198
Views
4
CrossRef citations to date
0
Altmetric
Review

Recent progress in the development of β2 adrenergic receptor agonists: a patent review (2015-2020)

, , , , &
Pages 239-246 | Received 20 Aug 2020, Accepted 14 Dec 2020, Published online: 23 Dec 2020

References

  • Lefkowitz RJ. A brief history of G-protein coupled receptors (Nobel Lecture). Angew Chem Int Ed Engl. 2013;52(25):6366–6378.
  • Pierce KL, Premont RT, Lefkowitz RJ. Seven-transmembrane receptors. Nat Rev Mol Cell Biol. 2002;3(9):639–650.
  • Hauser AS, Attwood MM, Rask-Andersen M, et al. Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov. 2017;16(12):829–842.
  • Carmona-Rosas G, Alcantara-Hernandez R, Hernandez-Espinoza DA. Dissecting the signaling features of the multi-protein complex GPCR/β-arrestin/ERK1/2. Eur J Cell Biol. 2018;97(5):349–358.
  • Milligan G, Svoboda P, Brown CM. Why are there so many adrenoceptor subtypes? Biochem Pharmacol. 1994;48(6):1059–1071.
  • Taylor MRG. Pharmacogenetics of the human beta-adrenergic receptors. Pharmacogenomics J. 2007;7(1):29–37.
  • Rasmussen SG, Choi HJ, Rosenbaum DM, et al., Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature. 2007; 450(7168): 383–387.
  • Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of an engineered human β2-adrenergic G protein-coupled receptor. Science. 2007;318(5854):1258–1265.
  • Zhang Y, Yang F, Ling S, et al. Single-particle cryo-EM structural studies of the β2 AR–Gs complex bound with a full agonist formoterol. Cell Discov. 2020;6(1):45.
  • Imai S, Yokomizo T, Kofuku Y, et al. Structural equilibrium underlying ligand-dependent activation of β2-adrenoreceptor. Nat Chem Biol. 2020;16(4):430–439.
  • Barnes PJ. Biochemical basis of asthma therapy. J Biol Chem. 2011;286(38):2899–32905.
  • Bouyssou T, Casarosa P, Naline E, et al. Pharmacological characterization of olodaterol, a novel inhaled β2-adrenoceptor agonist exerting a 24-hour-long duration of action in preclinical models. J Pharmacol Exp Ther. 2010;334(1):53–62.
  • Cazzola M, Page CP, Rogliani P, et al., β2-agonist therapy in lung disease. Am J Respir Crit Care Med. 2013; 187(7): 690–696.
  • Morgan SJ, Deshpande DA, Tiegs BC, et al. β-agonist-mediated relaxation of airway smooth muscle is protein kinase A-dependent. J Biol Chem. 2014;289(33):23065–23074.
  • Luttrell LM, Ferguson SS, Daaka Y, et al. β-arrestin-dependent formation of β2 adrenergic receptor-src protein kinase complexes. Science. 1999;283(5402):655–661.
  • Shenoy SK, Lefkowitz RJ. Receptor-specific ubiquitination of β-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem. 2005;280(15):15315–15324.
  • Penn RB. Embracing emerging paradigms of G protein-coupled receptor agonism and signaling to address airway smooth muscle pathobiology in asthma. Naunyn Schmiedebergs Arch Pharmacol. 2008;378(2):149–169.
  • Penn RB, Bond RA, Walker JK. GPCRs and arrestins in airways: implications for asthma. Handb Exp Pharmacol. 2014;219:387–403.
  • Walker JK, Penn RB, Hanania NA, et al. New perspectives regarding β2-adrenoceptor ligands in the treatment of asthma. Br J Pharmacol. 2011;163(1):18–28.
  • DeWire SM, Ahn S, Lefkowitz RJ, et al., β-arrestins and cell signaling. Annu Rev Physiol. 2007; 69(1): 483–510.
  • Smith JS, The RS. β-arrestins: multifunctional regulators of G protein-coupled receptors. J Biol Chem. 2016;291(17):8969–8977.
  • Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human β2 adrenergic G-protein-coupled receptor. Nature. 2007;450(7168):383–387.
  • Hanson MA, Cherezov V, Griffith MT, et al. A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure. 2008;16(6):897–905.
  • Wacker D, Fenalti G, Brown MA, et al. Conserved binding mode of human β2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc. 2010;132(33):11443–11445.
  • Rasmussen SG, Choi HJ, Fung JJ, et al. Structure of a nanobody-stabilized active state of the β2 adrenoceptor. Nature. 2011;469(7329):175–180.
  • Ring AM, Manglik A, Kruse AC, et al. Adrenaline-activated structure of β2-adrenoceptor stabilized by an engineered nanobody. Nature. 2013;502(7472):575–579.
  • Masureel M, Zou Y, Picard LP, et al. Structural insights into binding specificity, efficacy and bias of a β2AR partial agonist. Nat Chem Biol. 2007;14(11):1059–1066.
  • Rosenbaum DM, Zhang C, Lyons JA, et al. Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature. 2011;469(7329):236–240.
  • Weichert D, Kruse AC, Manglik A, et al. Covalent agonists for studying G protein-coupled receptor activation. Proc Natl Acad Sci U S A. 2014;111(29):10744–10748.
  • Ishchenko A, Stauch B, Han GW, et al. Toward G protein-coupled receptor structure-based drug design using X-ray lasers. IUCrJ. 2019;6(6):1106–1119.
  • Baur F, Beattie D, Beer D, et al., The identification of indacaterol as an ultralong-acting inhaled β2 adrenoceptor agonist. J Med Chem. 2010; 53(9): 3675–3684.
  • Hoenke C, Bouyssou T, Tautermann CS, et al. Use of 5-hydroxy-4H-benzo[1,4]oxazin-3-ones as β2-adrenoceptor agonists. Bioorg Med Chem Lett. 2009;19(23):6640–6644.
  • Bouyssou T, Hoenke C, Ruldof K, et al., Discovery of olodaterol, a novel inhaled β2-adrenoceptor agonist with a 24 h bronchodilatory efficacy. Bioorg Med Chem Lett. 2010; 20(4): 1410–1414.
  • Glossop PA, Lane CAL, Price DA, et al. Inhalation by design: novel ultra-long-acting β2 adrenoreceptor agonists for inhaled once-daily treatment of asthma and chronic obstructive pulmonary disease that utilize a sulfonamide agonist headgroup. J Med Chem. 2010;53(18):6640–6652.
  • Kikkawa H, Naito K, Ikezawa K. Tracheal relaxing effects and β2-selectivity of TA-2005, a newly developed bronchodilating agent, in isolated guinea pig tissues. Jpn J Pharmcol 1991;57(2):175–185.
  • Jacobsen JR, Choi SK, Combs J, et al. A multivalent approach to the discovery of long-acting β2-adrenoceptor agonists for the treatment of asthma and COPD. Bioorg Med Chem Lett. 2012;22(2):1213–1218.
  • Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8(3):183–192.
  • Chung KF, Wenzel SE, Brozek JL, et al. International ERS/ATS guidelines on definition, evaluation and treatment of severe asthma. Eur Respir J. 2014;43(2):343–373.
  • Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45–56.
  • Pavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350–400.
  • Reddel HK, Bateman ED, Becker A, et al., A summary of the new GINA strategy: a roadmap to asthma control. Eur Respir J. 2015; 46(3): 622–639.
  • Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716–725.
  • Wu W, Bleecker E, Moore W, et al. Unsupervised phenotyping of severe asthma research program participants using expanded lung data. J Allergy Clin Immunol. 2014;133(5):1280–1288.
  • Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med. 2006;355(21):2226–2235.
  • Hogg JC. Pathophysiology of airflow limitation in chronic obstructive pulmonary disease. Lancet. 2004;364(9435):709–721.
  • Pocket guide for asthma management and prevention. Available from: https://ginasthma.org/pocket-guide-for-asthma-management-and-prevention/( accessed July 16, 2020).
  • Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–178.
  • Jaakkola MS, Jaakkola JJ. Impact of smoke-free workplace legislation on exposures and health: possibilities for prevention. Eur Respir J. 2006;28(2):397–408.
  • Liang XM, Zhou WJ, Liu YF, et al. β2-adrenergic receptor agonist in rhizoma curcumae and application thereof. CN109806254 (2019)
  • Li J, Zhao F, Li MZ, et al. Diarylheptanoids from the rhizomes of curcuma kwangsiensis. J Nat Prod. 2010;73(10):1667–1671.
  • Xiang L, Jin TY, Shen T, et al. β2-AR exciting and anti-inflammatory dual-function alkaloid and application thereof. CN107043371 (2017)
  • Jin TY, Lin SQ, Jin CR, et al. Catecholic isoquinolines from portulaca oleracea and their anti-inflammatory and β2 adrenergic receptor agonist activity. J Nat Prod. 2018;81(4):768–777.
  • Wet YG, Qiu GP, Lei BL, et al. Benzoheterocycle derivative having β2 agonist activity, preparation method, and application thereof. CN106554350A (2017)
  • Sunahara R, Huebner H, Shonberg J, et al. Beta-2 selective adrenergic receptor agonists. WO2019112913 (2019)
  • Cheng MS, Pan L, Hu YH, et al. 2-amino-2-quinolinoethanol beta2-receptor agonist and preparation method and application thereof. CN110343068 (2019)
  • Ge XY, Woo AY, Xing G, et al. Synthesis and biological evaluation of β2-adrenoceptor agonists bearing the 2-amino-2-phenylethanol scaffold. Eur J Med Chem. 2018;152:424–435.
  • Bateman ED, Hurd SS, Barnes PJ, et al. Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J. 2008;31(1):143–178.
  • Nelson HS, Weiss ST, Bleecker ER, et al. The salmeterol multicenter asthma research trial: a comparison of usual pharmacotherapy for asthma or usual pharmacotherapy plus salmeterol. Chest. 2006;129(1):15–26.
  • Kruse AC, Hu J, Pan AC, et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482(7386):552–556.
  • Thorsen TS, Matt R, Weis WI, et al. Modified T4 lysozyme fusion proteins facilitate g protein-coupled receptor crystallogenesis. Structure. 2014;22(11):1657–1664.
  • Liu H, Hofmann J, Fish I, et al. Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc Natl Acad Sci U S A. 2018;115(47):12046–12050.
  • Tykhonivska N Pharmaceutical composition medicinal product and method of treatment of bronchopulmonary obstructive diseases. WO2020031148 (2020)
  • Hughes AD, Byun D, Jacobsen JR, et al. Diamide compounds having muscarinic receptor antagonist and beta2 adrenergic receptor agonist activity. US20150274697A1 (2015)
  • Puig DC, Aiguade BJ, Gual RS, et al. New bicyclic derivatives having beta2 adrenergic agonist and M3 muscarinic antagonist activities. WO2016046390A1 (2016)
  • Raccati F, Rizzi A, Carzaniga L, et al. Compounds having muscarinic receptor antagonist and beta2 adrenergic receptor agonist activity. WO2016128456A1 (2016)
  • Wei YG, Qiu GP, Lei BL, et al. Benzo ring derivatives with β2 receptor agonist and M3 receptor antagonist activities and use thereof in medicine. WO2017012489A1 (2017)
  • Billington CK, Penn RB, Hall IP. β2 agonists. Page C, Barnes P, editors. Pharmacology and therapeutics of asthma and COPD. handbook of experimental pharmacology. Vol. 237, Springer, Cham, 2016. 10.1007/164_2016_64

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.