327
Views
3
CrossRef citations to date
0
Altmetric
Review

A patent review of glutaminyl cyclase inhibitors (2004–present)

ORCID Icon & ORCID Icon
Pages 809-836 | Received 26 Jan 2021, Accepted 12 Apr 2021, Published online: 05 Jul 2021

References

  • Fischer WH, Spiess J. Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci U S A. 1987;84:3628–3632.
  • Pohl T, Zimmer M, Mugele K, et al. Primary structure and functional expression of a glutaminyl cyclase. Proc Natl Acad Sci U S A. 1991;88:10059–10063.
  • Stephan A, Wermann M, Von Bohlen A, et al. Mammalian glutaminyl cyclases and their isoenzymes have identical enzymatic characteristics. Febs J. 2009;276:6522–6536.
  • Cynis H, Rahfeld J-U, Stephan A, et al. Isolation of an isoenzyme of human glutaminyl cyclase: retention in the golgi complex suggests involvement in the protein maturation machinery. J Mol Biol. 2008;379:966–980.
  • Schilling S, Kohlmann S, Bäuscher C, et al. Glutaminyl cyclase knock-out mice exhibit slight hypothyroidism but no hypogonadism: implications for enzyme function and drug development. J Biol Chem. 2011;286:14199–14208.
  • Becker A, Eichentopf R, Sedlmeier R, et al. IsoQC (QPCTL) knock-out mice suggest differential substrate conversion by glutaminyl cyclase isoenzymes. Biol Chem. 2016;397:45–55.
  • Cynis H, Hoffmann T, Friedrich D, et al. The isoenzyme of glutaminyl cyclase is an important regulator of monocyte infiltration under inflammatory conditions. EMBO Mol Med. 2011;3:545–558.
  • Schilling S, Niestroj AJ, Rahfeld JU, et al. Identification of human glutaminyl cyclase as a metalloenzyme. Potent inhibition by imidazole derivatives and heterocyclic chelators. J Biol Chem. 2003;278:49773–49779.
  • Huang KF, Liu YL, Cheng WJ, et al. Crystal structures of human glutaminyl cyclase, an enzyme responsible for protein N-terminal pyroglutamate formation. Proc Natl Acad Sci U S A. 2005;102:13117–13122.
  • Huang KF, Wang YR, Chang EC, et al. A conserved hydrogen-bond network in the catalytic centre of animal glutaminyl cyclases is critical for catalysis. Biochem J. 2008;411:181–190.
  • Kehlen A, Haegele M, Böhme L, et al. N-terminal pyroglutamate formation in CX3CL1 is essential for its full biologic activity. Biosci Rep. 2017;37:20170712. BSR
  • Böckers TM, Kreutz MR, Pohl T. Glutaminyl-cyclase expression in the bovine/porcine hypothalamus and pituitary. J Neuroendocrinol. 1995;7:445–453.
  • Goren HJ, Bauce LG, Vale W. Forces and structural limitations of binding of thyrotrophin-releasing factor to the thyrotrophin-releasing receptor: the pyroglutamic acid moiety. Mol Pharmacol. 1977;13:606–614.
  • Gong JH, Clark-Lewis I. Antagonists of monocyte chemoattractant protein 1 identified by modification of functionally critical NH2-terminal residues. J Exp Med. 1995;181:631–640.
  • Schilling S, Zeitschel U, Hoffmann T, et al. Glutaminyl cyclase inhibition attenuates pyroglutamate Abeta and Alzheimer’s disease-like pathology. Nat Med. 2008;14:1106–1111.
  • Jimenez-Sanchez M, Lam W, Hannus M, et al. siRNA screen identifies QPCT as a druggable target for Huntington’s disease. Nat Chem Biol. 2015;11:347–354.
  • Zhang -Q-Q, Jiang T, Gu L-Z, et al. Common polymorphisms within QPCT gene are associated with the susceptibility of schizophrenia in a han Chinese population. Mol Neurobiol. 2016;53:6362–6366.
  • Kehlen A, Haegele M, Menge K, et al. Role of glutaminyl cyclases in thyroid carcinomas. Endocr Relat Cancer. 2013;20:79–90.
  • Ezura Y, Kajita M, Ishida R, et al. Association of multiple nucleotide variations in the pituitary glutaminyl cyclase gene (QPCT) with low radial BMD in adult women. J Bone Miner Res. 2004;19:1296–1301.
  • Hellvard A, Maresz K, Schilling S, et al. Glutaminyl cyclases as novel targets for the treatment of septic arthritis. J Infect Dis. 2013;207:768–777.
  • Cynis H, Scheel E, Saido TC, et al. Amyloidogenic processing of amyloid precursor protein: evidence of a pivotal role of glutaminyl cyclase in generation of pyroglutamate-modified amyloid-beta. Biochemistry. 2008;47:7405–7413.
  • Schlenzig D, Manhart S, Cinar Y, et al. Pyroglutamate formation influences solubility and amyloidogenicity of amyloid peptides. Biochemistry. 2009;48:7072–7078.
  • Logtenberg MEW, Jansen JHM, Raaben M, et al. Glutaminyl cyclase is an enzymatic modifier of the CD47- SIRPα axis and a target for cancer immunotherapy. Nat Med. 2019;25:612–619.
  • Wu Z, Weng L, Zhang T, et al. Identification of glutaminyl cyclase isoenzyme isoQC as a regulator of SIRPα-CD47 axis. Cell Res. 2019;29:502–505.
  • Taudte N, Linnert M, Rahfeld JU, et al. Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. J Biol Chem. 2021;296:100263.
  • Hennekens CH, Bensadon BA, Zivin R, et al. Hypothesis: glutaminyl cyclase inhibitors decrease risks of Alzheimer’s disease and related dementias. Expert Rev Neurother. 2015;15:1245–1248.
  • Chen YL, Huang KF, Kuo WC, et al. Inhibition of glutaminyl cyclase attenuates cell migration modulated by monocyte chemoattractant proteins. Biochem J. 2012;442:403–412.
  • Coimbra JR, Sobral PJ, Santos AE, et al. An overview of glutaminyl cyclase inhibitors for Alzheimer’s disease. Future Med Chem. 2019;11:3179–3194.
  • Pozzi C, Di Pisa F, Benvenuti M, et al. The structure of the human glutaminyl cyclase-SEN177 complex indicates routes for developing new potent inhibitors as possible agents for the treatment of neurological disorders. J Biol Inorg Chem. 2018;23:1219–1226.
  • Hielscher-Michael S, Griehl C, Buchholz M, et al. Natural products from microalgae with potential against alzheimer’s disease: sulfolipids are potent glutaminyl cyclase inhibitors. Mar Drugs. 2016;14:203.
  • Luccarini I, Grossi C, Rigacci S, et al. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ss toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging. 2015;36:648–663.
  • Li M, Dong Y, Yu X, et al. Inhibitory effect of flavonoids on human glutaminyl cyclase. Bioorg Med Chem. 2016;24:2280–2286.
  • Buchholz M, Heiser U, Schilling S, et al. The first potent inhibitors for human glutaminyl cyclase:  synthesis and structure−activity relationship. J Med Chem. 2006;49:664–677.
  • Lues I, Weber F, Meyer A, et al. A phase 1 study to evaluate the safety and pharmacokinetics of PQ912, a glutaminyl cyclase inhibitor, in healthy subjects. Alzheimers Dement (N Y). 2015;1:182–195.
  • Saido TC, Iwatsubo T, Mann DM, et al. Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron. 1995;14:457–466.
  • Harigaya Y, Saido TC, Eckman CB, et al. Amyloid beta protein starting pyroglutamate at position 3 is a major component of the amyloid deposits in the Alzheimer’s disease brain. Biochem Biophys Res Commun. 2000;276:422–427.
  • Cynis H, Schilling S, Bodnar M, et al. Inhibition of glutaminyl cyclase alters pyroglutamate formation in mammalian cells. Biochim Biophys Acta. 2006;1764:1618–1625.
  • Schilling S, Appl T, Hoffmann T, et al. Inhibition of glutaminyl cyclase prevents pGlu-Abeta formation after intracortical/hippocampal microinjection in vivo/ in situ. J Neurochem. 2008;106:1225–1236.
  • Jawhar S, Wirths O, Schilling S, et al. Overexpression of glutaminyl cyclase, the enzyme responsible for pyroglutamate A{beta} formation, induces behavioral deficits, and glutaminyl cyclase knock-out rescues the behavioral phenotype in 5XFAD mice. J Biol Chem. 2011;286:4454–4460.
  • Alexandru A, Jagla W, Graubner S, et al. Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Abeta is induced by pyroglutamate-Abeta formation. J Neurosci. 2011;31:12790–12801.
  • Hartlage-Rubsamen M, Bluhm A, Piechotta A, et al. Immunohistochemical evidence from APP-transgenic mice for glutaminyl cyclase as drug target to diminish pE-abeta formation. Molecules. 2018;23:924.
  • Becker A, Kohlmann S, Alexandru A, et al. Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration. BMC Neurosci. 2013;14:108.
  • De Kimpe L, Bennis A, Zwart R, et al. Disturbed Ca2+ homeostasis increases glutaminyl cyclase expression; connecting two early pathogenic events in Alzheimer’s disease in vitro. Plos One. 2012;7:e44674.
  • Frost JL, Le KX, Cynis H, et al. Pyroglutamate-3 amyloid-beta deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. Am J Pathol. 2013;183:369–381.
  • Morawski M, Schilling S, Kreuzberger M, et al. Glutaminyl cyclase in human cortex: correlation with (pGlu)-amyloid-beta load and cognitive decline in Alzheimer’s disease. J Alzheimers Dis. 2014;39:385–400.
  • Pivtoraiko VN, Abrahamson EE, Leurgans SE, et al. Cortical pyroglutamate amyloid-beta levels and cognitive decline in Alzheimer’s disease. Neurobiol Aging. 2015;36:12–19.
  • Bridel C, Hoffmann T, Meyer A, et al. Glutaminyl cyclase activity correlates with levels of Abeta peptides and mediators of angiogenesis in cerebrospinal fluid of Alzheimer’s disease patients. Alzheimers Res Ther. 2017;9:38.
  • Moro ML, Phillips AS, Gaimster K, et al. Pyroglutamate and Isoaspartate modified Amyloid-Beta in ageing and Alzheimer’s disease. Acta Neuropathol Commun. 2018;6:3.
  • Gunn AP, Wong BX, McLean C, et al. Increased glutaminyl cyclase activity in brains of Alzheimer’s disease individuals. J Neurochem. 2020;00:1–9.
  • Bolognin S, Valenti MT, Dalle Carbonare L. Increased glutaminyl cyclase expression in peripheral blood of Alzheimer’s disease patients. Alzheimers Dement. 2012;8:263–267.
  • Hartlage-Rübsamen M, Waniek A, Meißner J, et al. Isoglutaminyl cyclase contributes to CCL2-driven neuroinflammation in Alzheimer’s disease. Acta Neuropathol. 2015;129:565–583.
  • Cynis H, Kehlen A, Haegele M, et al. Inhibition of Glutaminyl Cyclases alleviates CCL2-mediated inflammation of non-alcoholic fatty liver disease in mice. Int J Exp Pathol. 2013;94:217–225.
  • Kanemitsu N, Kiyonaga F, Mizukami K, et al. Chronic treatment with the (iso-)glutaminyl cyclase inhibitor PQ529 is a novel and effective approach for glomerulonephritis in chronic kidney disease. Naunyn Schmiedebergs Arch Pharmacol. 2021;394:751–761
  • Willingham SB, Volkmer J-P, Gentles AJ, et al. The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci U S A. 2012;109:6662–6667.
  • Barclay AN. van den Berg TK. the interaction between signal regulatory protein alpha (SIRPα) and CD47: structure, function, and therapeutic target. Annu Rev Immunol. 2014;32:25–50.
  • Sockolosky JT, Dougan M, Ingram JR, et al. Durable antitumor responses to CD47 blockade require adaptive immune stimulation. Proc Natl Acad Sci U S A. 2016;113:2646–2654.
  • Hatherley D, Graham SC, Turner J, et al. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol Cell. 2008;31:266–277.
  • Burgess TL, Amason JD, Rubin JS, et al. A homogeneous SIRPα-CD47 cell-based, ligand-binding assay: utility for small molecule drug development in immuno-oncology. Plos One. 2020;15:e0226661.
  • Gillis JS. Microarray evidence of glutaminyl cyclase gene expression in melanoma: implications for tumor antigen specific immunotherapy. J Transl Med. 2006;4:27.
  • Da Silveira Mitteldorf CA, De Sousa-canavez JM, Leite KR, et al. FN1, GALE, MET, and QPCT overexpression in papillary thyroid carcinoma: molecular analysis using frozen tissue and routine fine-needle aspiration biopsy samples. Diagn Cytopathol. 2011;39:556–561.
  • De Molon RS, Rossa C Jr., Thurlings RM, et al. Linkage of periodontitis and rheumatoid arthritis: current evidence and potential biological interactions. Int J Mol Sci. 2019;20:4541.
  • Mei F, Xie M, Huang X, et al. Porphyromonas gingivalis and Its Systemic Impact: current Status. Pathogens. 2020;9:944.
  • Dominy SS, Lynch C, Ermini F, et al. Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv. 2019;5:3333. eaau
  • Bender P, Egger A, Westermann M, et al. Expression of human and Porphyromonas gingivalis glutaminyl cyclases in periodontitis and rheumatoid arthritis-A pilot study. Arch Oral Biol. 2019;97:223–230.
  • Probiodrug AG, assignee. Use of effectors of glutaminyl and glutamate cyclases. Patent WO2004098625A2. 2004
  • Probiodrug AG, assignee. Inhibitors of Glutaminyl Cyclase. Patent WO2004098591A2. 2004.
  • Probiodrug AG, assignee. Novel inhibitors of glutaminyl cyclase. Patent WO2005075436A2. 2005
  • Probiodrug AG, assignee. Use of effectors of glutaminyl and glutamate cyclases. Patent WO2005039548A2. 2005
  • Buchholz M, Hamann A, Aust S, et al. Inhibitors for human glutaminyl cyclase by structure based design and bioisosteric replacement. J Med Chem. 2009;52:7069–7080.
  • Probiodrug AG, assignee. Nitrovinyl-diamine derivatives as glutaminyl cyclase inhibitors. Patent WO2008128981A1. 2008
  • Probiodrug AG, assignee. Novel inhibitors. Patent WO2008128987A1. 2008
  • Probiodrug AG, assignee. Thioxoquinazolinone derivatives as glutaminyl cyclase inhibitors. Patent WO2008128982A1. 2008
  • Probiodrug AG, assignee. Cyano-guanidine derivatives as glutaminyl cyclase inhibitors. Patent WO2008128983A1. 2008
  • Probiodrug AG, assignee. Thiourea derivatives as glutaminyl cyclase inhibitors. Patent WO2008128985A1. 2008
  • Probiodrug AG, assignee. Urea derivatives as glutaminyl cyclase inhibitors. Patent WO2008128986A1. 2008
  • Ramsbeck D, Buchholz M, Koch B, et al. Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold. J Med Chem. 2013;56:6613–6625.
  • Probiodrug AG, assignee. Novel inhibitors of glutaminyl cyclase. Patent WO2008065141A1. 2008
  • Probiodrug AG, assignee. Novel inhibitors. Patent WO2011107530A2. 2011
  • Probiodrug AG, assignee. 3-Hydroxy-1,5-dihydro-pyrrol-2-one derivatives as inhibitors of glutaminyl cyclase for the treatment of ulcer, cancer and other diseases. Patent WO2008055945A1. 2008.
  • Probiodrug AG, assignee. Novel inhibitors of glutaminyl cyclase. Patent WO2008055947A1. 2008
  • Probiodrug AG, assignee. Novel inhibitors of glutaminyl cyclase. Patent WO2008055950A1. 2008.
  • Probiodrug AG, assignee. Aminopyrimidine derivatives as glutaminyl cyclase inhibitors. Patent WO2008128984A1. 2008
  • Probiodrug AG, assignee. Imidazo [1,5-a] pyridine derivatives as inhibitors of glutaminyl cyclase. Patent WO2008110523A1. 2008
  • Probiodrug AG, assignee. Novel inhibitors. Patent WO2010026212A1. 2010
  • Probiodrug AG, assignee. Use of isoQC inhibitors. Patent WO2010026209A1. 2010.
  • Probiodrug AG, assignee. Heterocylcic derivatives as inhibitors of glutaminyl cyclase. Patent WO2011029920A1. 2011
  • Hoffmann T, Meyer A, Heiser U, et al. Glutaminyl cyclase inhibitor PQ912 improves cognition in mouse models of Alzheimer’s disease-studies on relation to effective target occupancy. J Pharmacol Exp Ther. 2017;362:119–130.
  • Probiodrug AG, assignee. Heterocyclic inhibitors of glutaminyl cyclase (QC, EC 2.3.2.5). Patent WO2011110613A1. 2011
  • Probiodrug AG, assignee. Benzimidazole derivatives as inhibitors of Glutaminyl Cyclase. Patent WO2012123563A1. 2012.
  • Probiodrug AG, assignee. Novel Inhibitors Patent WO2011131748A2. 2011.
  • Probiodrug AG, assignee. Radiolabelled glutaminyl cyclase inhibitors. Patent WO2012163773A1. 2012
  • Probiodrug AG, assignee. Novel inhibitors. Patent WO2014140279A1. 2014.
  • Probiodrug AG, assignee. Novel inhibitors. Patent WO2018178384A1. 2018.
  • Probiodrug AG, assignee. Inhibitors of glutaminyl cyclase. Patent WO2019063414A1. 2019
  • Leibniz-Institut für Pflanzenbiochemie; Hochschule Anhalt, assignee. Sulfolipids as new Glutaminyl Cyclase inhibitors. Patent WO 2017046256A1. 2017.
  • Shenzhen University, assignee. Glutaminyl cyclase inhibitor. Patent CN105384692A. 2016.
  • Shenzhen University, assignee. Preparation method and application of glutaminyl cyclase (QC) inhibitor. Patent CN105384691A. 2016.
  • Shenzhen University, assignee. Glutaminyl cyclase inhibitor containing 4-imidazolyl group. Patent CN108912051A. 2018.
  • Shenzhen University, assignee. Preparation method and application of 4-imidazolyl-containing glutaminyl cyclase inhibitor. Patent CN109305942A. 2019.
  • Shenzhen University, assignee. Multi-target inhibitor acting on QC and GSK-3[beta]. Patent CN110903292A. 2020.
  • Shenzhen University, assignee. Preparation method and application of multi-target inhibitor acting on QC and GSK-3beta. Patent CN110950869A. 2020.
  • Li M, Dong Y, Yu X, et al. Synthesis and evaluation of diphenyl conjugated imidazole derivatives as potential glutaminyl cyclase inhibitors for treatment of Alzheimer’s disease. J Med Chem. 2017;60:6664–6677.
  • Wang X, Wang L, Yu X, et al. Glutaminyl cyclase inhibitor exhibits anti-inflammatory effects in both AD and LPS-induced inflammatory model mice. Int Immunopharmacol. 2019;75:105770.
  • Tran PT, Hoang VH, Thorat SA, et al. Structure-activity relationship of human glutaminyl cyclase inhibitors having an N-(5-methyl-1H-imidazol-1-yl)propyl thiourea template. Bioorg Med Chem. 2013;21:3821–3830.
  • Hoang VH, Tran PT, Cui M, et al. Discovery of potent human glutaminyl cyclase inhibitors as anti-Alzheimer’s agents based on rational design. J Med Chem. 2017;60:2573–2590.
  • Ngo VTH, Hoang VH, Tran PT, et al. Potent human glutaminyl cyclase inhibitors as potential anti-Alzheimer’s agents: structure-activity relationship study of Arg-mimetic region. Bioorg Med Chem. 2018;26:1035–1049.
  • Ngo VTH, Hoang VH, Tran PT, et al. Structure-activity relationship investigation of Phe-Arg mimetic region of human glutaminyl cyclase inhibitors. Bioorg Med Chem. 2018;26:3133–3144.
  • Hoang VH, Ngo VTH, Cui M, et al. Discovery of conformationally restricted human glutaminyl cyclase inhibitors as potent anti-Alzheimer’s agents by structure-based design. J Med Chem. 2019;62:8011–8027.
  • Tran P-T, Hoang V-H, Lee J, et al. In vitro and in silico determination of glutaminyl cyclase inhibitors. RSC Adv. 2019;9:29619–29627.
  • Medifron DBT Co., Ltd., assignee. Phenylthiourea derivatives preparation method thereof and pharmaceutical composition for use in preventing or treating glutaminyl cyclase activity related diseases containing the same as an active ingredient. Patent KR101909089B1. 2018.
  • National Health Research Institutes; Academia sinica assignee. benzimidazole compounds and use thereof for treating Alzheimer’s disease or Huntington’s disease. Patent US10584120B1. 2020.
  • Pharmenterprises, assignee. New inhibitor of Glutaminyl Cyclase and its use for treatment of lung and respiratory diseases. Patent RU2662559C1. 2017.
  • Pharmenterprises, assignee. New inhibitor of Glutaminyl Cyclase and its use. Patent RU2665633C1. 2017.
  • Pharmenterprises, assignee. Novel Glutaminyl Cyclase inhibitors and the use thereof in treatment of various diseases. Patent WO 2018217139A1. 2018.
  • Pharmenterprises, assignee. Use of a glutarimide derivative to treat diseases related to the aberrant activity of cytokines. Patent WO2019050429A1. 2019.
  • Therapeutics, assignee. Novel zinc complex, production and use of same. Patent WO2020040670A1. 2020.
  • Fraunhofer-Gesellschaft, assignee. Bacterial Glutaminyl Cyclases and inhibitors thereof for use in the treatment of periodontitis. Patent WO2018100159A1. 2018.
  • Fraunhofer-Gesellschaft, assignee. Novel inhibitors of bacterial Glutaminyl Cyclases for use in the treatment of periodontal and related diseases. Patent WO2019162458A1. 2019.
  • Academisch Ziekenhuis Leiden; Stichting het nederlands kanker inst antoni van lleuwenhoek ziekenhuis, assignee. treating pathological conditions by direct and indirect targeting of SIRPα-CD47 interaction. Patent WO2019022600A1. 2019.
  • Scheltens P, Hallikainen M, Grimmer T, et al. Safety, tolerability and efficacy of the glutaminyl cyclase inhibitor PQ912 in Alzheimer’s disease: results of a randomized, double-blind, placebo-controlled phase 2a study. Alzheimers Res Ther. 2018;10:107.
  • Briels CT, Stam CJ, Scheltens P, et al. In pursuit of a sensitive EEG functional connectivity outcome measure for clinical trials in Alzheimer’s disease. Clin Neurophysiol. 2020;131:88–95.
  • Vivoryon Therapeutics Announces Update on Phase 2b Alzheimer’s Clinical Trial, VIVIAD [Internet]. 2020 [cited 18 Mar]. Available from: https://www.vivoryon.com/vivoryon-therapeutics-announces-update-on-phase-2b-alzheimers-clinical-trial-viviad
  • Vivoryon therapeutics announces enrollment of first patient in VIVIAD, European phase 2b Alzheimer’s disease study with varoglutamstat (PQ912) [Internet]. 2020 [cited 15 Jul]. Available from: https://www.vivoryon.com/vivoryon-therapeutics-announces-enrollment-of-first-patient-in-viviad-european-phase-2b-alzheimers-disease-study-with-varoglutamstat-pq912
  • Vivoryon therapeutics provides update on US and EU Alzheimer’s clinical trial program with PQ912 [Internet]. 2020 [cited 26 Jun]. Available from: https://www.vivoryon.com/vivoryon-therapeutics-provides-update-on-us-and-eu-alzheimers-clinical-trial-program-with-pq912
  • Vivoryon receives IND approval for varoglutamstat‘s (PQ912) phase 2 study in Alzheimer’s disease [Internet]. 2020 [cited 04 Aug]. Available from: https://www.vivoryon.com/vivoryon-receives-ind-approval-for-varoglutamstats-pq912-phase-2-study-in-alzheimers-disease
  • Dileep KV, Sakai N, Ihara K, et al. Piperidine-4-carboxamide as a new scaffold for designing secretory glutaminyl cyclase inhibitors. Int J Biol Macromol. 2021;170:415–423.
  • Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in early Alzheimer’s disease. N Engl J Med. 2021; DOI:10.1056/NEJMoa2100708
  • Lowe SL, Willis BA, Hawdon A, et al. Donanemab (LY3002813) dose-escalation study in Alzheimer’s disease. Alzheimers Dement (N Y). 2021;7:12112.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.