of antimicrobial peptides. A Review Mol Biol Rep. 2012;39(12):10957–10970.
  • Romeo D, Skerlavaj B, Bolognesi M, et al. Structure and bactericidal activity of an antibiotic dodecapeptide purified from bovine neutrophils. J Biol Chem. 1988;263(20):9573–9575.
  • Siddiqui AH, Koirala J. Methicillin resistant staphylococcus aureus (MRSA). In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2020.
  • Hidron A, Moanna A, Kempker R, et al. Methicillin-resistant staphylococcus aureus in HIV-infected patients. Infect Drug Resist. 2010;3:73–86.
  • Mishra B, Wang G. Titanium surfaces immobilized with the major antimicrobial fragment FK-16 of human cathelicidin LL-37 are potent against multiple antibiotic-resistant bacteria. Biofouling. 2017;33(7):544–555.
  • Guangshun W. Anti-microbial Peptides and Coating. US10144767B2. 2018.
  • Abbassi F, Lequin O, Piesse C, et al. Temporin-SHf, a new type of phe-rich and hydrophobic ultrashort antimicrobial peptide. J Biol Chem. 2010;285(22):16880–16892.
  • Sun H, Greathouse DV, Andersen OS, et al. The preference of tryptophan for membrane interfaces: insights from N-methylation of tryptophans in gramicidin channels. J Biol Chem. 2008;283(32):22233–22243.
  • Mysore Vishakante GT, Pirttilä AM New antimicrobial peptides, their variants and uses. WO2017/001730 A1. 2017.
  • Jurikova T, Mlcek J, Skrovankova S, et al. Black crowberry (Empetrum Nigrum L.) flavonoids and their health promoting activity. Molecules. 2016 Dec;21(12):1685–1696.
  • Tejesvi MV, Picart P, Kajula M, et al. Identification of antibacterial peptides from endophytic microbiome. Appl Microbiol Biotechnol. 2016;100(21):9283–9293.
  • Monteiro C, Costa F, Pirttilä AM, et al. Prevention of urinary catheter-associated infections by coating antimicrobial peptides from crowberry endophytes. Sci Rep. 2019 Jul;9(1):10753–10767.
  • Gamage DG, Gunaratne A, Periyannan GR, et al. Applicability of instability index for in vitro protein stability prediction. Protein Pept Lett. 2019;26(5):339–347.
  • Thermostability IA. Aliphatic index of globular proteins. J Biochem. 1980;88(6):1895–1898.
  • Cheng KC, Xiaoyan L. Bacteriocidal peptides and uses thereof. WO2017/091734A2. 2017.
  • Li W, Tailhades J, O’Brien-Simpson NM, et al. Proline-rich antimicrobial peptides: potential therapeutics against antibiotic-resistant bacteria. Amino Acids. 2014;46(10):2287–2294.
  • Li WF, Ma GX, Zhou XX. Apidaecin-type peptides: biodiversity, structure–function relationships and mode of action. Peptides. 2006;27(9):2350–2359.
  • Hilpert K, Hoffmann R, Knappe D, et al. Modified apidaecin derivatives as antibiotic peptides. US2015/0344524 A1. 2015.
  • Seo JK, Go HJ, Kim CH, et al. antimicrobial peptide, hdmolluscidin, purified from the gill of the abalone, haliotis discus. Fish Shellfish Immunol. 2016;52:289–297.
  • Zannella C, Mosca F, Mariani F, et al. microbial diseases of bivalve mollusks: infections, immunology and antimicrobial defense. Mar Drugs. 2017;15(6):182–208.
  • Castillo MG, Salazar KA, Joffe NR. The immune response of cephalopods from head to foot. Fish Shellfish Immunol. 2018;58(3):145–160.
  • Sang-Man C, In-Ah L, Ki-Young L, et al. Antimicrobial peptide analogues derived from abalone (Haliotis discus) and antimicrobial pharmaceutical composition containing the same. US10077293 B2. 2018.
  • Strøm MB, Haug BE, Skar ML, et al. The pharmacophore of short cationic antibacterial peptides. J Med Chem. 2003;46(9):1567–1570.
  • Rikeshwer P, Pasha S, Joshi S. N-terminally modified linear and branched polyamine conjugated peptidomimetics as antimicrobials agents. US2016/0376306 A1. 2016.
  • Chia B, Cheng S. Antimicrobial peptidomimetics. WO2019/027366 A1. 2019.
  • Bernardini F, Lederer A, Luther A, et al. Beta-hairpin peptidomimetics. WO2016/150576 A1. 2016.
  • Mendez-Samperio P. Peptidomimetics as a new generation of antimicrobial agents: current progress. Infect Drug Resist. 2014 Aug;229–237. DOI:10.2147/IDR.S49229
  • Hu H, Kofoed C, Li M, et al. computational evolution of threonine-rich β-hairpin peptides mimicking specificity and affinity of antibodies. ACS Cent Sci. 2019;5(2):259–269.
  • Culyba MJ, Mo CY, Kohli RM. Targets for combating the evolution of acquired antibiotic resistance. Biochemistry. 2015 May;54(23):3573–3582.
  • Gordon YJ, Romanowski EG, McDermott AM. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2004 Aug;30:505–515.,
  • Steckbeck JD, Deslouches B, Montelaro RC. Antimicrobial peptides: new drugs for bad bugs?. Exp Opin Bio Ther. 2014;14(1):11–14.
  • Liu D, DeGrado WF. De novo design, synthesis and characterization of antimicrobial beta-peptides. J Am Chem Soc. 2001;1(23):7553–7559.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.