547
Views
18
CrossRef citations to date
0
Altmetric
Review

An updated patent review of monoacylglycerol lipase (MAGL) inhibitors (2018-present)

, , ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 153-168 | Received 25 Jul 2020, Accepted 20 Oct 2020, Published online: 01 Nov 2020

References

  • Pertwee RG. Cannabinoid pharmacology: the first 66 years. Br J Pharmacol. 2009;147(S1):S163–S171.
  • Blankman JL, Simon GM, Cravatt BF, et al. Profile of brain enzymes that hydrolyze the endocannabinoid 2-arachidonoylglycerol. Chem Biol. 2007;14(12):1347–1356.
  • Savinainen JR, Saario SM, Laitinen JT. The serine hydrolases MAGL, ABHD6 and ABHD12 as guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol. 2012;204(2):267–276.
  • Zoerner AA, Gutzki F-M, Batkai S, et al. Quantification of endocannabinoids in biological systems by chromatography and mass spectrometry: A comprehensive review from an analytical and biological perspective. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811(11):706–723.
  • Gonsiorek W, Lunn C, Fan X, et al. Endocannabinoid 2-arachidonyl glycerol is a full agonist through human type 2 cannabinoid receptor: antagonism by anandamide. Mol Pharmacol. 2000;57:1045–1050.
  • Labar G, Bauvois C, Borel F, et al. Crystal structure of the human monoacylglycerol lipase, a key actor in endocannabinoid signaling. ChemBioChem. 2010;11(2):218–227. .
  • Bertrand T, Augé F, Houtmann J, et al. Structural Basis for Human Monoglyceride Lipase Inhibition. J Mol Biol. 2010;396(3):663–673. .
  • King AR, Lodola A, Carmi C, et al. A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors. Br J Pharmacol. 2009;157(6):974–983. .
  • Kalant H. Adverse effects of cannabis on health: an update of the literature since 1996. Prog Neuro Psychopharmacol Biol Psychiatry. 2004;28(5):849–863.
  • Mulvihill MM, Nomura DK. Therapeutic potential of monoacylglycerol lipase inhibitors. Life Sci. 2013;92(8–9):492–497.
  • Nomura DK, Morrison BE, Blankman JL, et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science. 2011;334(6057):809–813. .
  • Clapper JR, Henry CL, Niphakis MJ, et al. Monoacylglycerol lipase inhibition in human and rodent systems supports clinical evaluation of endocannabinoid modulators. J Pharmacol Exp Ther. 2018;367(3):494–508.
  • Alhouayek M, Masquelier J, Muccioli GG. Controlling 2-arachidonoylglycerol metabolism as an anti-inflammatory strategy. Drug Discov Today. 2014;19(3):295–304.
  • Di Marzo V, Stella N, Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat Rev Neurosci. 2015;16(1):30–42.
  • Wilkerson JL, Niphakis MJ, Grim TW, et al. The selective monoacylglycerol lipase inhibitor MJN110 produces opioid-sparing effects in a mouse neuropathic pain model. J Pharmacol Exp Ther. 2016;357(1):145–156.
  • Crowe MS, Leishman E, Banks ML, et al. Combined inhibition of monoacylglycerol lipase and cyclooxygenases synergistically reduces neuropathic pain in mice. Br J Pharmacol. 2015;172(7):1700–1712. .
  • Kinsey SG, Long JZ, O’Neal ST, et al. Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain. J Pharmacol Exp Ther. 2009;330(3):902–910.
  • Long JZ, Li W, Booker L, et al. Selective blockade of 2-arachidonoylglycerol hydrolysis produces cannabinoid behavioral effects. Nat Chem Biol. 2009;5(1):37–44. .
  • Curry ZA, Wilkerson JL, Bagdas D, et al. monoacylglycerol lipase inhibitors reverse paclitaxel-induced nociceptive behavior and proinflammatory markers in a mouse model of chemotherapy-induced neuropathy. J Pharmacol Exp Ther. 2018;366(1):169–183.
  • Thompson AL, Grenald SA, Ciccone HA, et al. The endocannabinoid system alleviates pain in a murine model of cancer-induced bone pain. J Pharmacol Exp Ther. 2020;373(2):230–238.
  • Hernández-Torres G, Cipriano M, Hedén E, et al. A reversible and selective inhibitor of monoacylglycerol lipase ameliorates multiple sclerosis. Angew Chem Int Educ. 2014;53(50):13765–13770. .
  • Chen R, Zhang J, Wu Y, et al. Monoacylglycerol lipase is a therapeutic target for alzheimer’s disease. Cell Rep. 2012;2(5):1329–1339.
  • Pasquarelli N, Engelskirchen M, Hanselmann J, et al. Evaluation of monoacylglycerol lipase as a therapeutic target in a transgenic mouse model of ALS. Neuropharmacology. 2017;124:157–169.
  • Mounsey RB, Mustafa S, Robinson L, et al. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Exp Neurol. 2015;273:36–44.
  • Covey DP, Dantrassy HM, Yohn SE, et al. Inhibition of endocannabinoid degradation rectifies motivational and dopaminergic deficits in the Q175 mouse model of Huntington’s disease. Neuropsychopharmacology. 2018;43(10):2056–2063.
  • Taschler U, Radner FPW, Heier C, et al. Monoglyceride lipase deficiency in mice impairs lipolysis and attenuates diet-induced insulin resistance. J Biol Chem. 2011;286(20):17467–17477.
  • Douglass JD, Zhou YX, Wu A, et al. Global deletion of MGL in mice delays lipid absorption and alters energy homeostasis and diet-induced obesity. J Lipid Res. 2015;56(6):1153–1171.
  • Berdan CA, Erion KA, Burritt NE, et al. Inhibition of monoacylglycerol lipase activity decreases glucose-stimulated insulin secretion in INS-1 (832/13) cells and rat islets. Andrews Z, editor. PLoS One. 2016;11(2):e0149008. .
  • Qin H, Ruan Z. The role of monoacylglycerol lipase (MAGL) in the cancer progress. Cell Biochem Biophys. 2014;70(1):33–36.
  • Nomura DK, Long JZ, Niessen S, et al., Monoacylglycerol lipase regulates a fatty acid network that promotes cancer pathogenesis. Cell. 140(1): 49–61. 2010.
  • Labar G, Wouters J, Lambert DMA. Review on the monoacylglycerol lipase: at the interface between fat and endocannabinoid signalling. Curr Med Chem. 2010;17(24):2588–2607.
  • Deng H, Li W. Monoacylglycerol lipase inhibitors: modulators for lipid metabolism in cancer malignancy, neurological and metabolic disorders. Acta Pharm Sin B. 2020;10(4):582–602.
  • Tuccinardi T, Granchi C, Rizzolio F, et al. Identification and characterization of a new reversible MAGL inhibitor. Bioorganic Med Chem. 2014;22(13):3285–3291.
  • Granchi C, Rizzolio F, Bordoni V, et al. 4-Aryliden-2-methyloxazol-5(4H)-one as a new scaffold for selective reversible MAGL inhibitors. J Enzyme Inhib Med Chem. 2016;31(1):137–146. .
  • Granchi C, Rizzolio F, Palazzolo S, et al. Structural optimization of 4-chlorobenzoylpiperidine derivatives for the development of potent, reversible, and selective monoacylglycerol lipase (MAGL) inhibitors. J Med Chem. 2016;59(22):10299–10314. .
  • Bononi G, Granchi C, Lapillo M, et al. Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. Eur J Med Chem. 2018;157:817–836. .
  • Aida J, Fushimi M, Kusumoto T, et al. Design, synthesis, and evaluation of piperazinyl pyrrolidin-2-ones as a novel series of reversible monoacylglycerol lipase inhibitors. J Med Chem. 2018;61(20):9205–9217.
  • Poli G, Lapillo M, Jha V, et al. Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. J Enzyme Inhib Med Chem. 2019;34(1):589–596.
  • Granchi C, Lapillo M, Glasmacher S, et al. Optimization of a benzoylpiperidine class identifies a highly potent and selective reversible monoacylglycerol lipase (MAGL) inhibitor. J Med Chem. 2019;62(4):1932–1958.
  • Zhi Z, Zhang W, Yao J, et al. Discovery of aryl formyl piperidine derivatives as potent, reversible, and selective monoacylglycerol lipase inhibitors. J Med Chem. 2020;63(11):5783–5796. .
  • Zhu B, Connolly PJ, Zhang S-P, et al. The discovery of diazetidinyl diamides as potent and reversible inhibitors of monoacylglycerol lipase (MAGL). Bioorg Med Chem Lett. 2020;30(12):127198.
  • Zhu B, Connolly PJ, Zhang Y-M, et al. The discovery of azetidine-piperazine di-amides as potent, selective and reversible monoacylglycerol lipase (MAGL) inhibitors. Bioorg Med Chem Lett. 2020;30(14):127243.
  • Schlosburg JE, Blankman JL, Long JZ, et al. Chronic monoacylglycerol lipase blockade causes functional antagonism of the endocannabinoid system. Nat Neurosci. 2010;13:1113–1119.
  • Navia-Paldanius D, Aaltonen N, Lehtonen M, et al. Increased tonic cannabinoid CB1R activity and brain region-specific desensitization of CB1R Gi/o signaling axis in mice with global genetic knockout of monoacylglycerol lipase. Eur J Pharm Sci. 2015;77:180–188.
  • Imperatore R, Morello G, Luongo L, et al. Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1 R signaling and anxiety-like behavior. J Neurochem. 2015;135(4):799–813. .
  • Anavi-Goffer S Genetic susceptibility diagnosis and treatment of mental disorders. WO2018060766. 2018.
  • Granchi C, Caligiuri I, Minutolo F, et al. A patent review of Monoacylglycerol Lipase (MAGL) inhibitors (2013-2017). Expert Opin Ther Pat. 2017;27(12):1341‐1351. .
  • Hoffmann-La Roche Inc. Piperazine derivatives as MAGL inhibitors. WO2019072785. 2019.
  • Muccioli GG, Labar G, Lambert DM. CAY10499, a novel monoglyceride lipase inhibitor evidenced by an expeditious MGL assay. Chembiochem. 2008;9(16):2704–2710.
  • Abide Therapeutics Inc. MAGL inhibitors. US2018134674. 2018.
  • Abide Therapeutics Inc. MAGL inhibitors. US2018134675. 2018.
  • Niphakis MJ, Johnson DS, Ballard TE, et al. O-hydroxyacetamide carbamates as a highly potent and selective class of endocannabinoid hydrolase inhibitors. ACS Chem Neurosci. 2012;3(5):418‐426. .
  • Abide Therapeutics Inc. MAGL inhibitors. WO2019222266. 2019.
  • Abide Therapeutics Inc. Pyrazole MAGL inhibitors. WO2018217805. 2018.
  • Abide Therapeutics Inc. Pyrazole MAGL inhibitors. WO2018217809. 2018.
  • Lundbeck La Jolla Research Center, Inc. Methods of treating disease with MAGL inhibitors. WO2020112905. 2020.
  • Takeda Pharmaceutical Company Limited. Heterocyclic compound. WO2019065791. 2019.
  • Abide Therapeutics Inc. MAGL inhibitors. WO2018093949. 2018.
  • Pfizer Inc. 1,1,1-Trifluoro-3-hydroxypropan-2-yl carbamate derivatives as MAGL inhibitors. WO2018134695. 2018.
  • Pfizer Inc. Heterocyclic spiro compounds as MAGL inhibitors. WO2018134698. 2018.
  • Abide Therapeutics Inc. Spirocycle compounds and methods of making and using same. WO2019046318. 2019.
  • Abide Therapeutics Inc. Spirocycle compounds and methods of making and using same. WO2019046330. 2019.
  • Pfizer Inc. Heterocyclic spiro compounds as MAGL inhibitors. WO2020016710. 2020.
  • Pfizer Inc. 1,1,1-Trifluoro-3-hydroxypropan-2-yl carbamate derivatives and 1,1,1-trifluoro-4-hydroxybutan-2-yl carbamate derivatives as MAGL inhibitors. WO2017021805. 2017.
  • Hoffmann-La Roche Inc. New heterocyclic compounds. WO2019105915. 2019.
  • Hoffmann-La Roche Inc. Octahydropyrido[1,2-alpha] pyrazines as MAGL inhibitors. WO2019134985. 2019.
  • Hoffmann-La Roche Inc. Oxazine monoacylglycerol lipase (MAGL) inhibitors. WO2019180185. 2019.
  • Hoffmann-La Roche Inc. New heterocyclic compounds as monoacylglycerol lipase inhibitors. WO2020035424. 2020.
  • Hoffmann-La Roche Inc. New heterocyclic compounds as monoacylglycerol lipase inhibitors. WO2020035425. 2020.
  • Hoffmann-La Roche Inc. New heterocyclic compounds. WO2020104494. 2020.
  • Abide Therapeutics Inc. Piperazine carbamates and methods of making and using same. WO2018053447. 2018.
  • Abide Therapeutics Inc. Dual MAGL and FAAH inhibitors. US2018256566. 2018.
  • Malamas M, Makriyannis A, Lamani L, et al.ABHD6 and dual ABHD6/MGL inhibitors and their uses. US20190152917. 2019.
  • Chang JW, Cognetta AB 3rd, Niphakis MJ, et al. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition. ACS Chem Biol. 2013;8(7):1590–1599. .
  • McAllister LA, Butler CR, Mente S, et al. Discovery of trifluoromethyl glycol carbamates as potent and selective covalent monoacylglycerol lipase (MAGL) inhibitors for treatment of neuroinflammation. J Med Chem. 2018;61(7):3008–3026. .
  • González-Bello C. Designing irreversible inhibitors–worth the effort? ChemMedChem. 2016;11(1):22–30.
  • Lodola A, Capoferri L, Rivara S, et al. Quantum mechanics/molecular mechanics modeling of fatty acid amide hydrolase reactivation distinguishes substrate from irreversible covalent inhibitors. J Med Chem. 2013;56(6):2500–2512.
  • Long JZ, Nomura DK, Vann RE, et al. Dual blockade of FAAH and MAGL identifies behavioral processes regulated by endocannabinoid crosstalk in vivo. Proc Natl Acad Sci U S A. 2009;106(48):20270–20275. .
  • Cisar JS, Weber OD, Clapper JR, et al. Identification of ABX-1431, a selective inhibitor of monoacylglycerol lipase and clinical candidate for treatment of neurological disorders. J Med Chem. 2018;61(20):9062–9084.
  • https://www.clinicaltrials.gov/ct2/search, cited 2020 Jun 26.
  • Hicks JW, Parkes J, Tong J, et al. Radiosynthesis and ex vivo evaluation of [(11)C-carbonyl]carbamate- and urea-based monoacylglycerol lipase inhibitors. Nucl Med Biol. 2014;41(8):688–694. .
  • Grimsey NL, Savinainen JR, Attili B, et al. Regulating membrane lipid levels at the synapse by small-molecule inhibitors of monoacylglycerol lipase: new developments in therapeutic and PET imaging applications. Drug Discov Today. 2020;25(2):330–343.
  • Varlow C, Boileau I, Wey HY, et al. Classics in neuroimaging: imaging the endocannabinoid pathway with PET. ACS Chem Neurosci. 2020;11(13):1855–1862.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.