593
Views
12
CrossRef citations to date
0
Altmetric
Review

Recent development in the discovery of PARP inhibitors as anticancer agents: a patent update (2016-2020)

ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 609-623 | Received 23 Oct 2020, Accepted 02 Feb 2021, Published online: 12 Mar 2021

References

  • Wang YQ, Wang PY, Wang YT, et al. An update on Poly(ADP-Ribose)Polymerase-1 (PARP-1) inhibitors: opportunities and challenges in cancer therapy. J Med Chem. 2016;59(21):9575–9598. .
  • Gupte R, Liu Z, Kraus WL. Parps and Adp-Ribosylation: recent advances linking molecular functions to biological outcomes. Genes Dev. 2017;31(2):101–126.
  • Yuan Z, Chen J, Li W, et al. PARP Inhibitors as antitumor agents: a patent update (2013–2015). Expert Opin Ther Pat. 2017;27(3):363–382.
  • Papeo G, Casale E, Montagnoli A, et al. PARP inhibitors in cancer therapy: an update. Expert Opin Ther Pat. 2013;23(4):503–514.
  • Vyas S, Chang P. New PARP targets for cancer therapy. Nat Rev Cancer. 2014;14(7):502–509.
  • Vyas S, Matic I, Uchima L, et al. Family-wide analysis of Poly(ADP-Ribose) polymerase activity. Nat Commun. 2014;5(1).
  • Ferraris DV. Evolution of Poly(ADP-Ribose) Polymerase-1 (PARP-1) inhibitors. from concept to clinic. J Med Chem. 2010;53(12):4561–4584.
  • Amé JC, Rolli V, Schreiber V, et al. PARP-2, a novel mammalian DNA damage-dependent Poly(ADP-Ribose) Polymerase. J Biol Chem. 1999;274(25):17860–17868.
  • Ljungman M. Targeting the DNA damage response in cancer. Chem Rev. 2009;109(7):2929–2950.
  • Farmer H, McCabe H, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–921.
  • Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of Poly(ADP-Ribose) Polymerase. Nature. 2005;434(7035):913–917.
  • Zandarashvili L, Langelier MF, Velagapudi UK, et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science . 2020;368(80):368. (6486), eaax6367.
  • Murai J, Huang SYN, Das BB, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–5599.
  • Menear KA, Adcock C, Boulter R, et al. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-Carbonyl)-4-Fluorobenzyl] −2H-Phthalazin-1-one: a novel bioavailable inhibitor of Poly(ADP-Ribose) Polymerase-1. J Med Chem. 2008;51(20):6581–6591.
  • Jones P, Altamura S, Boueres J, et al. Discovery of 2-{4-[(3S)-Piperidin-3-Yl]Phenyl}-2H-Indazole-7-Carboxamide (MK-4827): a novel oral Poly(ADP-Ribose)polymerase (PARP) inhibitor efficacious in BRCA-1 and −2 mutant tumors. J Med Chem. 2009;52(22):7170–7185.
  • Thomas HD, Calabrese CR, Batey MA, et al. Preclinical selection of a novel Poly(ADP-Ribose) polymerase inhibitor for clinical trial. Mol Cancer Ther. 2007;6(3):945–956.
  • Wang B, Chu D, Feng Y, et al. Discovery and characterization of (8S,9R)-5-Fluoro-8-(4-Fluorophenyl)-9-(1-Methyl-1H-1,2,4-Triazol-5-Yl)-2,7,8,9-Tetrahydro-3H-Pyrido[4,3,2-de]Phthalazin-3-one (BMN 673, Talazoparib), a novel, highly potent, and orally efficacious Poly(ADP-Ribose) Polymerase-1/2 inhibitor, as an anticancer agent. J Med Chem. 2016;59(1):335–357.
  • Zhao Y, Zhang L-X, Jiang T, et al. The ups and downs of Poly(ADP-Ribose) Polymerase-1 inhibitors in cancer therapy–current progress and future direction. Eur J Med Chem. 2020;203:112570.
  • Lehtiö L, Chi NW, Krauss S. Tankyrases as drug targets. Febs J. 2013;280(15):3576–3593.
  • Haikarainen T, Krauss S, Lehtiö L. Tankyrases: structure, function and therapeutic implications in cancer. Curr Pharm Des. 2014;20(41):6472–6488.
  • Chirag C. Mehta & Hardik G. Bhatt (2021) Tankyrase inhibitors as antitumor agents: a patent update (2013 - 2020), Expert Opinion on Therapeutic Patents, DOI: 10.1080/13543776.2021.1888929
  • Verma A, Kumar A, Chugh A, et al. Tankyrase inhibitors: emerging and promising therapeutics for cancer treatment. Med Chem Res. 2020;1–24.
  • Rulten SL, Fisher AEO, Robert I, et al. PARP-3 and APLF function together to accelerate nonhomologous end-joining. Mol Cell. 2011;41(1):33–45.
  • Vasbinder M. RBN-2397: A first-in-class PARP7 inhibitor targeting a newly discovered cancer vulnerability in stress-signaling pathways.
  • Kirby IT, Kojic A, Arnold MR, et al. A potent and selective PARP11 inhibitor suggests coupling between cellular localization and catalytic activity. Cell Chem Biol. 2018;25(12):1547–1553.e12.
  • Kaufmann M, Feijs KLH, Lüscher B. Function and regulation of the Mono-ADP-Ribosyltransferase Artd10. Curr Top Microbiol Immunol. 2014;384:167–188.
  • Schuller M, Riedel K, Gibbs-Seymour I, et al. Discovery of a selective allosteric inhibitor targeting Macrodomain 2 of Polyadenosine-Diphosphate-Ribose Polymerase 14. ACS Chem Biol. 2017;12(11):2866–2874.
  • Lindgren AEG, Karlberg T, Thorsell AG, et al. PARP inhibitor with selectivity toward ADP-Ribosyltransferase ARTD3/PARP3. ACS Chem Biol. 2013;8(8):1698–1703.
  • Holechek J, Lease R, Thorsell AG, et al. Design, synthesis and evaluation of potent and selective inhibitors of Mono-(ADP-Ribosyl)Transferases PARP10 and PARP14. Bioorganic Med Chem Lett. 2018;28(11):2050–2054.
  • Yang C. S, Jividen K, Spencer A, et al. Ubiquitin Modification by the E3 Ligase/ADP-Ribosyltransferase Dtx3L/Parp9. Mol Cell. 2017; 66(4): 503–516.
  • Papeo G, Orsini P, Avanzi NR, et al. Discovery of Stereospecific PARP-1 inhibitor isoindolinone NMS-P515. ACS Med Chem Lett. 2019;10(4):534–538.
  • Papeo G, Posteri H, Borghi D, et al. Discovery of 2-[1-(4,4-Difluorocyclohexyl)Piperidin-4-Yl]-6-Fluoro-3-Oxo-2,3-Dihydro-1H-Isoindole-4-Carboxamide (NMS-P118): a potent, orally available, and highly selective PARP-1 inhibitor for cancer therapy. J Med Chem. 2015;58(17):6875–6898.
  • Velagapudi UK, Langelier MF, Delgado-Martin C, et al. Design and synthesis of Poly(ADP-Ribose) polymerase inhibitors: impact of adenosine pocket-binding motif appendage to the 3-Oxo-2,3-Dihydrobenzofuran-7-Carboxamide on potency and selectivity. J Med Chem. 2019;62(11):5330–5357.
  • Pellicciari R, Camaioni E, Costantino G, et al. On the way to selective PARP-2 inhibitors. Design, synthesis, and preliminary evaluation of a series of isoquinolinone derivatives. ChemMedChem. 2008;3(6):914–923.
  • Wang R, Cong Y, Li M, et al. Molecular mechanism of selective binding of NMS-P118 to PARP-1 and PARP-2: a computational perspective. Front Mol Biosci. 2020;7:50.
  • Hu H, Chen B, Zheng D, et al. Revealing the selective mechanisms of inhibitors to PARP-1 and PARP-2 via multiple computational methods. PeerJ. 2020;8(5):e9241. 2020.
  • Fu R-G, Sun Y, Sheng W-B, et al. Designing multi-targeted agents: an emerging anticancer drug discovery paradigm. Eur J Med Chem. 2017;136:195–211.
  • Zinzi L, Capparelli E, Cantore M, et al. Small and innovative molecules as new strategy to revert MDR. Front Oncol. 2014;4:2.
  • De Lera AR, Ganesan A. Epigenetic polypharmacology: from combination therapy to multitargeted drugs. Clin Epigenetics. 2016;8(1):1–21.
  • Anighoro A, Bajorath J, Rastelli G. Polypharmacology: challenges and opportunities in drug discovery. J Med Chem. 2014;57(19):7874–7887.
  • Dréan A, Lord CJ, Ashworth A. PARP inhibitor combination therapy. Crit Rev Oncol Hematol. 2016;108:73–85.
  • Wang, J., Li, H., He, G., et al. Discovery of Novel Dual Poly(ADP-Ribose)Polymerase and Phosphoinositide 3-Kinase Inhibitors as a Promising Strategy for Cancer Therapy. J Med Chem. 2020; 63(1):122–139. https://doi.org/10.1021/acs.jmedchem.9b00622.
  • Yuan Z, Chen S, Sun Q, et al. Olaparib Hydroxamic acid derivatives as dual PARP and HDAC inhibitors for cancer therapy. Bioorg Med Chem. 2017;25(15):4100–4109.
  • Penning TD, Zhu GD, Gandhi VB, et al. Discovery and SAR of 2-(1-Propylpiperidin-4-Yl)-1H-Benzimidazole-4-Carboxamide: a potent inhibitor of Poly(ADP-Ribose) Polymerase (PARP) for the treatment of cancer. Bioorg Med Chem. 2008;16(14):6965–6975.
  • Tang Z, Liu Y, Zhen Q, et al. Abstract 1653: BGB-290: a highly potent and specific PARP1/2 inhibitor potentiates anti-tumor activity of chemotherapeutics in patient biopsy derived SCLC models. Cancer Res. 2015;75(15):1653.
  • Plummer ER, Dua D, Cresti N, et al. First-in-human phase 1 study of the PARP/Tankyrase inhibitor 2X-121 (E7449) as monotherapy in patients with advanced solid tumors and validation of a novel drug response predictor (DRP) MRNA biomarker. J Clin Oncol. 2018;36(15_suppl):2505.
  • McGonigle S, Chen Z, Wu J, et al. E7449: A dual inhibitor of PARP1/2 and Tankyrase1/2 inhibits growth of DNA repair deficient tumors and antagonizes wnt signaling. Oncotarget. 2015;6(38):41307–41323.
  • Xu J-M, Liu R, Ba Y, et al. Phase I study of fluzoparib, a PARP1 inhibitor in combination with apatinib and paclitaxel in patients (pts) with advanced gastric and gastroesophageal junction (GEJ) adenocarcinoma. J Clin Oncol. 2019;37(15):4060.
  • He JX, Wang M, Huan XJ, et al. Novel PARP1/2 inhibitor Mefuparib Hydrochloride elicits potent in vitro and in vivo anticancer activity, characteristic of high tissue distribution. Oncotarget. 2017;8(3):4156–4168.
  • Wahlberg E, Karlberg T, Kouznetsova E, et al. Family-wide chemical profiling and structural analysis of PARP and Tankyrase inhibitors. Nat Biotechnol. 2012;30(3):283–288.
  • Thorsell AG, Ekblad T, Karlberg T, et al. Structural basis for potency and promiscuity in Poly(ADP-Ribose) Polymerase (PARP) and Tankyrase inhibitors. J Med Chem. 2017;60(4):1262–1271.
  • Southeast University, Nanjing. Derivative based on PARP inhibitor niraparib and a preparation method and use thereof. CN110343088 A (2019).
  • Selection Bioscience, LLC. Poly(ADP-Ribose) Polymerase inhibitor, preparation method and use. WO2018228474 A1 (2018).
  • Elstrodt F, Hollestelle A, Nagel JHA, et al. BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants. Cancer Res. 2006;66(1):41–45.
  • Shanghai Institute of Materia Medica. 2-substituted Benzimidazole-4-Carboxamide compound and preparation method and use thereof. WO2016206651 A1 (2016).
  • Chen X, Huan X, Liu Q, et al. Design and synthesis of 2-(4,5,6,7-Tetrahydrothienopyridin-2-Yl)-Benzoimidazole carboxamides as novel orally efficacious Poly(ADP-Ribose)Polymerase (PARP) inhibitors. Eur J Med Chem. 2018;145:389–403.
  • Shenzhen Kunjian Innovation Medicine Research Institute. Fluorine-containing substituted benzimidazole derivatives and application thereof. CN108997320 A (2018).
  • Guangzhou Dankang Medicine Biological Co., Ltd. Compound used as PARP inhibitor, and use thereof. CN107964012 A (2016).
  • Sichuan University. Phthalimide derivative as well as preparation method and application thereof. CN110028439 A (2019).
  • McCabe N, Lord CJ, Tutt ANJ, et al. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of Poly (ADP-Ribose) Polymerase: an issue of potency. Cancer Biol Ther. 2005;4(9):934–936.
  • Guangzhou Wellhealth Bio-Pharmaceutical Co., Ltd. Polycyclic compound having PARP inhibition activity, and uses thereof. WO2018192445 A1 (2018).
  • Sichuan Kelun-Biotech Biopharmaceutical Co., Ltd. Phthalazine Ketone derivative, and preparation method and use thereof. WO 2017071636 A1; WO2017101796 A1 (2017).
  • Ikediobi ON, Davies H, Bignell G, et al. Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. 2006;5(11):2606–2612.
  • DelloRusso C, Welcsh PL, Wang W, et al. Functional characterization of a novel BRCA1-null ovarian cancer cell line in response to ionizing radiation. Mol Cancer Res. 2007;5(1):35–45.
  • Shanghai Weicen Pharmaceutical Technology Co., Ltd. PARP inhibitor, medicine composition, preparation method and application thereof. CN108164468 A (2018).
  • China Pharmaceutical University. Benzo[4,5]Imidazole[1,2-a]Pyrazine Ketone derivatives as well as preparation method and application thereof. CN109748923 A (2019).
  • Shanghai Huilun Life Sciences and Technology Co., Ltd. Heterocyclic-Imidazole compounds, pharmaceutical composition thereof, preparation method therefor and use thereof. WO2016165655 A1 (2016).
  • China Pharmaceutical University. PARP (Poly (ADP-Ribose) Polymerase)-1 and Tankyrase1/2 multi-target inhibitors as well as preparation method and application thereof. CN108358850 A (2018).
  • Beijing Collab Pharma Co., Ltd. Quinazolinone PARP-1 inhibitors, medicinal composition containing inhibitors, and antitumor use of inhibitors. CN105461697 A (2016).
  • Shanghai Xunhe Pharmaceutical Technology Co., Ltd. Substituted 2,4-(1H,3H) Pyrimidinedione derivative adopted as PARP inhibitor, and applications thereof. CN107629071 B (2018).
  • Institute of Materia Medica, Chinese Academy of Medical Sciences. Piperazinone-containing quinazolinone PARP-1/2 inhibitor, and preparation method, medicine composition and purpose thereof. CN107098886 B (2017).
  • Institute of Materia Medica. 3-Amino Nafoxidine-containing quinazoline ketone PARP (Poly Adenosine Diphosphate Ribose Polymerase)-1/2 inhibitor as well as preparation method, medicinal composition and application thereof. CN108727343 A (2018).
  • Zhou J, Ji M, Yao H, et al. Discovery of quinazoline-2,4(1: H,3 H)-Dione derivatives as novel PARP-1/2 inhibitors: design, synthesis and their antitumor activity. Org Biomol Chem. 2018;16(17):3189–3202.
  • Hua J. Substituted 2,4-(1H,3H)- Pyrimidinedione as PARP inhibitor and use thereof. WO2017177838 A1 (2017).
  • Shenzhen TargetRx, Inc. Substituted Phthalazone and Pharmaceutical composition thereof. WO2017181918 A1 (2017).
  • Lupin Ltd. Isoquinoline derivatives as PARP Inhibitors. WO2016012956 A1 (2016).
  • Lupin Ltd. Isoquinoline derivatives as PARP Inhibitors. WO2017013593 A1 (2017).
  • Shanghai Xunhe Pharmaceutical Technology Co., Ltd. Substituted 1,3,4,5-Tetrahydro-6H-Pyrrolo[4,3,2-EF] [2] Benazepine-6-Ketone derivatives. CN107286166 B (2016).
  • Shanghai Zhaoyu Medicine Technology Co., Ltd. Pyrazole quinazolinone derivative serving as PARP (Poly ADP-Ribose Polymerase) inhibitor and application of pyrazole quinazolinone derivative serving as PARP inhibitor. CN109265463 B (2019).
  • Guangzhou Wellhealth Bio-Pharmaceutical Co., Ltd. PARP inhibitor, pharmaceutical composition, preparation method and use thereof. WO2018205938 A1 (2018).
  • Suzhou Kangrun Pharmaceuticals, Inc. Derivative of Nitrogen-Doped Phenalene-3-Ketone, preparation method therefor and application of derivative used as PARP inhibitor. WO2016188307 A1 (2016).
  • Suzhou Kangrun Pharmaceuticals, Inc. Azaphenalene-3-one derivative, preparation method therefor and application thereof. WO2018177444 A2 (2018).
  • Guangzhou Dankang Pharmaceutical Biological Co., Ltd. Novel fused ring compound used as PARP inhibitor, and preparation method and application thereof. CN107573341 B (2018).
  • BeiGene, Ltd. Fused tetra or Penta-Cyclic Dihydrodiazepinocarbazolones as PARP inhibitors. US20190016731 B2 (2019).
  • University of Ryukyus. PARP inhibitor containing syzygium samarangense extract. JP2017218382 B2 (2017).
  • Fox Chase Cancer Center. Poly (ADP-Ribose) Polymerase 1 inhibitors structurally unrelated to NAD. WO2016054237 A2 (2016).
  • Makhov P, Uzzo RG, Tulin AV, et al. Histone-dependent PARP-1 inhibitors: a novel therapeutic modality for the treatment of prostate and renal cancers. Urol Oncol Semin Orig Investig. 2020.
  • Sichuan University. Dihydro Dibenzooxepin derivative as well as composition and application thereof. CN106117176 B (2016).
  • Guo C, Wang L, Li X, et al. Discovery of novel bromophenol-thiosemicarbazone hybrids as potent selective inhibitors of poly(ADP-Ribose) Polymerase-1 (PARP-1) for use in cancer. J Med Chem. 2019;62(6):3051–3067.
  • Shenzen Kivita Innovative Drug Institute. Phthalazone hydroxamic acid derivative, preparation therefor and application thereof. WO2018177126 A1 (2018).
  • SignalRx Pharmaceuticals, Inc. Single molecule compounds providing multi-target inhibition of PARP and other proteins and methods of use thereof. WO2018236971 A1 (2018).
  • The Regents Of The University of California. Anti-cancer compounds. WO2016187620 A2 (2016).
  • Shanghai Biobond Pharmaceutical Co., Ltd. Phthalazone derivative prodrug or pharmaceutically acceptable salt thereof, and pharmaceutical composition and application thereof. WO2019144875 A1 (2019).
  • Oregon Health and Sciences University. PARP inhibitors for treating cancer and asthma. WO2020046753 A1 (2020).
  • Oregon Health and Science University. Inhibitors of PARPs that catalyze mono-ADP-ribosylation. US20190062302 A1 (2018).
  • Morgan RK, Kirby IT, Vermehren-Schmaedick A, et al. Rational design of cell-active inhibitors of PARP10. ACS Med Chem Lett. 2019;10(1):74–79.
  • Pinto AF, Schüler H. Comparative structural analysis of the putative Mono-Adp-ribosyltransferases of the artd/parp family. Curr Top Microbiol Immunol. 2015;384:153–166.
  • Ribon Therapeutics, Inc. Quinazolinones as PARP14 inhibitors. WO2019126443 (2019).
  • Ribon Therapeutics, Inc. Pyridazinones as PARP7 inhibitors. US20200123134 A1 (2020).
  • Chen DH, Zhang XS. Targeted therapy: resistance and re-sensitization. Chin J Cancer. 2015;34(11):496–501.
  • Zahreddine H, Borden KLB. Mechanisms and insights into drug resistance in cancer. Front Pharmacol. 2013 4 MAR;4:28.
  • Weigelt B, Comino-Méndez I, De Bruijn I, et al. Diverse BRCA1 and BRCA2 reversion mutations in circulating cell-free DNA of therapy-resistant breast or ovarian cancer. Clin Cancer Res. 2017;23(21):6708–6720.
  • Chaudhuri AR, Callen E, Ding X, et al. Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature. 2016;535(7612):382–387.
  • Gogola E, Duarte AA, de Ruiter JR, et al. Selective loss of PARG restores PARylation and counteracts PARP inhibitor-mediated synthetic lethality. Cancer Cell. 2018;33(6):1078–1093.e12.
  • Rottenberg S, Jaspers JE, Kersbergen A, et al. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc Natl Acad Sci U S A. 2008;105(44):17079–17084.
  • Oplustilova L, Wolanin K, Mistrik M, et al. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle. 2012;11(20):3837–3850.
  • Christie EL, Pattnaik S, Beach J, et al. Multiple ABCB1 transcriptional fusions in drug resistant high-grade serous ovarian and breast cancer. Nat Commun. 2019;10(1):1–10.
  • Patel M, Nowsheen S, Maraboyina S, et al. The role of poly(ADP-Ribose) polymerase inhibitors in the treatment of cancer and methods to overcome resistance: a review. Cell Biosci. 2020;10(1).
  • Veneris JT, Matulonis UA, Liu JF, et al. Choosing wisely: selecting PARP inhibitor combinations to promote anti-tumor immune responses beyond BRCA mutations. Gynecol Oncol. 2020;156(2):488–497.
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–114.
  • Cao C, Yang J, Chen Y, et al. Discovery of SK-575 as a highly potent and efficacious proteolysis-targeting chimera degrader of PARP1 for treating cancers. J Med Chem. 2020;63(19):11012–11033.
  • Zhao Q, Lan T, Su S, et al. Induction of apoptosis in MDA-MB-231 breast cancer cells by a PARP1-targeting PROTAC small molecule. Chem Commun. 2019;55(3):369–372.
  • Zhang Z, Chang X, Zhang C, et al. Identification of probe-quality degraders for poly(ADP-Ribose) polymerase-1 (PARP-1). J Enzyme Inhib Med Chem. 2020;35(1):1606–1615.
  • Bai P, Houten SM, Huber A, et al. Peroxisome proliferator-activated receptor (PPAR)-2 controls adipocyte differentiation and adipose tissue function through the regulation of the activity of the retinoid X receptor/PPARγ heterodimer. J Biol Chem. 2007;282(52):37738–37746.
  • Yélamos J, Monreal Y, Saenz L, et al. PARP-2 deficiency affects the survival of CD4+CD8+ double-positive thymocytes. Embo J. 2006;25(18):4350–4360.
  • Dantzer F, Mark M, Quenet D, et al. Poly(ADP-Ribose) polymerase-2 contributes to the fidelity of male meiosis I and spermiogenesis. Proc Natl Acad Sci U S A. 2006;103(40):14854–14859.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.