465
Views
1
CrossRef citations to date
0
Altmetric
Review

Inhibitors of prostate-specific membrane antigen in the diagnosis and therapy of metastatic prostate cancer – a review of patent literature

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 525-547 | Received 14 Oct 2020, Accepted 15 Jan 2021, Published online: 16 Apr 2021

References

  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70(1):p. 7–30.
  • National Cancer Institute. Available from:https://seer.cancer.gov/statfacts/html/prost.html
  • Bubendorf L, Schopfer A, Wagner U, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31(5):p. 578–583.
  • Partin AW, Kattan M, Subong EN, et al. Combination of prostate-specific antigen, clinical stage, and gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA. 1997;277(18):p. 1445–1451.
  • Herschman JD, Smith DS, Catalona WJ. Effect of ejaculation on serum total and free prostate-specific antigen concentrations. Urology. 1997;50(2):p. 239–243.
  • Nadler RB, Humphrey PA, Smith DS, et al. Effect of inflammation and benign prostatic hyperplasia on elevated serum prostate specific antigen levels. J Urol. 1995;154(2):p. 407–413.
  • Mistry K, Cable G. Meta-analysis of prostate-specific antigen and digital rectal examination as screening tests for prostate carcinoma. J Am Board Fam Pract. 2003;16(2):p. 95–101.
  • Carter RE, Feldman AR, Coyle JT. Prostate-specific membrane antigen is a hydrolase with substrate and pharmacologic characteristics of a neuropeptidase. Proc Natl Acad Sci U S A. 1996;93(2):p. 749–753.
  • Silver DA, Pellicer I, Fair WR, et al. Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res. 1997;3(1):p. 81–85.
  • O’Keefe DS, Bacich DJ, Heston WD. Comparative analysis of prostate-specific membrane antigen (PSMA) versus a prostate-specific membrane antigen-like gene. Prostate. 2004;58(2):p. 200–210.
  • Liu H, Rajasekaran AK, Moy P, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen. Cancer Res. 1998;58(18):p. 4055–4060.
  • Mesters JR, Barinka C, Li W, et al. Structure of glutamate carboxypeptidase II, a drug target in neuronal damage and prostate cancer. Embo J. 2006;25(6):p. 1375–1384.
  • Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91(3):p. 528–539.
  • Kwon H, Lim H, Ha H, et al. Structure-activity relationship studies of prostate-specific membrane antigen (PSMA) inhibitors derived from α-amino acid with (S)- or (R)-configuration at P1ʹ region. Bioorg Chem. 2020;104:p. 104304.
  • Kwon H, Son SH, Byun Y. Prostate-specific membrane antigen (PSMA)-targeted radionuclide probes for imaging and therapy of prostate cancer. Asian J Org Chem. 2019;8(9):p. 1588–1600.
  • Barinka C, Byun Y, Dusich CL, et al. Interactions between human glutamate carboxypeptidase II and urea-based inhibitors: structural characterization. J Med Chem. 2008;51(24):p. 7737–7743.
  • Kozikowski AP, Nan F, Conti P, et al. Design of remarkably simple, yet potent urea-based inhibitors of glutamate carboxypeptidase II (NAALADase). J Med Chem. 2001;44(3):p. 298–301.
  • Kim K, Kwon H, Barinka C, et al. Novel β- and γ-amino acid-derived inhibitors of prostate-specific membrane antigen. J Med Chem. 2020;63(6):p. 3261–3273.
  • Duan X, Liu F, Kwon H, et al. (S)-3-(Carboxyformamido)-2-(3-(carboxymethyl)ureido)propanoic acid as a novel psma targeting scaffold for prostate cancer imaging. J Med Chem. 2020;63(7):p. 3563–3576.
  • Kelly J, Amor-Coarasa A, Nikolopoulou A, et al. Synthesis and pre-clinical evaluation of a new class of high-affinity 18F-labeled PSMA ligands for detection of prostate cancer by PET imaging. Eur J Nucl Med Mol Imaging. 2017;44(4):p. 647–661.
  • Barinka C, Novakova Z, Hin N, et al. Structural and computational basis for potent inhibition of glutamate carboxypeptidase II by carbamate-based inhibitors. Bioorg Med Chem. 2019;27(2):p. 255–264.
  • Yang X, Mease RC, Pullambhatla M, et al. [18F]Fluorobenzoyllysinepentanedioic acid carbamates: new scaffolds for positron emission tomography (pet) imaging of prostate-specific membrane antigen (PSMA). J Med Chem. 2016;59(1):p. 206–218.
  • Jackson PF, Cole DC, Slusher BS, et al. Design, synthesis, and biological activity of a potent inhibitor of the neuropeptidase N-acetylated alpha-linked acidic dipeptidase. J Med Chem. 1996;39(2):p. 619–622.
  • Jackson PF, Tays KL, Maclin KM, et al. Design and pharmacological activity of phosphinic acid based NAALADase inhibitors. J Med Chem. 2001;44(24):p. 4170–4175.
  • Majer P, Jackson PF, Delahanty G, et al. Synthesis and biological evaluation of thiol-based inhibitors of glutamate carboxypeptidase II: discovery of an orally active GCP II inhibitor. J Med Chem. 2003;46(10):p. 1989–1996.
  • Stoermer D, Vitharana D, Hin N, et al. Design, synthesis, and pharmacological evaluation of glutamate carboxypeptidase II (GCPII) inhibitors based on thioalkylbenzoic acid scaffolds. J Med Chem. 2012;55(12):p. 5922–5932.
  • Zhang AX, Murelli RP, Barinka C, et al. A remote arene-binding site on prostate specific membrane antigen revealed by antibody-recruiting small molecules. J Am Chem Soc. 2010;132(36):p. 12711–12716.
  • Cardinale J, Roscher M, Schafer M, et al. Development of PSMA-1007-related series of 18F-labeled glu-ureido-type PSMA inhibitors. J Med Chem. 2020;63(19):p. 10897–10907.
  • Cardinale J, Schafer M, Benesova M, et al. Preclinical evaluation of 18F-PSMA-1007, a new prostate-specific membrane antigen ligand for prostate cancer imaging. J Nucl Med. 2017;58(3):p. 425–431.
  • Calais J, Czernin J, Fendler WP, et al., Randomized prospective phase III trial of 68Ga-PSMA-11 PET/CT molecular imaging for prostate cancer salvage radiotherapy planning [PSMA-SRT]. BMC Cancer. 19(18): 1–11. 2019.
  • Rahbar K, Ahmadzadehfar H, Kratochwil C, et al. German multicenter study investigating 177Lu-PSMA-617 radioligand therapy in advanced prostate cancer patients. J Nucl Med. 2017;58(1):p. 85–90.
  • Giesel FL, Knorr K, Spohn F, et al. Detection efficacy of 18F-PSMA-1007 PET/CT in 251 patients with biochemical recurrence of prostate cancer after radical prostatectomy. J Nucl Med. 2019;60(3):p. 362–368.
  • Gorin MA, Rowe SP, Patel HD, et al. Prostate specific membrane antigen targeted 18F-DCFPyL positron emission tomography/computerized tomography for the preoperative staging of high risk prostate cancer: results of a prospective, phase ii, single center study. J Urol. 2018;199(1):p. 126–132.
  • Hofman MS, Violet J, Hicks RJ, et al. [177Lu]-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study. Lancet Oncol. 2018;19(6):p. 825–833.
  • Gorges TM, Riethdorf S, von Ahsen O, et al. Heterogeneous PSMA expression on circulating tumor cells: a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget. 2016;7(23):p. 34930–34941.
  • Kiess AP, Minn I, Chen Y, et al. Auger radiopharmaceutical therapy targeting prostate-specific membrane antigen. J Nucl Med. 2015;56(9):p. 1401–1407.
  • Taylor RM, Severns V, Brown DC, et al. Prostate cancer targeting motifs: expression of alphanu beta3, neurotensin receptor 1, prostate specific membrane antigen, and prostate stem cell antigen in human prostate cancer cell lines and xenografts. Prostate. 2012;72(5):p. 523–532.
  • Jeong JM, Moon S-H, Lee Y-S, Peptide thiourea derivative, radioisotope labeled compound containing same, And Pharmaceutical Composition Containing Same As Active Ingredient For Treating or Diagnosing Prostate Cancer. WO2017082620A1, 2017.
  • Pomper MG, Chen Y, Yang X, et al. Triazole conjugated ureas, thioureas, carbamates, and “reversed” carbamates for psma-targeted imaging agents and uses thereof. WO2017027870A1., 2017.
  • Cardinale J, Schafer M, Kopka K, et al. 18F-tagged inhibitors of prostate specific membrane antigen (PSMA) and their use as imaging agents for prostate cancer. WO2017054907A1, 2017.
  • Kung HF, Ploessl K, Choi SR, et al. Urea-based prostate specific membrane antigen (PSMA) inhibitors for imaging and therapy. WO2017116994A1, 2017.
  • Benard F, Lin K, Perrin D, et al. 18/19F-labelled compounds which target the prostate specific membrane antigen. WO2017117687A1, 2017.
  • Holmberg AR, Nisson S, Modified dextran conjugates comprising a lysine-urea-glutamate pharmacophore. WO2017220488A1, 2017.
  • Babich JW, Kelly JM, Amor-Coarasa A, et al. 18F-labeled triazole containing psma inhibitors. WO2018005625A1, 2018.
  • Eder M, Schafer M, Bauder-Wust U, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23(4):p. 688–697.
  • Benesova M, Bauder-Wust U, Schafer M, et al. Linker modification strategies to control the prostate-specific membrane antigen (PSMA)-targeting and pharmacokinetic properties of DOTA-conjugated PSMA inhibitors. J Med Chem. 2016;59(5):p. 1761–1775.
  • Bradbury MS, Quinn TP, Yoo B, et al. Inhibitor-functionalized ultrasmall nanoparticles and methods thereof. WO2018102372A1, 2018.
  • Benesova M, Muller C, Umbricht C, et al. Novel PSMA-binding agents and uses thereof. WO2018215627A1, 2018.
  • Chi DY, Lee BS, Chu SY, et al. 18F-labelled compound for prostate cancer diagnosis, and Use Thereof. WO2018236115A1, 2018.
  • Neumaier B, Zlatopolskiy B, Krapf P, et al. 2-alkoxy-6-[18F]fluoronicotinoyl substituted lys-C(O)-glu derivatives as efficient probes for imaging of psma expressing tissues. WO2019175405A1, 2019.
  • Dietlein F, Hohberg M, Kobe C, et al. An [18]F-labeled PSMA ligand for PET/CT of prostate cancer: first-in-humans observational study and clinical experience with [18]F-JK-PSMA-7 during the first year of application. J Nucl Med. 2020;61(2):p. 202–209.\
  • Chi DY, Lee BS, Chu SY, et al. PSMA-targeted radiopharmaceutical for diagnosing and treating prostate cancer. WO2019190266A1, 2019.
  • Haberkorn U, Dos Santos JC, Mier W, et al. Labeled inhibitors of prostate specific membrane antigen (PSMA), their use as imaging agents and pharmaceutical agents for the treatment of psma-expressing cancers. WO2020065045A1, 2020.
  • Ferro Flores G, Ocampo Garcia BE, Luna Gutierrez MA, et al. 99mTc-EDDA/HYNIC-iPSMA as a radiopharmaceutical for detecting the overexpression of prostate-specific membrane antigen. WO2017222362A1, 2017.
  • Pomper MG, Mease R, Chen Y, et al. PSMA targeted radiohalogenated ureas for cancer radiotherapy. WO2017070482A2, 2017.
  • Pomper MG, Mease RC, Kumar V, et al. PSMA targeted radiohalogenated urea-polyaminocarboxylates for cancer radiotherapy. WO2019157037A1, 2019.
  • Babich JW, Kelly JM, Amor-Coarasa A, et al. Double targeted constructs to affect tumor kill. WO2017223357A1, 2017.
  • Benesova M, Muller C, Umbricht C, et al. Novel PSMA-binding agents and uses thereof. WO2018233798A1, 2018.
  • Lin K-S, Benard F, Kuo H-T, et al. Novel radiometal-binding compounds for diagnosis or treatment of prostate specific membrane antigen-expressing cancer. WO2019075583A1, 2019.
  • Larsen RH, Complex comprising A PSMA-targeting compound linked to a lead or thorium radionuclide. WO2019115684A1, 2019.
  • Wester H-J, Schmidt A, Parzinger M, PSMA ligands for imaging and endoradiotherapy. WO2019115547A1, 2019.
  • Chen X, Weiss OJ, Chemical conjugates of evans blue derivatives and their use as radiotherapy and imaging agents for targeting prostate cancer. WO2019165200A1, 2019.
  • Ferro Flores G, Ocampo Garcia BE, Luna Gutierres MA, et al. 177Lu-DOTA-HYNIC-iPSMA as a therapeutic radiopharmaceutical targeting prostate-specific membrane antigen. WO2019177449A1, 2019.
  • Pomper MG, Mease RC, Chen Y, et al. PSMA targeted fluorescent agents for image guided surgery. WO2018232280A1, 2018.
  • Kularatne SA, Low P, Gagare P, et al. PSMA-targeted NIR dyes and their uses. WO2017044584A1, 2017.
  • Kularatne SA, Gagare P, PSMA-targeted nir dyes and their uses. WO2018049132A1, 2018.
  • Basilion JP, Wang X, Walker N, PSMA targeted conjugate compounds and uses thereof. WO2019183633A1, 2019.
  • Leamon C, Nguyen B, Methods of treating cancer with a psma ligand-tubulysin compound. WO2017205447A1, 2017.
  • Gallo F, Korsak B, Mueller C, et al. PSMA-targeting amantin conjugates. WO2019057964A1, 2019.
  • Berkman C, Choy C, Albumin-binding PSMA inhibitors. WO2018098390A1, 2018.
  • Kelly JM, Amor-Coarasa A, Nikolopoulou A, et al. Dual-target binding ligands with modulated pharmacokinetics for endoradiotherapy of prostate cancer. J Nucl Med. 2017;58(9):p. 1442–1449.
  • Pomper MG, Mease RC, Chen Y, et al. Long-circulating PSMA-targeted phototheranostic agent. WO2020028324A1, 2020.
  • Byun Y, Son S-H, Kim K, et al. Prostate-specific membrane antigen inhibitor for diagnosing and treating prostate cancer, and pharmaceutical composition for diagnosing and treating prostate cancer containing same. WO2020080842A1, 2020.
  • Maurer T, Eiver M, Schwaiger M, et al. Current use of PSMA-PET in prostate cancer management. Nat Rev Urol. 2016;13(4):p. 226–235.
  • Perera M, Papa N, Christidis D, et al. Sensitivity, specificity, and predictors of positive 68Ga-prostate-specific membrane antigen positron emission tomography in advanced prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(6):p. 926–937.
  • Afshar-Oromieh A, Babich JW, Kratochwil C, et al. The rise of PSMA ligands for diagnosis and therapy of prostate cancer. J Nucl Med. 2016;57(Suppl 3):p. 79S–89S.
  • de Galiza Barbosa F, Queiroz MA, Nunes RF, et al. Nonprostatic diseases on PSMA PET imaging: a spectrum of benign and malignant findings. Cancer Imaging. 2020;20(1):p. 23.
  • Saffar H, Noohi M, Tavangar SM, et al. Expression of prostate-specific membrane antigen (PSMA) in brain glioma and its correlation with tumor grade. Iran J Pathol. 2018;13(1):p. 45–53.
  • Kratochwil C, Giesel FL, Leotta K, et al. PMPA for nephroprotection in PSMA-targeted radionuclide therapy of prostate cancer. J Nucl Med. 2015;56(2):p. 293–298.
  • Matteucci F, Mezzenga E, Caroli P, et al. Reduction of 68Ga-PSMA renal uptake with mannitol infusion: preliminary results. Eur J Nucl Med Mol Imaging. 2017;44(13):p. 2189–2194.
  • Rousseau E, Lau J, Kuo HT et al. Monosodium glutamate reduces 68Ga-PSMA-11 uptake in salivary glands and kidneys in a preclinical prostate cancer model. J Nucl Med. 2018;59(12):p. 1865–1868.
  • Kuo HT, Pan J, Zhang Z, et al. Effects of linker modification on tumor-to-kidney contrast of 68Ga-labeled PSMA-targeted imaging probes. Mol Pharm. 2018;15(8):p. 3502–3511.
  • Szabo Z, Mena E, Rowe SP, et al. Initial evaluation of [18F]DCFPyL for prostate-specific membrane antigen (PSMA)-targeted PET imaging of prostate cancer. Mol Imaging Biol. 2015;17(4):p. 565–574.
  • Morris MJ, Carroll PR, Saperstein L, et al. Impact of PSMA-targeted imaging with 18F-DCFPyL-PET/CT on clinical management of patients (pts) with biochemically recurrent (BCR) prostate cancer (PCa): results from a phase III, prospective, multicenter study (CONDOR). J Clin Oncol. 2020;38(15 suppl):p. 5501.
  • Wang J, Zang J, Wang H, et al. Pretherapeutic 68Ga-PSMA-617 PET may indicate the dosimetry of 177Lu-PSMA-617 and 177Lu-EB-PSMA-617 in main organs and tumor lesions. Clin Nucl Med. 2019;44(6):p. 431–438.
  • Bander NH. Technology insight: monoclonal antibody imaging of prostate cancer. Nat Clin Pract Urol. 2006;3(4):p. 216–225.
  • Barren RJ 3rd, Holmes EH, Boynton AL, et al. Monoclonal antibody 7E11.C5 staining of viable LNCaP cells. Prostate. 1997;30(1):p. 65–68.
  • Rajasekaran SA, Anilkumar G, Oshima E, et al. A novel cytoplasmic tail MXXXL motif mediates the internalization of prostate-specific membrane antigen. Mol Biol Cell. 2003;14(12):p. 4835–4845.
  • Begum NJ, Glatting G, Wester HJ, et al. The effect of ligand amount, affinity and internalization on PSMA-targeted imaging and therapy: a simulation study using a PBPK model. Sci Rep. 2019;9(1):p. 20041.
  • Wüstemann T, Bauder-Wust U, Schafer M, et al. Design of Internalizing PSMA-specific glu-ureido-based radiotherapeuticals. Theranostics. 2016;6(8):p. 1085–1095.
  • Ivanenkov YA, Machulkin AE, Garnina AS, et al. Synthesis and biological evaluation of doxorubicin-containing conjugate targeting PSMA. Bioorg Med Chem Lett. 2019;29(10):p. 1246–1255.
  • Leamon CP, Reddy JA, Bloomfield A, et al. Prostate-specific membrane antigen-specific antitumor activity of a self-immolative tubulysin conjugate. Bioconjugate Chem. 2019;30(6):p. 1805–1813.
  • Subedi M, Minn I, Chen J, et al. Design, synthesis and biological evaluation of PSMA/hepsin-targeted heterobivalent ligands. Eur J Med Chem. 2016;118(p):208–218.
  • Shallal HM, Minn I, Banerjee SR, et al. Heterobivalent agents targeting PSMA and integrin-αvβ3. Bioconjugate Chem. 2014;25(2):p. 393–405.
  • Abouzayed A, Yim CB, Mitran B, et al. Synthesis and preclinical evaluation of radio-iodinated GRPR/PSMA bispecific heterodimers for the theranostics application in prostate cancer. Pharmaceutics. 2019;11(7):p. 358.
  • Pomper MG, Mease RC, Ray S, et al. Competitive prostate-specific membrane antigen (PSMA) binding agents for the reduction of non-target organ uptake of radiolabeled PSMA inhibitors for PSMA positive tumor imaging and radiopharmaceutical therapy. WO2020028323A1, 2020.
  • Sarnelli A, Belli ML, Di lorio V, et al. Dosimetry of 177Lu-PSMA-617 after mannitol infusion and glutamate tablet administration: preliminary results of EUDRACT/RSO 2016-002732-32 IRST protocol. Molecules. 2019;24:3.
  • Uehara T, Minegishi Y, Kise S, et al. Reduced renal uptake of 68Ga-PSMA-617 by penta-l-glutamic acid co-injection. J Nucl Med. 2018;59 no(1):p. 1279. supplement.
  • Stenberg VY, Juzeniene A, Chen Q, et al. Preparation of the alpha-emitting prostate-specific membrane antigen targeted radioligand [212Pb] Pb-NG001 for prostate cancer. J Labelled Comp Radiopharm. 2020;63(3):p. 129–143.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.