254
Views
7
CrossRef citations to date
0
Altmetric
Review

Negative allosteric modulators of group II metabotropic glutamate receptors: A patent review (2015 – present)

&
Pages 687-708 | Received 15 Dec 2020, Accepted 11 Mar 2021, Published online: 31 Mar 2021

References

  • Muguruza C, Meana JJ, Callado LF. Group II metabotropic glutamate receptors as targets for novel antipsychotic drugs. Front Pharmacol. 2016;7:130.
  • Lindsley CW, Emmitte KA, Hopkins CR, et al. Practical strategies and concepts in GPCR allosteric modulator discovery: recent advances with metabotropic glutamate receptors. Chem Rev. 2016Jun8;116(11):6707–6741.
  • Felts AS, Rodriguez AL, Smith KA, et al. Design of 4-oxo-1-aryl-1,4-dihydroquinoline-3-carboxamides as selective negative allosteric modulators of metabotropic glutamate receptor subtype 2. J Med Chem. 2015Nov25;58(22):9027–9040.
  • Yin S, Niswender CM. Progress toward advanced understanding of metabotropic glutamate receptors: structure, signaling and therapeutic indications. Cell Signal. 2014 Oct 01;26(10):2284–2297.
  • Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50(1):295–322.
  • Chaki S, Ago Y, Palucha-Paniewiera A, et al. mGlu2/3 and mGlu5 receptors: potential targets for novel antidepressants. Neuropharmacology. 2013Mar;66:40–52.
  • Palucha A, Pilc A. Metabotropic glutamate receptor ligands as possible anxiolytic and antidepressant drugs. Pharmacol Ther. 2007 Jul;115(1):116–147.
  • Spampinato SF, Copani A, Nicoletti F, et al. Metabotropic glutamate receptors in glial cells: a new potential target for neuroprotection? Front Mol Neurosci. 2018;11:414.
  • Mazzitelli M, Palazzo E, Maione S, et al. Group II metabotropic glutamate receptors: role in pain mechanisms and pain modulation [Review]. Front Mol Neurosci. 2018 [2018 Oct09];11(383): 10.3389/fnmol.2018.00383
  • Yin S, Noetzel MJ, Johnson KA, et al. Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J Neurosci. 2014Jan1;34(1):79–94.
  • Di Menna L, Joffe ME, Iacovelli L, et al. Functional partnership between mGlu3 and mGlu5 metabotropic glutamate receptors in the central nervous system. Neuropharmacology. 2018Jan;128:301–313.
  • Joffe ME, Santiago CI, Stansley BJ, et al. Mechanisms underlying prelimbic prefrontal cortex mGlu3/mGlu5-dependent plasticity and reversal learning deficits following acute stress. Neuropharmacology. 2019Jan;144:19–28.
  • Zinni M, Mairesse J, Pansiot J, et al. mGlu3 receptor regulates microglial cell reactivity in neonatal rats. J Neuroinflammation. 2021Jan6;18(1):13.
  • Taylor DL, Jones F, Kubota ES, et al. Stimulation of microglial metabotropic glutamate receptor mGlu2 triggers tumor necrosis factor alpha-induced neurotoxicity in concert with microglial-derived Fas ligand. J Neurosci. 2005Mar16;25(11):2952–2964.
  • Pinteaux-Jones F, Sevastou IG, Fry VA, et al. Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J Neurochem. 2008Jul;106(1):442–454.
  • Salih H, Anghelescu I, Kezic I, et al. Pharmacokinetic and pharmacodynamic characterisation of JNJ-40411813, a positive allosteric modulator of mGluR2, in two randomised, double-blind phase-I studies. J Psychopharmacol. 2015Apr;29(4):414–425.
  • Litman RE, Smith MA, Doherty JJ, et al. AZD8529, a positive allosteric modulator at the mGluR2 receptor, does not improve symptoms in schizophrenia: a proof of principle study. Schizophr Res. 2016Apr;172(1–3):152–157.
  • Umbricht D, Niggli M, Sanwald-Ducray P, et al. Randomized, double-blind, placebo-controlled trial of the mGlu2/3 negative allosteric modulator decoglurant in partially refractory major depressive disorder. J Clin Psychiatry. 2020Jul14;81(4):4.
  • Charvin D, Pomel V, Ortiz M, et al. Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4. J Med Chem. 2017Oct26;60(20):8515–8537.
  • Berry-Kravis E, Hessl D, Coffey S, et al. A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet. 2009Apr;46(4):266–271.
  • Zerbib F, Bruley Des Varannes S, Roman S, et al. Randomised clinical trial: effects of monotherapy with ADX10059, a mGluR5 inhibitor, on symptoms and reflux events in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther. 2011 Apr;33(8):911–921.
  • Tison F, Keywood C, Wakefield M, et al. A phase 2A trial of the novel mGluR5 negative allosteric modulator dipraglurant for levodopa-induced dyskinesia in Parkinson’s disease. Mov Disord. 2016Sep;31(9):1373–1380.
  • Hagerman R, Jacquemont S, Berry-Kravis E, et al. Mavoglurant in fragile X syndrome: results of two open-label, extension trials in adults and adolescents. Sci Rep. 2018Nov19;8(1):16970.
  • Youssef EA, Berry-Kravis E, Czech C, et al. Effect of the mGluR5-NAM basimglurant on behavior in adolescents and adults with fragile X syndrome in a randomized, double-blind, placebo-controlled trial: fragXis phase 2 results. Neuropsychopharmacology. 2018Feb;43(3):503–512.
  • Ornstein PL, Bleisch TJ, Arnold MB, et al. 2-substituted (2SR)-2-amino-2-((1SR,2SR)-2-carboxycycloprop-1-yl)glycines as potent and selective antagonists of group II metabotropic glutamate receptors. 2. effects of aromatic substitution, pharmacological characterization, and bioavailability. J Med Chem. 1998Jan29;41(3):358–378.
  • Chaki S, Yoshikawa R, Hirota S, et al. MGS0039: a potent and selective group II metabotropic glutamate receptor antagonist with antidepressant-like activity. Neuropharmacology. 2004Mar;46(4):457–467.
  • Kim SH, Fraser PE, Westaway D, et al. Group II metabotropic glutamate receptor stimulation triggers production and release of Alzheimer’s amyloid(beta)42 from isolated intact nerve terminals. J Neurosci. 2010Mar17;30(11):3870–3875.
  • Kim SH, Steele JW, Lee SW, et al. Proneurogenic group II mGluR antagonist improves learning and reduces anxiety in Alzheimer Abeta oligomer mouse. Mol Psychiatry. 2014Nov;19(11):1235–1242.
  • Zhang XQ, Jiang HJ, Xu L, et al. The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology. 2020Jul18;177:108231.
  • Yoshimizu T, Shimazaki T, Ito A, et al. An mGluR2/3 antagonist, MGS0039, exerts antidepressant and anxiolytic effects in behavioral models in rats. Psychopharmacology (Berl). 2006Jul;186(4):587–593.
  • Bespalov AY, Van Gaalen MM, Sukhotina IA, et al. Behavioral characterization of the mGlu group II/III receptor antagonist, LY-341495, in animal models of anxiety and depression. Eur J Pharmacol. 2008Sep11;592(1–3):96–102.
  • Gleason SD, Li X, Smith IA, et al. mGlu2/3 agonist-induced hyperthermia: an in vivo assay for detection of mGlu2/3 receptor antagonism and its relation to antidepressant-like efficacy in mice. CNS & Neurological Disorders - Drug Targets 2013;12(5):554–566.
  • Iijima M, Koike H, Chaki S. Effect of an mGlu2/3 receptor antagonist on depressive behavior induced by withdrawal from chronic treatment with methamphetamine. Behav Brain Res. 2013 Jun 1;246:24–28.
  • Dong C, Zhang JC, Yao W, et al. Rapid and sustained antidepressant action of the mGlu2/3 receptor antagonist MGS0039 in the social defeat stress model: comparison with ketamine. Int J Neuropsychopharmacol. 2017Mar1;20(3):228–236.
  • Highland JN, Zanos P, Georgiou P, et al. Group II metabotropic glutamate receptor blockade promotes stress resilience in mice. Neuropsychopharmacology. 2019Sep;44(10):1788–1796.
  • Shimazaki T, Iijima M, Chaki S. Anxiolytic-like activity of MGS0039, a potent group II metabotropic glutamate receptor antagonist, in a marble-burying behavior test. Eur J Pharmacol. 2004 Oct 6;501(1–3):121–125.
  • Ago Y, Yano K, Araki R, et al. Metabotropic glutamate 2/3 receptor antagonists improve behavioral and prefrontal dopaminergic alterations in the chronic corticosterone-induced depression model in mice. Neuropharmacology. 2013Feb;65:29–38.
  • Dwyer JM, Lepack AE, Duman RS. mGluR2/3 blockade produces rapid and long-lasting reversal of anhedonia caused by chronic stress exposure. J Mol Psychiatry. 2013;1(1):15.
  • Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012 Jan;62(1):63–77.
  • Wilkinson ST, Sanacora G. A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems. Drug Discov Today. 2019 Feb;24(2):606–615.
  • McCullock TW, Kammermeier PJ. Target validation: weak selectivity of LY341495 for mGluR2 over mGluR4 makes glutamate a less selective agonist. Pharmacol Res Perspect. 2019 Jun;7(3):e00471.
  • Celanire S, Sebhat I, Wichmann J, et al. Novel metabotropic glutamate receptor 2/3 antagonists and their therapeutic applications: a patent review (2005 - present). Expert Opin Ther Pat. 2015Jan;25(1):69–90.
  • Campo B, Kalinichev M, Lambeng N, et al. Characterization of an mGluR2/3 negative allosteric modulator in rodent models of depression. J Neurogenet. 2011Dec;25(4):152–166.
  • Pritchett D, Jagannath A, Brown LA, et al. Deletion of metabotropic glutamate receptors 2 and 3 (mGlu2 & mGlu3) in mice disrupts sleep and wheel-running activity, and increases the sensitivity of the circadian system to light. PLoS One. 2015;10(5):e0125523.
  • Woltering TJ, Wichmann J, Goetschi E, et al. Synthesis and characterization of 1,3-dihydro-benzo[b][1,4]diazepin-2-one derivatives: part 4. In vivo active potent and selective non-competitive metabotropic glutamate receptor 2/3 antagonists. Bioorg Med Chem Lett. 2010Dec1;20(23):6969–6974.
  • Goeldner C, Ballard TM, Knoflach F, et al. Cognitive impairment in major depression and the mGlu2 receptor as a therapeutic target. Neuropharmacology. 2013Jan;64:337–346.
  • Chaki S, Koike H, Fukumoto K. Targeting of metabotropic glutamate receptors for the development of novel antidepressants. Chronic Stress (Thousand Oaks). 2019 Jan-Dec;3:3.
  • Chaki S. Chapter Ten - mGlu2/3 receptor as a novel target for rapid acting antidepressants. In: Duman RS, Krystal JH, editors. Advances in Pharmacology. Vol. 89. Academic Press. 2020. p. 289–309.
  • Joffe ME, Conn PJ. Antidepressant potential of metabotropic glutamate receptor mGlu2 and mGlu3 negative allosteric modulators. Neuropsychopharmacology. 2019 Jan;44(1):214–236.
  • Zanos P, Highland JN, Stewart BW, et al. (2R,6R)-hydroxynorketamine exerts mGlu2 receptor-dependent antidepressant actions. Proc Natl Acad Sci U S A. 2019Mar26;116(13):6441–6450.
  • Engers JL, Bollinger KA, Weiner RL, et al. Design and synthesis of N-aryl phenoxyethoxy pyridinones as highly selective and CNS penetrant mGlu3 NAMs. ACS Med Chem Lett. 2017Sep14;8(9):925–930.
  • Engers JL, Rodriguez AL, Konkol LC, et al. Discovery of a selective and CNS penetrant negative allosteric modulator of metabotropic glutamate receptor subtype 3 with antidepressant and anxiolytic activity in rodents. J Med Chem. 2015Sep24;58(18):7485–7500.
  • Joffe ME, Santiago CI, Oliver KH, et al. mGlu2 and mGlu3 negative allosteric modulators divergently enhance thalamocortical transmission and exert rapid antidepressant-like effects. Neuron. 2020Jan8;105(1):46–59 e3.
  • Podkowa K, Pochwat B, Branski P, et al. Group II mGlu receptor antagonist LY341495 enhances the antidepressant-like effects of ketamine in the forced swim test in rats. Psychopharmacology (Berl). 2016Aug;233(15–16):2901–2914.
  • Caraci F, Molinaro G, Battaglia G, et al. Targeting group II metabotropic glutamate (mGlu) receptors for the treatment of psychosis associated with Alzheimer’s disease: selective activation of mGlu2 receptors amplifies beta-amyloid toxicity in cultured neurons, whereas dual activation of mGlu2 and mGlu3 receptors is neuroprotective. Mol Pharmacol. 2011Mar;79(3):618–626.
  • Ciccarelli R, D’Alimonte I, Ballerini P, et al. Molecular signalling mediating the protective effect of A1 adenosine and mGlu3 metabotropic glutamate receptor activation against apoptosis by oxygen/glucose deprivation in cultured astrocytes. Mol Pharmacol. 2007May;71(5):1369–1380.
  • Cosford NDP, Dhanya RP, Sheffler DJ, inventors; Sanford Burnham Medical Research Institute, assignee. Metabotropic glutamate receptor negative allosteric modulators (NAMs) and uses thereof. PCT Int Patent Appl. WO 2015/191630 A1. 2015 Dec 17.
  • Niswender CM, Johnson KA, Luo Q, et al. A novel assay of Gi/o-linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol. 2008Apr;73(4):1213–1224.
  • Obach RS. Prediction of human clearance of twenty-nine drugs from hepatic microsomal intrinsic clearance data: an examination of in vitro half-life approach and nonspecific binding to microsomes. Drug Metab Dispos. 1999 Nov;27(11):1350–1359.
  • Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005;29(4–5):547–569.
  • Shimada N, Koike S, Tojo Y, et al., inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. Novel condensed pyrazole derivative and medical uses thereof. Japan Patent Appl. JP 2016/124810 A. 2016 Jul 11.
  • Urashima K, Tojo K, Ideue E, et al., inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. Condensed pyrazole derivative having new linker site and medicinal use of same. PCT Int Patent Appl. WO 2017/018475 A1. 2017 Feb 02.
  • Ikuma Y, inventor; Dainippon Sumitomo Pharma Co Ltd, assignee. Dihydro-pyrazolopyrazinone derivatives. Japan Patent Appl. JP 2019/182784 A. 2019 Oct 24.
  • Ikuma Y, Tojo K, Fukuzawa R, et al., inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. 6,7-Dihydropyrazolo[1,5-a]pyrazinone derivative and medical application thereof. PCT Int Patent Appl. WO 2019/103070 A1. 2019 May 31.
  • Urashima K, Tojo Y, Koike S, et al., inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. Novel imidazopyrimidine and pharmaceutical application thereof. Japan Patent Appl. JP 2016/132660 A. 2016 Jul 25.
  • Tojo Y, Shimada N, Ikuma Y, et al., inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. Condensed pyrrole derivative and pharmaceutical use thereof. Japan Paten Appl. JP 2020/011902 A. 2020 Jan 23.
  • Shimada N, Tojo K, Fukaya T, et al., inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. Annulated pyrazole derivative and medicinal use thereof. PCT Int Patent Appl. WO 2019/098211 A1. 2019 May 23.
  • Shimada N, Ikuma Y, Tojo Y, inventors; Dainippon Sumitomo Pharma Co Ltd, assignee. Fused pyrazole derivatives having linker site and pharmaceutical applications thereof. Japan Patent Appl. JP 2019/182805 A. 2019 Oct 24.
  • Liu AM, Ho MK, Wong CS, et al. Galpha(16/z) chimeras efficiently link a wide range of G protein-coupled receptors to calcium mobilization. J Biomol Screen. 2003Feb;8(1):39–49.
  • Sugaya Y, Yoshiba T, Kajima T, et al. Development of solubility screening methods in drug discovery. Yakugaku Zasshi. 2002Mar;122(3):237–246.
  • Nakazawa S, Nakamichi K, Imai H, et al. Effect of dopamine D4 receptor agonists on sleep architecture in rats. progress in neuro-psychopharmacology and biological psychiatry. Progress in Neuro-psychopharmacology & Biological Psychiatry. 2015;63:6–13. 2015/12/03/
  • Sanacora G, Smith MA, Pathak S, et al. Lanicemine: a low-trapping NMDA channel blocker produces sustained antidepressant efficacy with minimal psychotomimetic adverse effects. Mol Psychiatry. 2014Sep;19(9):978–985.
  • Bonaventure P, Aluisio L, Shoblock J, et al. Pharmacological blockade of serotonin 5-HT(7) receptor reverses working memory deficits in rats by normalizing cortical glutamate neurotransmission. PLoS One. 2011;6(6):e20210.
  • Czyrak A, Mackowiak M, Chocyk A, et al. 8-OHDPAT-induced disruption of prepulse inhibition in rats is attenuated by prolonged corticosterone treatment. Neuropsychopharmacology. 2003Jul;28(7):1300–1310.
  • Xf H, inventor; Dalian University, assignee. A mGluR2 antagonist. China Patent Appl. CN 111116582 A. 2020 May 08.
  • Odagaki Y, Kinoshita M, Toyoshima R. Functional coupling between metabotropic glutamate receptors and G-proteins in rat cerebral cortex assessed by guanosine-5ʹ-O-(3-[(35)S]thio)triphosphate binding assay. Basic Clin Pharmacol Toxicol. 2011 Sep;109(3):175–185.
  • Mayer S, Schann S, inventors; domain therapeutics, assignee. substituted pyrazoloquinazolinones and pyrroloquinazolinones as allosteric modulators of group II metabotropic glutamate receptors. PCT Int Patent Appl. WO 2013/174822 A1. 2013 Nov 28.
  • Schann S, Mayer S, Manteau B, inventors; domain therapeutics, assignee. substituted pyrazoloquinazolinones and pyrroloquinazolinones as allosteric modulators of group II metabotropic glutamate receptors. PCT Int Patent Appl. WO 2016/046404 A1. 2016 Mar 31.
  • Brabet I, Parmentier ML, De Colle C, et al. Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology. 1998Aug;37(8):1043–1051.
  • Parcella K, Eastman K, Yeung KS, et al. Improving metabolic stability with deuterium: the discovery of BMT-052, a pan-genotypic HCV NS5B polymerase inhibitor. ACS Med Chem Lett. 2017Jul13;8(7):771–774.
  • Cargnin S, Serafini M, Pirali T. A primer of deuterium in drug design. Future Med Chem. 2019;11(16):2039–2042.
  • Takaishi M, Sato N, Shibuguchi T, et al., inventors; Eisai R&D Management Co Ltd, assignee. Tetrahydroimidazo(1,5-d)[1,4]oxazepine derivative. United States Patent Appl. US 2014/0243316 A1. 2014 Aug 28.
  • Takaishi M, Sato N, Motoki T, et al., inventors; Eisai R&D Management Co Ltd, assignee. Tetrahydroimidazo[1,5-d][1,4]oxazepine compound. United States Patent Appl. US 2016/0052937 A1. 2016 Feb 25.
  • De Bruin NM, Prickaerts J, Van Loevezijn A, et al. Two novel 5-HT6 receptor antagonists ameliorate scopolamine-induced memory deficits in the object recognition and object location tasks in Wistar rats. Neurobiol Learn Mem. 2011Sep;96(2):392–402.
  • Conde-Ceide S, Mlm VG, Martín-Martín ML, inventors; Janssen Pharmaceutica Nv, assignee. 6,7-Dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors. PCT Int Patent Appl. WO 2016/016382 A1. 2016 Feb 04.
  • Conde-Ceide S, Mlm VG, Martín-Martín ML, inventors; Janssen Pharmaceutica Nv, assignee. 6,7-Dihydropyrazolo[l,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors. PCT Int Patent Appl. WO 2016/016383 A1. 2016 Feb 04.
  • Alonso-De Diego S, Mlm VG, Martín-Martín ML, et al., inventors; Janssen Pharmaceutica Nv, assignee. 6,7-Dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors. PCT Int Patent Appl. WO 2016/016395 A1. 2016 Feb 04.
  • Alonso-De Diego S, Mlm VG, Ó D-G, et al., inventors; Janssen Pharmaceutica Nv, assignee. 6,7-Dihydropyrazolo[1,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors. PCT Int Patent Appl. WO 2016/016380 A1. 2016 Feb 04.
  • Andrés-Gil JI, Mlm VG, Trabanco-Suárez AA, et al., inventors; Janssen Pharmaceutica Nv, assignee. 6,7-Dihydropyrazolo[l,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors. PCT Int Patent Appl. WO 2016/016381 A1. 2016 Feb 04.
  • Mlm VG, Alcázar-Vaca MJ, Alonso-De Diego S, et al., inventors; Janssen Pharmaceutica Nv, assignee. 6,7-Dihydropyrazolo[l,5-a]pyrazin-4(5H)-one compounds and their use as negative allosteric modulators of mGluR2 receptors. PCT Int Patent Appl. WO 2016/087487 A1. 2016 Jun 09.
  • Lavreysen H, Langlois X, Donck LV, et al. Preclinical evaluation of the antipsychotic potential of the mGlu2-positive allosteric modulator JNJ-40411813. Pharmacol Res Perspect. 20153; Mar(2): e00097.
  • Rorick-Kehn LM, Johnson BG, Burkey JL, et al. Pharmacological and pharmacokinetic properties of a structurally novel, potent, and selective metabotropic glutamate 2/3 receptor agonist: in vitro characterization of agonist (-)-(1R, 4S, 5S, 6S)-4-amino-2-sulfonylbicyclo[3.1.0]-hexane-4,6-dicarboxylic acid (LY404039). J Pharmacol Exp Ther. 2007Apr;321(1):308–317.
  • Megens AA, Hendrickx HM, Lavreysen H, et al. Differential interaction of neuroleptics with apomorphine-induced behavior in rats as a function of changing levels of dopamine receptor stimulation. J Pharmacol Exp Ther. 2013Dec;347(3):681–696.
  • Bungard CJ, Converso A, De Leon P, et al., inventors; Merck Sharp and Dohme Corp, assignee. Quinoline carboxamide and quinoline carbonitrile derivatives as mGluR2-negative allosteric modulators, compositions, and their use. PCT Int Patent Appl. WO 2013/066736 A1. 2013 May 10.
  • Shu Y, Diamond TL, Hershey JC, et al. Discovery of 4-arylquinoline-2-carboxamides, highly potent and selective class of mGluR2 negative allosteric modulators: from HTS to activity in animal models. Bioorg Med Chem Lett. 2020May01;30(9):127066.
  • Arasappan A, Bungard CJ, Frie JL, et al., inventors; Merck Sharp and Dohme Corp., assignee. Tetrahydonaphthyridine derivatives as mGluR2-negative allosteric modulators, compositions, and their use. PCT Int Patent Appl. WO 2016/029454 A1. 2016 Mar 03.
  • Sebhat IK, Arasappan A, Hoyt SB, et al., inventors; Merck Sharp and Dohme Corp, assignee. Chromane, isochromane, and dihydoisobenzofuran derivatives as mGluR2-negative allosteric modulators, compositions, and their use. United States Patent Appl. US 2018/0085358 A1. 2018 Mar 29.
  • Lovering F, Bikker J, Humblet C. Escape from flatland: increasing saturation as an approach to improving clinical success. J Med Chem. 2009 Nov 12;52(21):6752–6756.
  • Conn PJ, Lindsley CW, Emmitte KA, et al., inventors; Vanderbilt University, assignee. Negative allosteric modulators of metabotropic glutamate receptor 2. United States Patent Appl. US 2016/0214940 A1. 2016 Jul 28.
  • Conn PJ, Lindsley CW, Emmitte KA, et al., inventors; Vanderbilt University, assignee. Negative allosteric modulators of metabotropic glutamate receptor 2. PCT Int Patent Appl. WO 2016/149324 A1. 2016 Sep 22.
  • Bollinger KA, Felts AS, Brassard CJ, et al. Design and synthesis of mGlu2 NAMs with improved potency and CNS penetration based on a truncated picolinamide core. ACS Med Chem Lett. 2017Sep14;8(9):919–924.
  • Kuduk SD, Di Marco CN, Cofre V, et al. Fused heterocyclic M1 positive allosteric modulators. Bioorg Med Chem Lett. 2011May1;21(9):2769–2772.
  • Yang FV, Shipe WD, Bunda JL, et al. Parallel synthesis of N-biaryl quinolone carboxylic acids as selective M1 positive allosteric modulators. Bioorg Med Chem Lett. 2010Jan15;20(2):531–536.
  • Kuduk SD, Di Marco CN, Chang RK, et al. Heterocyclic fused pyridone carboxylic acid M1 positive allosteric modulators. Bioorg Med Chem Lett. 2010Apr15;20(8):2533–2537.
  • Conn PJ, Lindsley CW, Emmitte KA, et al., inventors; Vanderbilt University, assignee. Negative allosteric modulators of metabotropic glutamate receptor 3. United States Patent Appl. US 2015/0361081 A1. 2015 Dec 17.
  • Conn PJ, Lindsley CW, Emmitte KA, et al., inventors; Vanderbilt University, assignee. Negative allosteric modulators of metabotropic glutamate receptor 3. PCT Int Patent Appl. WO 2016/130652 A1. 2016 Aug 18.
  • Ciceroni C, Bonelli M, Mastrantoni E, et al. Type-3 metabotropic glutamate receptors regulate chemoresistance in glioma stem cells, and their levels are inversely related to survival in patients with malignant gliomas. Cell Death Differ. 2013Mar;20(3):396–407.
  • Prickett TD, Wei X, Cardenas-Navia I, et al. Exon capture analysis of G protein-coupled receptors identifies activating mutations in GRM3 in melanoma. Nat Genet. 2011Sep25;43(11):1119–1126.
  • Can A, Dao DT, Terrillion CE, et al. The tail suspension test. J Vis Exp. 2012 Jan;28(59):e3769.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.