653
Views
21
CrossRef citations to date
0
Altmetric
Review

Phosphatidylinositol 3-kinase (PI3K) inhibitors: a recent update on inhibitor design and clinical trials (2016–2020)

ORCID Icon, ORCID Icon, ORCID Icon &
Pages 877-892 | Received 24 Jan 2021, Accepted 27 Apr 2021, Published online: 16 May 2021

References

  • Liu P, Cheng H, Roberts TM, et al. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov. 2009;8(8):627–644.
  • Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–562.
  • Fruman DA, Chiu H, Hopkins BD, et al. The PI3K pathway in human disease. Cell. 2017;170(4):605–635.
  • Brazil DP, Hemmings BA, Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci. 2001;26(11):657–664.
  • Goldar S, Khaniani MS, Derakhshan SM, et al. Molecular mechanisms of apoptosis and roles in cancer development and treatment. Asian Pac J Cancer Prev. 2015;16(6):2129–2144.
  • Altomare DA, Testa JR. Perturbations of the AKT signaling pathway in human cancer. Oncogene. 2005;24(50):7455–7464.
  • Manning BD, Cantley LC, Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–1274.
  • Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28(6):1075–1083.
  • Spangle JM, Roberts TM, Zhao JJ. The emerging role of PI3K/AKT-mediated epigenetic regulation in cancer. Biochim Biophys Acta Rev Cancer. 2017;1868(1):123–131.
  • Samuels Y, Diaz LA, Schmidt-Kittler O, et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell. 2005;7(6):561–573.
  • Samuels Y, Velculescu VE. Oncogenic mutations of PIK3CA in human cancers. Cell Cycle. 2004;3(10):1221–1224.
  • Samuels Y, Wang ZH, Bardelli A, et al., High frequency of mutations of the PIK3CA gene in human cancers. Science. 304(5670): 554. 2004.
  • Liu ZN, Roberts TM. Human tumor mutants in the p110 alpha subunit of PI3K. Cell Cycle. 2006;5(7):675–677.
  • Zhao L, Vogt PK. Helical domain and kinase domain mutations in p110 alpha of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc Natl Acad Sci USA. 2008;105(7):2652–2657.
  • Zhao L, Vogt PK. Hot-spot mutations in p110α of phosphatidylinositol 3-kinase (PI3K): differential interactions with the regulatory subunit p85 and with RAS. Cell Cycle. 2010;9(3):596–600.
  • Rashid M, Karim S, Ali B, et al. PI3K signaling pathway targeting by using different molecular approaches to treat cancer. J Chin Pharm Sci. 2017;26(9):621–634.
  • Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes of phosphoinositide 3-kinases. Exp Cell Res. 1999;253(1):239–254.
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, et al. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol. 2010;11(5):329–341.
  • Vanhaesebroeck B, Stephens L, Hawkins P. PI3K signalling: the path to discovery and understanding. Nat Rev Mol Cell Biol. 2012;13(3):195–203.
  • Vivanco I, Sawyers CL. The phosphatidylinositol 3-kinase-AKT pathway in human cancer. Nat Rev Cancer. 2002;2(7):489–501.
  • Wick MJ, Dong LQ, Riojas RA, et al. Mechanism of phosphorylation of protein kinase B/Akt by a constitutively active 3-phosphoinositide-dependent protein kinase-1. J Biol Chem. 2000;275(51):40400–40406.
  • Gulluni F, De Santis MC, Margaria JP, et al. Class II PI3K functions in cell biology and disease. Trends Cell Biol. 2019;29(4):339–359.
  • Braccini L, Ciraolo E, Campa CC, et al. PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 2015;6(6):7400. PMID: 26100075.
  • Jaber N, Zong W-X. Class III PI3K Vps34: essential roles in autophagy, endocytosis, and heart and liver function. Ann N Y Acad Sci. 2013;1280(1):48–51.
  • Velasco A, Bussaglia E, Pallares J, et al. PIK3CA gene mutations in endometrial carcinoma: correlation with PTEN and K-RAS alterations. Hum Pathol. 2006;37(11):1465–1472.
  • Balakrishnan A, Chaillet JR. Role of the inositol polyphosphate-4-phosphatase type II Inpp4b in the generation of ovarian teratomas. Dev Biol. 2013;373(1):118–129.
  • Vanhaesebroeck B, Whitehead MA, Piñeiro R. Molecules in medicine mini-review: isoforms of PI3K in biology and disease. J Mol Med. 2016;94(1):5–11.
  • Foukas LC, Bilanges B, Bettedi L, et al. Long-term p110α PI3K inactivation exerts a beneficial effect on metabolism. EMBO Mol Med. 2013;5(4):563–571.
  • Jackson SP, Schoenwaelder SM, Goncalves I, et al. PI 3-kinase p110beta: a new target for antithrombotic therapy. Nat Med. 2005;11(5):507–514.
  • Pazarentzos E, Giannikopoulos P, Hrustanovic G, et al. Oncogenic activation of the PI3-kinase p110β isoform via the tumor-derived PIK3Cβ(D1067V) kinase domain mutation. Oncogene. 2016;35(9):1198–1205.
  • Chantry D, Vojtek A, Kashishian A, et al. p110delta, a novel phosphatidylinositol 3-kinase catalytic subunit that associates with p85 and is expressed predominantly in leukocytes. J Biol Chem. 1997;272(31):19236–19241.
  • Tzenaki N, Andreou M, Stratigi K, et al. High levels of p110δ PI3K expression in solid tumor cells suppress PTEN activity, generating cellular sensitivity to p110δ inhibitors through PTEN activation. FASEB J. 2012;26(6):2498–2508.
  • Hawkins PT, Stephens LR. PI3K signalling in inflammation. Biochim Biophys Acta Mol Cell Biol Lipids. 2015;1851(6):882–897.
  • Costa C, Martin-Conte EL, Hirsch E. Phosphoinositide 3-kinase p110γ in immunity. IUBMB Life. 2011;63(9):707–713.
  • Schmid MC, Avraamides CJ, Dippold HC, et al. Receptor tyrosine kinases and TLR/IL1Rs unexpectedly activate myeloid cell PI3kγ, a single convergent point promoting tumor inflammation and progression. Cancer Cell. 2011;19(6):715–727.
  • Kaneda MM, Messer KS, Ralainirina N, et al. PI3Kγ is a molecular switch that controls immune suppression. Nature. 2016;539(7629):437–442.
  • De Henau O, Rausch M, Winkler D, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature. 2016;539(7629):443–447.
  • Carracedo A, Alimonti A, Pandolfi PP. PTEN level in tumor suppression: how much is too little? Cancer Res. 2011;71(3):71.
  • Carracedo A, Pandolfi PP. The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene. 2008;27(41):5527–5541.
  • Pérez-Tenorio G, Alkhori L, Olsson B, et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res. 2007;13(12):13.
  • Lauring J, Park BH, Wolff AC. The phosphoinositide-3-kinase-Akt-mTOR pathway as a therapeutic target in breast cancer. J Natl Compr Canc Netw. 2013;11(6):670–678.
  • Noorolyai S, Shajari N, Baghbani E, et al. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019;698:120–128.
  • Bilanges B, Posor Y, Vanhaesebroeck B. PI3K isoforms in cell signalling and vesicle trafficking. Nat Rev Mol Cell Biol. 2019;20(9):515–534.
  • Sabbah DA, Brattain MG, Zhong HA. Dual inhibitors of PI3K/mTOR or mTOR-selective inhibitors: which way shall we go? Curr Med Chem. 2011;18(36):5528–5544.
  • Sabbah DA, Hu J, Zhong HA. Advances in the development of class I phosphoinositide 3-Kinase (PI3K). CurrTop Med Chem. 2016;16(3): 1413–1426.
  • Sabbah DA, Hajjo R, Sweidan K. Review on epidermal growth factor receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. CurrTop Med Chem. 2020;20(10):815–834.
  • Liu X, Xu Y, Zhou Q, et al. PI3K in cancer: its structure, activation modes and role in shaping tumor microenvironment. Future Oncol. 2018;14(7):665–674.
  • Zhang M, Jang H, Nussinov R. PI3K inhibitors: review and new strategies. Chem Sci. 2020;11(23):5855–5865.
  • Brown JR. Phosphatidylinositol 3 Kinase δ inhibitors: present and future. Cancer J. 2019;25(6):394–400.
  • Nunnery SE, Mayer IA. Management of toxicity to isoform α-specific PI3K inhibitors. Ann Oncol. 2019;30(Supplement_10):x21–x26.
  • Kim JS, Jeong JS, Kwon SH, et al. Roles of PI3K pan-inhibitors and PI3K-δ inhibitors in allergic lung inflammation: a systematic review and meta-analysis. Sci Rep. 2020;10(1):1–10.
  • Massacesi C, Di Tomaso E, Urban P, et al. PI3K inhibitors as new cancer therapeutics: implications for clinical trial design. Onco Targets Ther. 2016;9:203–210.
  • Brandao M, Caparica R, Eiger D, et al. Biomarkers of response and resistance to PI3K inhibitors in estrogen receptor-positive breast cancer patients and combination therapies involving PI3K inhibitors. Ann Oncol. 2019;30(Supplement_10):x27–x42.
  • Ellis H, Ma CX. PI3K inhibitors in breast cancer therapy. Curr Oncol Rep. 2019;21(12):110.
  • Visentin A, Frezzato F, Severin F, et al. Lights and shade of next-generation Pi3k inhibitors in chronic lymphocytic leukemia. Onco Targets Ther. 2020;13:9679.
  • Sun J, Feng Y, Huang Y, et al. Research advances on selective phosphatidylinositol 3 kinase δ (PI3Kδ) inhibitors. Bioorg Med Chem Lett. 2020;30(19):127457.
  • Greenwell I, Flowers C, Blum K, et al. Clinical use of PI3K inhibitors in B-cell lymphoid malignancies: today and tomorrow. Expert Rev Anticancer Ther. 2017;17(3):271–279.
  • Nur Husna SM, Tan H-T-T, Mohamud R, et al. Inhibitors targeting CDK4/6, PARP and PI3K in breast cancer: a review. Ther Adv Med Oncol. 2018;10:1–21.
  • Sanchez VE, Nichols C, Kim HN, et al., Targeting PI3K signaling in acute lymphoblastic leukemia. Int J Mol Sci. 20(2): 412. 2019.
  • Maira S-M, Pecchi S, Huang A, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11(2):317–328.
  • Koul D, Fu J, Shen R, et al. Antitumor activity of NVP-BKM120–a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res. 2012;18(1):184–195.
  • Baselga J, Im S-A, Iwata H, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18(7):904–916.
  • Shapiro GI, Rodon J, Bedell C, et al. Phase I safety, pharmacokinetic, and pharmacodynamic study of SAR245408 (XL147), an oral pan-class I PI3K inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2014;20(1):233–245.
  • Brown JR, Davids MS, Rodon J, et al. Phase I trial of the pan-PI3K inhibitor pilaralisib (SAR245408/XL147) in patients with chronic lymphocytic leukemia (CLL) or relapsed/refractory lymphoma. Clin Cancer Res. 2015;21(14):3160–3169.
  • Matulonis U, Vergote I, Backes F, et al. Phase II study of the PI3K inhibitor pilaralisib (SAR245408; XL147) in patients with advanced or recurrent endometrial carcinoma. Gynecol Oncol. 2015;136(2):246–253.
  • Dreyling M, Santoro A, Mollica L, et al. Phosphatidylinositol 3-kinase inhibition by copanlisib in relapsed or refractory indolent lymphoma. J Clin Oncol. 2017;35(35):3898–3905.
  • Hong DS, Bowles DW, Falchook GS, et al. A multicenter phase I trial of PX-866, an oral irreversible phosphatidylinositol 3-kinase inhibitor, in patients with advanced solid tumors. Clin Cancer Res. 2012;18(15):4173–4182.
  • Zhao HF, Wang J, Shao W, et al. Recent advances in the use of PI3K inhibitors for glioblastoma multiforme: current preclinical and clinical development. Mol Cancer. 2017;16(1):100.
  • Mahadevan D, Chiorean E, Harris W, et al. Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer. 2012;48(18):3319–3327.
  • Xiang H-Y, Wang X, Chen Y-H, et al. Identification of methyl (5-(6-((4-(methylsulfonyl)piperazin-1-yl)methyl)-4-morpholinopyrrolo[2,1-f][1,2,4]triazin-2-yl)-4-(trifluoromethyl)pyridin-2-yl)carbamate (CYH33) as an orally bioavailable, highly potent, PI3K alpha inhibitor for the treatment of advanced solid tumors. Eur J Med Chem. 2020;209:112913.
  • Yang X, Zhang X, Huang M, et al. New insights into PI3K inhibitor design using X-ray structures of PI3Kα complexed with a potent lead compound. Sci Rep. 2017;7(1):14572.
  • André F, Ciruelos E, Rubovszky G, et al. Alpelisib for PIK3CA-mutated, hormone receptor–positive advanced breast cancer. N Engl J Med. 2019;380(20):1929–1940.
  • Mayer IA, Abramson VG, Formisano L, et al. A phase Ib study of alpelisib (BYL719), a PI3Kα-specific inhibitor, with letrozole in ER+/HER2− metastatic breast cancer. Clin Cancer Res. 2017;23(1):26–34.
  • Juric D, Lopez J, Rasco D, et al. A phase 1b multicenter, open-label study of investigational TAK-228 (MLN0128) plus TAK-117 (MLN1117) in adult patients with advanced nonhematologic malignancies. Eur J Cancer. 2016;69:S11–S12.
  • Juric D, Krop I, Ramanathan RK, et al. Phase I dose-escalation study of taselisib, an oral PI3K inhibitor, in patients with advanced solid tumors. Cancer Discov. 2017;7(7):704–715.
  • Baselga J, Dent SF, Cortés J, et al. Phase III study of taselisib (GDC-0032) + fulvestrant (FULV) v FULV in patients (pts) with estrogen receptor (ER)-positive, PIK3CA-mutant (MUT), locally advanced or metastatic breast cancer (MBC): primary analysis from SANDPIPER. J Clin Oncol. 2018;36(18_suppl):LBA1006–LBA1006.
  • Castanedo GM, Blaquiere N, Beresini M, et al. Structure-based design of tricyclic NF-κB inducing kinase (NIK) inhibitors that have high selectivity over phosphoinositide-3-kinase (PI3K). J Med Chem. 2017;60(2):627–640.
  • Heffron TP, Heald RA, Ndubaku C, et al. The rational design of selective benzoxazepin inhibitors of the α-isoform of phosphoinositide 3-Kinase culminating in the identification of (S)-2-((2-(1-Isopropyl-1H-1,2,4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl)oxy)propanamide (GDC-0326). J Med Chem. 2016;59(3):985–1002.
  • Sabbah DA, Vennerstrom JL, Zhong H. Docking studies on isoform-specific inhibition of phosphoinositide-3-Kinases. J Chem Inf Model. 2010;50(10):1887–1898.
  • Sabbah DA, Simms NA, Brattain MG, et al. Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinases. Bioorg Med Chem Lett. 2012;22(2):876–880.
  • Schrödinger. Protein preparation wizard, maestro, macromodel, QPLD-dock, and Pymol. LLC, Portland, OR, U.S.A.: Schrödinger; 2019. 97204.
  • Sabbah DA, Saada M, Khalaf RA, et al. Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinositide 3-kinase (PI3Kα). Bioorg Med Chem Lett. 2015;25(16):3120–3124.
  • Sabbah DA, Al-Tarawneh F, Talib WH, et al. Benzoin Schiff bases: design, synthesis, and biological evaluation as potential antitumor agents. Med Chem. 2018;14(7):695–708.
  • Sabbah DA, Ibrahim AH, Talib WH, et al. Ligand-based drug design: synthesis and biological evaluation of substituted benzoin derivatives as potential antitumor agents. Med Chem. 2019;15(4):417–429.
  • Sabbah DA, Al-Azaideh B, Talib WH, et al. New derivatives of sulfonylhydrazone as potential antitumor agents: design, synthesis and cheminformatics evaluation. Acta Pharm. 2021;71(4):545–565. Accepted.
  • Sabbah DA, Hishmah B, Sweidan K, et al. Structure-based design: synthesis, X-ray crystallography, and biological evaluation of N-substituted-4-hydroxy-2-quinolone-3-carboxamides as potential cytotoxic agents. Anticancer Agents Med Chem. 2018;18(2):263–276.
  • Sabbah DA, Hasan SE, Abu Khalaf R, et al. Molecular modeling, synthesis and biological evaluation of N-phenyl-4-hydroxy-6-methyl-2-quinolone-3-carboxamides as Anticancer Agents. Molecules. 2020;25(22):5348.
  • Sabbah DA, Haroon RA, Bardaweel SK, et al. N-Phenyl-6-Chloro-4-Hydroxy-2-Quinolone-3-CarboxAmides: molecular docking, synthesis, and biological investigation as anticancer agents. Molecules. 2021;26(1):73.
  • Zheng Z, Pinson J-A, Mountford SJ, et al. Discovery and antiplatelet activity of a selective PI3Kβ inhibitor (MIPS-9922). Eur J Med Chem. 2016;122:339–351.
  • Perreault S, Arjmand F, Chandrasekhar J, et al. Discovery of an atropisomeric PI3Kβ selective inhibitor through optimization of the hinge binding motif. ACS Med Chem Lett. 2020;11(6):1236–1243.
  • Barlaam B, Cosulich S, Degorce S, et al. Discovery of (R)-8-(1-(3, 5-Difluorophenylamino) ethyl)-N, N-dimethyl-2-morpholino-4-oxo-4 H-chromene-6-carboxamide (AZD8186): a potent and selective inhibitor of PI3Kβ and PI3Kδ for the treatment of PTEN-deficient cancers. J Med Chem. 2015;58(2):943–962.
  • Certal V, Carry J-C, Halley F, et al. Discovery and optimization of pyrimidone indoline amide PI3Kβ inhibitors for the treatment of Phosphatase and Tensin Homologue (PTEN)-deficient cancers. J Med Chem. 2014;57(3):903–920.
  • Herman SE, Gordon AL, Wagner AJ, et al. Phosphatidylinositol 3-kinase-δ inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–2088.
  • Robinson D, Bertrand T, Carry J-C, et al. Differential water thermodynamics determine PI3K-beta/delta selectivity for solvent-exposed ligand modifications. J Chem Inf Model. 2016;56(5):886–894.
  • Shin N, Koblish H, Covington M, et al. INCB050465, a novel PI3Kδ inhibitor, synergizes with PIM protein kinase inhibition to cause tumor regression in a model of DLBCL. Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015; Philadelphia: AACR; Cancer Res.
  • Li Y, Yao W, Combs A, et al., inventors, preparation of pyrazolopyrimidine derivatives for the treatment of PI3Kδ related disorders, World Patent, WO 2014134426, 2014, Sep. 4.
  • Moreno O, Butler T, Zann V, et al. Safety, pharmacokinetics, and pharmacodynamics of ME-401, an oral, potent, and selective inhibitor of phosphatidylinositol 3-kinase P110δ, following single ascending dose administration to healthy volunteers. Clin Ther. 2018;40(11):1855–1867.
  • Phillips TJ, Forero-Torres A, Sher T, et al. Phase 1 study of the PI3Kδ inhibitor INCB040093±JAK1 inhibitor itacitinib in relapsed/refractory B-cell lymphoma. Blood. 2018;132(3):293–306.
  • Tanba K, Chinen Y, Uchiyama H, Kater AP, Tonino SH, Spiering M, et al. Final results of a phase 1b study of the safety and efficacy of the PI3Kδ inhibitor acalisib (GS-9820) in relapsed/refractory lymphoid malignancies. Blood Cancer J. 2018;8(2):1–4.
  • Cushing TD, Hao X, Shin Y, et al. Discovery and in vivo evaluation of (S)-N-(1-(7-Fluoro-2-(pyridin-2-yl) quinolin-3-yl) ethyl)-9 H-purin-6-amine (AMG319) and related PI3Kδ inhibitors for inflammation and autoimmune disease. J Med Chem. 2015;58(1):480–511.
  • AMG 319 lymphoid malignancy FIH - clinicaltrials.gov 2011. [cited 2021 Jan]. Available from: https://clinicaltrials.gov/ct2/show/NCT01300026
  • Patel L, Chandrasekhar J, Evarts J, et al. Discovery of orally efficacious phosphoinositide 3-kinase δ inhibitors with improved metabolic stability. J Med Chem. 2016;59(19):9228–9242.
  • Braun T, von Jan J, Wahnschaffe L, Herling M. Advances and Perspectives in the Treatment of T-PLL. Curr Hematol Malig Rep. 2020 Apr;15(2):113–124. DOI:https://doi.org/10.1007/s11899-020-00566-5.
  • Vakkalanka S inventor, Composition and method for treating peripheral t-cell lymphoma and cutaneous t-cell lymphoma, World Patent, WO 2019111185, 2019, Jun. 13.
  • Down K, Amour A, Baldwin IR, et al. Optimization of novel indazoles as highly potent and selective inhibitors of phosphoinositide 3-kinase δ for the treatment of respiratory disease. J Med Chem. 2015;58(18):7381–7399.
  • A study to evaluate the safety, tolerability and pharmacokinetics of single and repeat doses of the dry powder formulation of GSK2269557 in healthy subjects 2013. [cited 2021 Jan]. Available from: https://clinicaltrials.gov/ct2/show/NCT01762878
  • Allen RA, Brookings DC, Powell MJ, et al. Seletalisib: characterization of a novel, potent, and selective inhibitor of PI3Kδ. J Pharmacol Exp Ther. 2017;361(3):429–440.
  • Rao VK, Webster S, Dalm VA, et al. Effective “activated PI3Kδ syndrome”–targeted therapy with the PI3Kδ inhibitor leniolisib. Blood. 2017;130(21):2307–2316.
  • Ma X, Fang F, Tao Q, et al. Conformationally restricted quinazolone derivatives as PI3Kδ-selective inhibitors: the design, synthesis and biological evaluation. MedChemComm. 2019;10(3):413–420.
  • Liu X, Wang A, Liang X, et al. Characterization of selective and potent PI3Kδ inhibitor (PI3KDIN- 015) for B-Cell malignances. Oncotarget. 2016;7(22):32641–32651.
  • Zhou H, McGowan MA, Lipford K, et al. Discovery and optimization of heteroaryl piperazines as potent and selective PI3Kδ inhibitors. Bioorg Med Chem Lett. 2020;30(1):126715.
  • Fradera X, Methot JL, Achab A, et al. Design of selective PI3Kδ inhibitors using an iterative scaffold-hopping workflow. Bioorg Med Chem Lett. 2019;29(18):2575–2580.
  • Li K, Zhu J, Xu L, et al. Rational design of novel phosphoinositide 3-kinase gamma (PI3Kγ) selective inhibitors: a computational investigation integrating 3D-QSAR, molecular docking and molecular dynamics simulation. Chem Biodivers. 2019;16(7):e1900105.
  • MOE. The molecular operating, environment chemical computing group. Quebec Canada: Inc Montreal; 2016.
  • Sabbah DA, Vennerstrom JL, Zhong HA. Binding selectivity studies of phosphoinositide 3-kinases using free energy calculations [10.1021/ci3003057]. J Chem Inf Model. 2012;52(12):3213–3224.
  • Zhu J, Ke K, Xu L, et al. Discovery of a novel phosphoinositide 3-kinase gamma (PI3Kγ) inhibitor against hematologic malignancies and theoretical studies on its PI3Kγ-specific binding mechanisms [10.1039/C9RA02649E]. RSC Adv. 2019;9(35):20207–20215.
  • Campa CC, Silva RL, Margaria JP, et al. Inhalation of the prodrug PI3K inhibitor CL27c improves lung function in asthma and fibrosis. Nat Commun. 2018;9(1):1–16.
  • Gangadhara G, Dahl G, Bohnacker T, et al. A class of highly selective inhibitors bind to an active state of PI3Kγ. Nat Chem Biol. 2019;15(4):348–357.
  • Rathinaswamy MK, Gaieb Z, Fleming KD, et al. Disease-related mutations in PI3Kγ disrupt regulatory C-terminal dynamics and reveal a path to selective inhibitors. Elife. 2021;10:e64691.
  • Tawbi -HA-H, Peng W, Milton D, et al. Phase I/II study of the PI3Kβ inhibitor GSK2636771 in combination with pembrolizumab (P) in patients (pts) with PD-1 refractory metastatic melanoma (MM) and PTEN loss. J Clin Oncol. 2018;36(15_suppl):9596.
  • Janku F, Johnson FM, Opyrchal M, et al. Abstract B109: oral dual PI3K/mTOR inhibitor bimiralisib demonstrates tolerability and a signal of activity in head and neck squamous cell cancer with NOTCH1 loss-of-function mutation. Mol Cancer Ther. 2019;18(12 Supplement):B109–B109.
  • Rolli M, Schmitz-Rohmer D, Fabbro D, et al., inventors, Treatment of squamous cell carcinoma with PI3K/mTOR inhibitors, World Patent, WO 2020030708, 2020, Feb. 13.
  • Nastoupil LJ, Neelapu SS, Davis E, et al. Results of a first in human, dose ascending, phase I study examining the safety and tolerability of KA2237, an oral PI3K p110β/δ inhibitor in patients with Relapsed/Refractory (R/R) B-cell lymphoma. Blood. 2019;134(Supplement_1):4099.
  • Lang F, Wunderle L, Badura S, et al. A phase I study of a dual PI3-kinase/mTOR inhibitor BEZ235 in adult patients with relapsed or refractory acute leukemia. BMC Pharmacol Toxicol. 2020 Sep 29;21(1):70.
  • Zammarchi F, Bertoni F, inventors, combination therapy comprising an anti-CD19 antibody drug conjugate and a PI3K inhibitor or a secondary agent. World Patent WO 2020249528. 2020, Dec. 17.
  • Greene S, Joo S, Schutzman J, inventors, methods of treating cancer with PI3K alpha inhibitors and metformin. World Patent WO 2020076432, 2020, Apr. 16.
  • Greene S, Joo S, Schutzman J, inventors, methods of treating cancer with PI3K inhibitor, GDC-0077, World Patent, WO 2020023297, 2019, Jul. 19.
  • Johnson F, Frederick M, inventors, Treatment of squamous cell carcinoma with phosphatidylinositol 3-kinase (PI3K) inhibitors. United States Patent, US 20200248273, 2020, Feb. 13.
  • Edgar K, Friedman L, Sampath D, et al., inventors, methods of treatment of cancer with taselisib by degradation of p110α PI3K isoform. United States Patent, US 20160375, 2016, Dec. 29.
  • Santin AD, Filiaci V, Bellone S, et al. Phase II evaluation of copanlisib, a selective inhibitor of Pi3kca, in patients with persistent or recurrent endometrial carcinoma harboring PIK3CA hotspot mutations: an NRG oncology study (NRG-GY008). Gynecol Oncol Rep. 2020;31:100532.
  • Yhim HY, Kim T, Kim SJ, et al. Combination treatment of copanlisib and gemcitabine in relapsed/refractory PTCL (COSMOS): an open-label phase 1/2 trial. Ann Oncol. 2020;32(4):552–559. InPress.
  • Janzer A, Politz O, Eheim A, inventors, combinations of copanlisib with triazolone derivatives and their use in the treatment of cancer. World Patent WO 2019197269, 2019, Oct. 17.
  • Perry M, Karabelas K, Mogemark M, et al., inventors, preparation of substituted isoindolone derivs. as dual phosphatidylinositol 3-kinase δ & γ inhibitors for treatment of asthma or chronic obstructive pulmonary disease, World Patent, WO 2018055040, 2018, Mar. 29.
  • Cho J, inventor, method of treating sickle cell disease using hydroxyurea and ARQ 092, World Patent, WO 2019071171, 2019, Apr. 11.
  • Canaud G, inventor, BYL719 (alpelisib) for treatment of PIk3CA-related overgrowth spectrum (PROS- CLOVES syndrome), World Patent, WO 2017140828, 2017, Aug. 24.
  • Caponigro G, Horn-Spirohn T, Lehar J, inventors, pharmaceutical combination comprising the PI3K inhibitor alpelisib and the B-RAF inhibitor dabrafenib; the use of such combination in the treatment or prevention of cancer, World Patent, WO 2017037573, 2017, Mar. 9.
  • Castel P, Baselga J, Scaltriti M, inventors, combination therapy using phosphoinositide-dependent kinase 1 (PDK1) and phosphatidylinositol 3ʹ-kinase (PI3K) inhibitors for treating cancer, World Patent, WO 2017015152, 2017, Jan. 26.
  • Radovich M, Solzak J, inventors, Jeffrey Peter dual PI3K and Wnt pathway inhibition as a treatment for cancer, United States Patent, US 20160303137, 2016, Oct. 20.
  • Aronchik I, Barnes C, Bray G, et al., inventors, preparation of a diaminopyrimidine deriv. as ERK inhibitor in combination with PI3K inhibitor or dual PI3K/TOR inhibitor, World Patent, WO 2016025656, 2015, Aug. 12.
  • Caponigro G, Horn-Spirohn T, Lehar J, inventors, pharmaceutical combination comprising PI3K inhibitor, alpelisib, and CDK4/6 inhibitor, ribociclib and an antimetabolite antineoplastic agent for use in prevention and treatment of cancer, World Patent, WO 2017037575, 2017, Mar. 9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.