1,070
Views
5
CrossRef citations to date
0
Altmetric
Review

A patent review of MALT1 inhibitors (2013-present)

, , &
Pages 1079-1096 | Received 22 May 2021, Accepted 01 Jul 2021, Published online: 15 Jul 2021

References

  • Minina EA, Staal J, Alvarez VE, et al. Classification and nomenclature of metacaspases and paracaspases: no more confusion with caspases. Mol Cell. 2020;77(5):927–929.
  • Dierlamm J, Baens M, Wlodarska I, et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood. 1999;93(11):3601–9.
  • Staal J, Driege Y, Haegman M, et al. Ancient origin of the CARD–coiled coil/Bcl10/MALT1-like paracaspase signaling complex indicates unknown critical functions. Front Immunol. 2018;9(p):1136.
  • Uren AG, O’Rourke K, Aravind LA, et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol Cell. 2000;6(4):961–7.
  • Coornaert B, Baens M, Heyninck K, et al. T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nat Immunol. 2008;9(3):263–71.
  • Rebeaud F, Hailfinger S, Posevitz-Fejfar A, et al. The proteolytic activity of the paracaspase MALT1 is key in T cell activation. Nat Immunol. 2008;9(3):272–81.
  • Hachmann J, Snipas SJ, van Raam BJ, et al. Mechanism and specificity of the human paracaspase MALT1. Biochem J. 2012;443(1):287–95.
  • Snipas SJ, Wildfang E, Nazif T, et al. Characteristics of the caspase-like catalytic domain of human paracaspase. Biol Chem. 2004;385(11):1093–8.
  • Wiesmann C, Leder L, Blank J, et al. Structural determinants of MALT1 protease activity. J Mol Biol. 2012;419(1–2):4–21.
  • Pelzer C, Cabalzar K, Wolf A, et al. The protease activity of the paracaspase MALT1 is controlled by monoubiquitination. Nat Immunol. 2013;14(4):337–45.
  • Schairer R, Hall G, Zhang M, et al. Allosteric activation of MALT1 by its ubiquitin-binding Ig3 domain. Proc Natl Acad Sci U S A. 2020;117(6):3093–3102.
  • Quancard J, Klein T, Fung S-Y, et al. An allosteric MALT1 inhibitor is a molecular corrector rescuing function in an immunodeficient patient. Nat Chem Biol. 15(3):304–313. 2019.
  • Schlauderer F, Lammens K, Nagel D, et al. Structural analysis of phenothiazine derivatives as allosteric inhibitors of the MALT1 paracaspase. Angew Chem. 52(39):10384–10387. 2013.
  • Ruland J, Duncan GS, Wakeham A, et al. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity. 2003;19(5):749–58.
  • Ruefli-Brasse AA, Lee WP, Hurst S, et al. Rip2 participates in Bcl10 signaling and T-cell receptor-mediated NF-κB activation. J Biol Chem. 2004;279(2):1570–4.
  • Schlauderer F, Seeholzer T, Desfosses A, et al. Molecular architecture and regulation of BCL10-MALT1 filaments. Nat Commun. 2018;9(1):4041.
  • Qiao Q, Yang C, Zheng C, et al. Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell. 2013;51(6):766–79.
  • David L, Li Y, Ma J, et al. Assembly mechanism of the CARMA1–BCL10–MALT1–TRAF6 signalosome. Proc Natl Acad Sci U S A. 2018;115(7):1499–1504.
  • Noels H, Van Loo G, Hagens S, et al. A novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-κB activation by API2·MALT1 fusions. J Biol Chem. 2007;282(14):10180–9.
  • Oeckinghaus A, Wegener E, Welteke V, et al. Malt1 ubiquitination triggers NF-κB signaling upon T-cell activation. EMBO J. 2007;26(22):4634–45.
  • Sun L, Deng L, Ea C-K, et al. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol Cell. 2004;14(3):289–301.
  • Meininger I, Griesbach RA, Hu D, et al. Alternative splicing of MALT1 controls signalling and activation of CD4+T cells. Nat Commun. 2016;7(1):11292.
  • Jaworski M, Thome M. The paracaspase MALT1: biological function and potential for therapeutic inhibition. Cell Mol Life Sci. 2016;73(3):459–73.
  • Baens M, Bonsignore L, Somers R, et al. MALT1 auto-proteolysis is essential for NF-κB-dependent gene transcription in activated lymphocytes. PLoS One. 2014;9(8):e103774.
  • Ginster S, Bardet M, Unterreiner A, et al. Two antagonistic MALT1 auto-cleavage mechanisms reveal a role for TRAF6 to unleash MALT1 activation. PLoS One. 2017;12(1):e0169026.
  • Hailfinger S, Nogai H, Pelzer C, et al. Malt1-dependent RelB cleavage promotes canonical NF-κB activation in lymphocytes and lymphoma cell lines. Proc Natl Acad Sci U S A. 2011;108(35):14596–601.
  • Klein T, Fung S-Y, Renner F, et al. The paracaspase MALT1 cleaves HOIL1 reducing linear ubiquitination by LUBAC to dampen lymphocyte NF-κB signalling. Nat Commun. 2015;6(1):8777.
  • Staal J, Driege Y, Bekaert T, et al. T-cell receptor-induced JNK activation requires proteolytic inactivation of CYLD by MALT1. The EMBO Journal. 2011;30(9):1742–52.
  • Uehata T, Iwasaki H, Vandenbon A, et al. Malt1-induced cleavage of regnase-1 in CD4+ helper T cells regulates immune activation. Cell. 2013;153(5):1036–49.
  • Yamasoba D, Sato K, Ichinose T, et al. N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nat Microbiol. 2019;4(9):1532–1544.
  • Jeltsch KM, Hu D, Brenner S, et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat Immunol. 2014;15(11):1079–89.
  • Bornancin F, Renner F, Touil R, et al. Deficiency of MALT1 paracaspase activity results in unbalanced regulatory and effector T and B cell responses leading to multiorgan inflammation. J Immunol. 2015;194(8):3723–34.
  • Gewies A, Gorka O, Bergmann H, et al. Uncoupling Malt1 threshold function from paracaspase activity results in destructive autoimmune inflammation. Cell Rep. 2014;9(4):1292–305.
  • Jaworski M, Marsland BJ, Gehrig J, et al. Malt1 protease inactivation efficiently dampens immune responses but causes spontaneous autoimmunity. EMBO J. 2014;33(23):2765–81.
  • Rosebeck S, Madden L, Jin X, et al. Cleavage of NIK by the API2-MALT1 fusion oncoprotein leads to noncanonical NF-κB activation. Science. 2011;331(6016):468–72.
  • Nagel D, Vincendeau M, Eitelhuber AC, et al. Mechanisms and consequences of constitutive NF-κB activation in B-cell lymphoid malignancies. Oncogene. 2014;33(50):5655–65.
  • Ngo VN, Davis RE, Lamy L, et al. A loss-of-function RNA interference screen for molecular targets in cancer. Nature. 2006;441(7089):106–10.
  • Lenz G, Davis RE, Ngo VN, et al. Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science. 2008;319(5870):1676–9.
  • Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. 2010;463(7277):88–92.
  • Hailfinger S, Lenz G, Ngo V, et al. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma. Proc Natl Acad Sci U S A. 2009;106(47):19946–51.
  • Ferch U, Kloo B, Gewies A, et al. Inhibition of MALT1 protease activity is selectively toxic for activated B cell–like diffuse large B cell lymphoma cells. J Exp Med. 2009;206(11):2313–20.
  • Saba NS, Wong DH, Tanios G, et al. MALT1 inhibition is efficacious in both naïve and ibrutinib-resistant chronic lymphocytic leukemia. Cancer Res. 2017;77(24):7038–7048.
  • Dai B, Grau M, Juilland M, et al. B-cell receptor–driven MALT1 activity regulates MYC signaling in mantle cell lymphoma. Blood. 2017;129(3):333–346.
  • Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat Med. 2015;21(8):922–6.
  • Wang ML, Rule S, Martin P, et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2013;369(6):507–16.
  • Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.
  • Ruland J, Hartjes L. CARD-BCL-10-MALT1 signalling in protective and pathological immunity. Nat Rev Immunol. 2018.
  • Gehring T, Seeholzer T, Krappmann D. BCL10 – bridging CARDs to immune activation. Front Immunol. 2018;9:1539.
  • Wang Y, Zhang G, Jin J, et al. MALT1 promotes melanoma progression through JNK/c-Jun signaling. Oncogenesis. 2017;6(7):e365.
  • Jacobs KA, André‐Grégoire G, Maghe C, et al. Paracaspase MALT1 regulates glioma cell survival by controlling endo-lysosome homeostasis. EMBO J. 2020;39(1):e102030.
  • Ekambaram P, Lee JL, Hubel NE, et al. The CARMA3-Bcl10-MALT1 signalosome drives NF-κB activation and promotes aggressiveness in angiotensin II receptor-positive breast cancer. Cancer Res. 2018;78(5):1225–1240.
  • Van Nuffel E, Staal J, Baudelet G, et al. MALT1 targeting suppresses CARD14-induced psoriatic dermatitis in mice. EMBO Rep. 2020;21(7):e49237.
  • Martin K, Touil R, Cvijetic G, et al. MALT1 protease activity is required for FcγR-induced arthritis but not FcγR-mediated platelet elimination in mice. Arthritis. 2020.
  • Howes A, O’Sullivan PA, Breyer F, et al. Psoriasis mutations disrupt CARD14 autoinhibition promoting BCL10-MALT1-dependent NF-κB activation. Biochem J. 2016;473(12):1759–68.
  • Afonina IS, Van Nuffel E, Baudelet G, et al. The paracaspase MALT1 mediates CARD14-induced signaling in keratinocytes. EMBO Rep. 2016;17(6):914–27.
  • Rosenbaum M, Gewies A, Pechloff K, et al. Bcl10-controlled Malt1 paracaspase activity is key for the immune suppressive function of regulatory T cells. Nat Commun. 2019;10(1):2352.
  • Demeyer A, Skordos I, Driege Y, et al. MALT1 proteolytic activity suppresses autoimmunity in a T cell intrinsic manner. Front Immunol. 2019;10:1898.
  • Cornell University, Small molecule inhibitors of MALT1, WO2014/074815. 2014.
  • Fontan L, Yang C, Kabaleeswaran V, et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in vivo. Cancer Cell. 2012;22(6):812–824.
  • Liu W, Guo W, Hang N, et al. MALT1 inhibitors prevent the development of DSS-induced experimental colitis in mice via inhibiting NF-κB and NLRP3 inflammasome activation. Oncotarget. 2016;7(21):30536–49.
  • Lee CH, Bae SJ, Kim M. Mucosa-associated lymphoid tissue lymphoma translocation 1 as a novel therapeutic target for rheumatoid arthritis. Sci Rep. 2017;7(1):11889.
  • Xin B-T, Schimmack G, Du Y, et al. Development of new Malt1 inhibitors and probes. Bioorg Med Chem. 2016;24(15):3312–3329.
  • Bardet M, Unterreiner A, Malinverni C, et al. The T-cell fingerprint of MALT1 paracaspase revealed by selective inhibition. Immunol Cell Biol. 2018;96(1):81–99.
  • Cornell University, MALT1 inhibitors and uses thereof, WO2017/040304, 2017.
  • Hatcher JM, Du G, Fontán L, et al. Peptide-based covalent inhibitors of MALT1 paracaspase. Bioorg Med Chem Lett. 2019;29(11):1336–1339.
  • Fontan L, Qiao Q, Hatcher JM, et al. Specific covalent inhibition of MALT1 paracaspase suppresses B cell lymphoma growth. J Clin Invest. 2018;128(10):4397–4412.
  • Helmholtz Zentrum München. Selective inhibition of MALT1 protease by phenothiazine derivatives, WO2013/017637. 2013.
  • Helmholtz Zentrum München. Inhibitors of MALT1 protease, WO2014/086478. 2014.
  • Helmholtz Zentrum München. The (S)-enantiomer of mepazine, WO2014/207067. 2014.
  • Nagel D, Spranger S, Vincendeau M, et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell. 2012;22(6):825–37.
  • Mc Guire C, Elton L, Wieghofer P, et al. Pharmacological inhibition of MALT1 protease activity protects mice in a mouse model of multiple sclerosis. J Neuroinflammation. 2014;11:124.
  • Di Pilato M, Kim EY, Cadilha BL, et al. Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy. Nature. 2019;570(7759):112–116.
  • Dumont C, Sivars U, Andreasson T, et al. A MALT1 inhibitor suppresses human myeloid DC, effector T-cell and B-cell responses and retains Th1/regulatory T-cell homeostasis. PLoS One. 2020;15(9):e0222548.
  • Meloni L, Verstrepen L, Kreike M, et al. Mepazine inhibits RANK-induced osteoclastogenesis independent of its MALT1 inhibitory function. Molecules. 2018;23(12).
  • Novartis AG. Novel pyrazolo pyrimidine derivatives and their use as MALT1 inhibitors, WO2015/181747. 2015.
  • Novartis AG. Novel pyrazolo pyrimidine derivatives, WO2017/081641. 2017.
  • Pissot Soldermann C, Simic O, Renatus M, et al. Discovery of potent, highly selective, and in vivo efficacious, allosteric MALT1 inhibitors by iterative scaffold morphing. J Med Chem. 2020;63(23):14576–14593.
  • Quancard J, Simic O, Pissot Soldermann C, et al. Optimization of the in vivo potency of pyrazolopyrimidine MALT1 protease inhibitors by reducing metabolism and increasing potency in whole blood. J Med Chem. 2020;63(23):14594–14608.
  • Martin K, Junker U, Tritto E, et al. Pharmacological inhibition of MALT1 protease leads to a progressive IPEX-like pathology. Front Immunol. 2020;11:745.
  • Demeyer A, Driege Y, Skordos I, et al. Long-term MALT1 inhibition in adult mice without severe systemic autoimmunity. iScience. 2020;23(10).
  • Medivir AB. Pyrazolopyrimidine as MALT-1 inhibitors, WO2018/226150. 2018.
  • Medivir AB. Thearapeutic applications of MALT1 inhibitors, WO2018/141749. 2018.
  • Lupin Limited. Substituted thiazolo-pyridine compounds as MALT1 inhibitors, WO2018/020474. 2018.
  • Cornell University. Inhibitors of MALT1 and uses thereof, WO2018/165385. 2018.
  • Janssen Pharmaceutica. Pyridine rings containing derivatives as MALT1 inhibitors, WO2020/208222. 2020.
  • Takeda Pharmaceutical. Heterocyclic compound, WO2020/111087. 2020.
  • Qilu Regor Therapeutics. MALT1 inhibitors and uses thereof, WO2021/000855. 2021.
  • Janssen Pharmaceutica. Pyrazole derivatives as MALT1 inhibitors 1, WO2019/243965. 2019.
  • Janssen Pharmaceutica. Pyrazole derivatives as MALT1 inhibitors 3, US2019/0381012. 2019.
  • Janssen Pharmaceutica. Pyrazole derivatives as MALT1 inhibitors 2, US2019/0381019. 2019.
  • Krietsch Boerner L. Virtual meeting delivers first time drug structures. chem. Eng. News. 2021. Available from: https://cen.acs.org/acs-news/acs-meeting-news/Virtual-meeting-delivers-first-time-drug-structures/99/web/2021/04.
  • Philippar U, Lu T, Vloemans N, et al. Abstract 5690: discovery of JNJ-67856633: a novel, first-in-class MALT1 protease inhibitor for the treatment of B cell lymphomas. Cancer Res. 2020;80(16 Supplement):5690.
  • Janssen Pharmaceutica. Pharmaceutical formulations, WO2020/169738. 2020.
  • Janssen Pharmaceutica. Crystalline form of 1-(1-oxo-1,2-dihydroisoquinolin-5-yl)-5-(trifluoromethyl)-N-(2-(trifluoromethyl)pyridine-4-yl)-1H-pyrazole-4-carboxamide monohydrate, WO2020/169736. 2020.
  • Lu T, Connolly PJ, Philippar U, et al. Discovery and optimization of a series of small-molecule allosteric inhibitors of MALT1 protease. Bioorg Med Chem Lett. 2019;29(23):126743.
  • Schlapbach A, Revesz L, Soldermann CP, et al. N-aryl-piperidine-4-carboxamides as a novel class of potent inhibitors of MALT1 proteolytic activity. Bioorg Med Chem Lett. 2018;28(12):2153–2158.
  • Toray Industries. Diphenylpyrazole derivative and use thereof for medical purposes, WO2017/057695. 2017.
  • Toray Industries. Guanidine derivative and use thereof for medical purpose WO2018/021520. 2018.
  • Toray Industries. Guanidine derivative and medicinal use thereof, WO2018/159650. 2018.
  • Asaba KN, Adachi Y, Tokumaru K, et al. Structure–activity relationship studies of 3-substituted pyrazoles as novel allosteric inhibitors of MALT1 protease. Bioorg Med Chem Lett. 2021;41:127996.
  • Cornell University. Compounds for MALT1 degradation WO2018/085247. 2018.
  • Burslem GM, Crews CM. Proteolysis-targeting chimeras as therapeutics and tools for biological discovery. Cell. 2020;181(1):102–114.
  • The General Hospital Cooperation. Targeting the CBM signalosome complex induces regulatory T cells to inflame the tumor microenvironment, WO2019/133809. 2019.
  • Fontan L, Melnick A. Targeting lymphomas through MALT1 inhibition. Oncotarget. 2012;3(12):1493.
  • Woyach JA, Furman RR, Liu T-M, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94.
  • Li Q. Application of fragment-based drug discovery to versatile targets. Front Mol Biosci. 2020;7(p):180.
  • Śledź P, Caflisch A. Protein structure-based drug design: from docking to molecular dynamics. Curr Opin Struct Biol. 2018;48(p):93–102.
  • Wagner JR, Lee CT, Durrant JD, et al. Emerging computational methods for the rational discovery of allosteric drugs. Chem Rev. 2016;116(11):6370–90.
  • Kozakov D, Grove LE, Hall DR, et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc. 2015;10(5):733–55.
  • Duwel M, Welteke V, Oeckinghaus A, et al. A20 negatively regulates T cell receptor signaling to NF-κB by cleaving Malt1 ubiquitin chains. J Immunol. 2009;182(12):7718–28.
  • Bertossi A, Krappmann D. MALT1 protease: equilibrating immunity versus tolerance. The EMBO Journal. 2014;33(23):2740–2.
  • Eitelhuber AC, Vosyka O, Nagel D, et al. Activity-based probes for detection of active MALT1 paracaspase in immune cells and lymphomas. Chem Biol. 2015;22(1):129–38.
  • Hachmann J, Edgington-Mitchell LE, Poreba M, et al. Probes to monitor activity of the paracaspase MALT1. Chem Biol. 2015;22(1):139–47.
  • van de Plassche MAT, O’Neill TJ, Seeholzer T, et al. Use of non-natural amino acids for the design and synthesis of a selective, cell-permeable MALT1 activity-based probe. J Med Chem. 2020;63(8):3996–4004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.