895
Views
5
CrossRef citations to date
0
Altmetric
Review

Small molecule Son of Sevenless 1 (SOS1) inhibitors: a review of the patent literature

ORCID Icon, , ORCID Icon, ORCID Icon &
Pages 1189-1204 | Received 18 Jun 2021, Accepted 05 Jul 2021, Published online: 05 Aug 2021

References

  • McCormick F. K-Ras protein as a drug target. J Mol Med. 2016;94(3):253–258.
  • Cox AD, Der CJ. Ras history. Small GTPases. 2010;1(1):2–27.
  • McCormick F. ras GTPase activating protein: signal transmitter and signal terminator. Cell. 1989;56(1):5–8.
  • Bourne HR, Sanders DA, McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990;348(6297):125–132.
  • Cherfils J, Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013;93(1):269–309.
  • Hall BE, Bar-Sagi D, Nassar N. The structural basis for the transition from Ras-GTP to Ras-GDP. Proc Natl Acad Sci. 2002;99(19):12138–12142.
  • Egan SE, Giddings BW, Brooks MW, et al. Association of Sos Ras exchange protein with Grb2 is implicated in tyrosine kinase signal transduction and transformation. Nature. 1993;363(6424):45–51.
  • Li N, Batzer A, Daly R, et al. Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling. Nature. 1993;363(6424):85–88.
  • Chardin P, Camonis J, Gale N, et al. Human Sos1: a guanine nucleotide exchange factor for Ras that binds to GRB2. Science. 1993;260(5112):1338–1343.
  • Aronheim A, Engelberg D, Li N, et al. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell. 1994;78(6):949–961.
  • Karlovich C, Bonfini L, McCollam L, et al. In vivo functional analysis of the Ras exchange factor son of sevenless. Science. 1995;268(5210):576–579.
  • Boriack-Sjodin PA, Margarit SM, Bar-Sagi D, et al. The structural basis of the activation of Ras by Sos. Nature. 1998;394(6691):337–343.
  • Hall BE, Yang SS, Boriack-Sjodin PA, et al. Structure-based mutagenesis reveals distinct functions for Ras switch 1 and switch 2 in Sos-catalyzed Guanine nucleotide exchange. J Biol Chem. 2001;276(29):27629–27637.
  • Boykevisch S, Zhao C, Sondermann H, et al. Regulation of Ras signaling dynamics by Sos-Mediated positive feedback. Curr Biol. 2006;16(21):2173–2179.
  • Gureasko J, Galush WJ, Boykevisch S, et al. Membrane-dependent signal integration by the Ras activator Son of sevenless. Nat Struct Mol Biol. 2008;15(5):452–461.
  • Rojas JM, Oliva JL, Santos E. Mammalian son of sevenless Guanine nucleotide exchange factors: old concepts and new perspectives. Genes Cancer. 2011;2(3):298–305.
  • Iversen L, Tu H-L, Lin W-C, et al. Ras activation by SOS: allosteric regulation by altered fluctuation dynamics. Science. 2014;345(6192):50–54.
  • Christensen SM, Tu H-L, Jun JE, et al. One-way membrane trafficking of SOS in receptor-triggered Ras activation. Nat Struct Mol Biol. 2016;23(9):838–846.
  • Bos JL, Rehmann H, Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 20072007/06/01/;129(5):865–877.
  • Qi M, Elion EA. MAP kinase pathways. J Cell Sci. 2005;118(16):3569–3572.
  • Krygowska AA, Castellano E. PI3K: a crucial piece in the RAS signaling puzzle. Cold Spring Harb Perspect Med. 2018;8(6):a031666.
  • Der CJ, Krontiris TG, Cooper GM. Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci. 1982;79(11):3637–3640.
  • Santos E, Tronick SR, Aaronson SA, et al. T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes. Nature. 1982;298(5872):343–347.
  • Parada LF, Tabin CJ, Shih C, et al. Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene. Nature. 1982;297(5866):474–478.
  • Pylayeva-Gupta Y, Grabocka E, Bar-Sagi D. RAS oncogenes: weaving a tumorigenic web. Nat Rev Cancer. 2011;11(11):761–774.
  • Prior IA, Lewis PD, Mattos C. Survey of Ras Mutations in Cancer. Cancer Res. 2012;72(10):2457–2467.
  • Bryant KL, Mancias JD, Kimmelman AC, et al. KRAS: feeding pancreatic cancer proliferation. Trends Biochem Sci. 2014;39(2):91–100.
  • Hobbs GA, Der CJ, Rossman KL. RAS isoforms and mutations in cancer at a glance. J Cell Sci. 2016;129(7):1287–1292.
  • Simanshu DK, Nissley DV, McCormick F. Their regulators in human disease. Cell. 2017;170(1):17–33.
  • Bernards A, Settleman J. GAP control: regulating the regulators of small GTPases. Trends Cell Biol. 2004;14(7):377–385.
  • Hunter JC, Manandhar A, Carrasco MA, et al. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol Cancer Res. 2015;13(9):1325–1335.
  • Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003;3(1):11–22.
  • Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 2018;15(11):709–720.
  • Cox AD, Fesik SW, Kimmelman AC, et al. Drugging the undruggable RAS: mission possible? Nat Rev Drug Discov. 2014;13(11):828–851.
  • Chen H, Smaill JB, Liu T, et al. Small-Molecule inhibitors directly targeting KRAS as anticancer therapeutics. J Med Chem. 2020;63(23):14404–14424.
  • Ostrem JM, Peters U, Sos ML, et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–551.
  • Patricelli MP, Janes MR, Li L-S, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 2016;6(3):316–329.
  • Janes MR, Zhang J, Li L-S, et al. Targeting KRAS mutant cancers with a covalent G12C-Specific inhibitor. Cell. 2018;172(3):578–589.
  • Fell JB, Fischer JP, Baer BR, et al. Discovery of tetrahydropyridopyrimidines as irreversible covalent inhibitors of KRAS-G12C with in vivo activity. ACS Med Chem Lett. 2018;9(12):1230–1234.
  • Shin Y, Jeong JW, Wurz RP, et al. Discovery of N-(1-Acryloylazetidin-3-yl)-2-(1H-indol-1-yl)acetamides as covalent inhibitors of KRASG12C. ACS Med Chem Lett. 2019;10(9):1302–1308.
  • Kettle JG, Bagal SK, Bickerton S, et al. Structure-Based design and pharmacokinetic optimization of covalent allosteric inhibitors of the mutant GTPase KRASG12C. J Med Chem. 2020;63(9):4468–4483.
  • Fell JB, Fischer JP, Baer BR, et al. Identification of the clinical development candidate MRTX849, a covalent KRASG12C inhibitor for the treatment of cancer. J Med Chem. 2020;63(13):6679–6693.
  • Nagasaka M, Li Y, Sukari A, et al. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne? Cancer Treat Rev. 2020;84:101974.
  • Nichols RJ, Cregg J, Schulze CJ, et al. A next generation tri-complex KRASG12C(ON) inhibitor directly targets the active, GTP-bound state of mutant RAS and may overcome resistance to KRASG12C(OFF) inhibition. Poster session presented at: 112th Annual Meeting of the American Association for Cancer Research; April 10-15; Philadelphia, PA 2021.
  • Canon J, Rex K, Saiki AY, et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature. 2019;575(7781):217–223.
  • Hong DS, Fakih MG, Strickler JH, et al. KRASG12C inhibition with sotorasib in advanced solid tumors. N Engl J Med. 2020;383(13):1207–1217.
  • Lanman BA, Allen JR, Allen JG, et al. Discovery of a covalent inhibitor of KRASG12C (AMG 510) for the treatment of solid tumors. J Med Chem. 2020;63(1):52–65.
  • Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions. J Chem Inf Comput Sci. 1999;39(5):868–873.
  • RDKit: Open-source cheminformatics. Available from: https://www.rdkit.org
  • Wortmann L, Sautier B, Eis K, et al., inventors; Bayer Pharma Aktiengesellschaft, assignee. Preparation of 2-methylquinazolines for treating hyperproliferative disorders patent WO2018172250. 2018.
  • Wortmann L, Sautier B, Eis K, et al., inventors; Bayer Pharma Aktiengesellschaft assignee. Preparation of 2-methyl-aza-quinazolines for inhibiting binding of hSOS1 to hKRAS patent WO2019201848. 2019.
  • Wortmann L, Graham K, Bader B, et al., inventors; Bayer Aktiengesellschaft, assignee. 2-METHYL-AZA-QUINAZOLINES patent WO2021074227. 2021.
  • Hillig RC, Sautier B, Schroeder J, et al., Discovery of potent SOS1 inhibitors that block RAS activation via disruption of the RAS–SOS1 interaction. Proc Natl Acad Sci. 116(7): 2551–2560. 2019. .
  • Gmachl M, Sanderson M, Kessler D, et al., inventors; Boehringer Ingelheim International GmbH, assignee. Preparation of benzylamino substituted quinazolines as SOS1 inhibitors for the treatment of cancer patent WO2018115380. 2018.
  • Ramharter J, Kofink C, Stadtmueller H, et al., inventors; Boehringer Ingelheim International GmbH, assignee. Preparation of the novel benzylamino substituted pyridopyrimidinones and derivatives as SOS1 inhibitors patent WO2019122129. 2019.
  • Ramharter J, Kessler D, Ettmayer P, et al. One atom makes all the difference: getting a foot in the door between SOS1 and KRAS. J Med Chem. 2021;64(10):6569–6580.
  • Janes MR, Patricelli MP, Li L, et al., inventors; araxes pharma LLC, assignee. Combination therapies for treatment of cancer patent WO2016044772. 2016.
  • Hofmann MH, Gmachl M, Ramharter J, et al., BI-3406, a Potent and selective SOS1–KRAS interaction inhibitor, is effective in KRAS-Driven cancers through combined MEK inhibition. Cancer Discov. 11(1): 142–157. 2021. .
  • Kessler D, Gerlach D, Kraut N, et al. Targeting Son of Sevenless 1: the pacemaker of KRAS. Curr Opin Chem Biol. 2021;62:109–118.
  • Boehringer Ingelheim. A study to test different doses of BI 1701963 alone and combined with trametinib in patients with different types of advanced cancer (Solid Tumours With KRAS Mutation) Bethesda (MD): U.S. National Library of Medicine; 2019. Available from: https://clinicaltrials.gov/ct2/show/NCT04111458 ClinicalTrials.gov Identifier: NCT04111458
  • Boehringer Ingelheim. A study to test different doses of bi 1701963 in combination with irinotecan in people with advanced bowel cancer with Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) mutation. Bethesda (MD): U.S. National Library of Medicine; 2020. Available from: https://clinicaltrials.gov/ct2/show/NCT04627142 ClinicalTrials.gov Identifier: NCT04627142
  • Boehringer Ingelheim. A study to find a safe and effective dose of BI 1701963 alone and in combination with BI 3011441 in patients with advanced cancer and a certain mutation (KRAS) bethesda (MD): U.S. national library of medicine; 2021. Available from: https://clinicaltrials.gov/ct2/show/NCT04835714 ClinicalTrials.gov Identifier: NCT04835714
  • Buckl A, Cregg JJ, Aay N, et al., inventors; Revolution Medicines, Inc., assignee. Preparation of bicyclic heteroaryl compounds and uses thereof. patent WO2020180768. 2020.
  • Cregg JJ, Buckl A, Aay N, et al., inventors; Revolution Medicines Inc., assignee. Bicyclic heterocyclyl compounds and uses thereof. Patent WO2020180770. 2020
  • Gill AL, Buckl A, Koltun ES, et al., inventors; Revolution Medicines, inc., assignee. Bicyclic Heteroaryl Compounds and Uses Thereof patent WO2021092115. 2021.
  • Waterson AG, Abbott JR, Kennedy JP, et al., inventors; Vanderbilt University, assignee. Quinazoline compounds as modulators of Ras signaling and their preparation patent WO2018212774. 2018.
  • Fesik S, Waterson A, Burns M, et al., inventors; Vanderbilt University, assignee. Preparation of substituted benzimidazoles as modulators of Ras signaling patent US10501421. 2019.
  • Burns MC, Sun Q, Daniels RN, et al. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc Natl Acad Sci. 2014;111(9):3401–3406.
  • Abbott JR, Hodges TR, Daniels RN, et al. Discovery of aminopiperidine indoles that activate the guanine nucleotide exchange factor SOS1 and modulate RAS signaling. J Med Chem. 2018;61(14):6002–6017.
  • Abbott JR, Patel PA, Howes JE, et al., Discovery of quinazolines that activate SOS1-Mediated nucleotide exchange on RAS. ACS Med Chem Lett. 9(9): 941–946. 2018. .
  • Hodges TR, Abbott JR, Little AJ, et al., Discovery and Structure-Based Optimization of Benzimidazole-Derived Activators of SOS1-Mediated Nucleotide Exchange on RAS. J Med Chem. 61(19): 8875–8894. 2018. .
  • Sun Q, Burke JP, Phan J, et al. Discovery of small molecules that bind to K-Ras and inhibit Sos-Mediated activation. Angewandte Chemie. 2012;51(25):6140–6143.
  • Burns MC, Howes JE, Sun Q, et al. High-throughput screening identifies small molecules that bind to the RAS:SOS:RAS complex and perturb RAS signaling. Anal Biochem. 2018;548:44–52.
  • Martin SJ. Oncogene-induced autophagy and the Goldilocks principle. Autophagy. 2011;7(8):922–923.
  • Chi S, Kitanaka C, Noguchi K, et al. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene. 1999;18(13):2281–2290.
  • Overmeyer JH, Kaul A, Johnson EE, et al. Active Ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis. Mol Cancer Res. 2008;6(6):965–977.
  • Lv C, Hong Y, Miao L, et al. Wentilactone A as a novel potential antitumor agent induces apoptosis and G2/M arrest of human lung carcinoma cells, and is mediated by HRas-GTP accumulation to excessively activate the Ras/Raf/ERK/p53-p21 pathway. Cell Death Dis. 2013;4(12):e952–e952.
  • Langlois WJ, Sasaoka T, Saltiel AR, et al. Negative feedback regulation and desensitization of insulin- and epidermal growth factor-stimulated p21ras activation. J Biol Chem. 1995;270(43):25320–25323.
  • Porfiri E, McCormick F. Regulation of epidermal growth factor receptor signaling by phosphorylation of the ras exchange factor hSOS1. J Biol Chem. 1996;271(10):5871–5877.
  • Corbalan-Garcia S, Yang SS, Degenhardt KR, et al. Identification of the mitogen-activated protein kinase phosphorylation sites on human Sos1 that regulate interaction with Grb2. Mol Cell Biol. 1996;16(10):5674–5682.
  • Kamioka Y, Yasuda S, Fujita Y, et al. Multiple decisive phosphorylation sites for the negative feedback regulation of SOS1 via ERK. J Biol Chem. 2010;285(43):33540–33548.
  • Lake D, Corrêa SAL, Müller J. Negative feedback regulation of the ERK1/2 MAPK pathway. Cell Mol Life Sci. 2016;73(23):4397–4413.
  • Howes JE, Akan DT, Burns MC, et al. Small Molecule–Mediated activation of RAS elicits biphasic modulation of phospho-ERK levels that are regulated through negative feedback on SOS1. Mol Cancer Ther. 2018;17(5):1051–1060.
  • Sheffels E, Sealover NE, Wang C, et al. Oncogenic RAS isoforms show a hierarchical requirement for the guanine nucleotide exchange factor SOS2 to mediate cell transformation. Sci Signal. 2018;11(546):eaar8371.
  • Sheffels E, Sealover NE, Theard PL, et al. Anchorage-independent growth conditions reveal a differential SOS2 dependence for transformation and survival in RAS-mutant cancer cells. Small GTPases. 2019;12(1):67–78.
  • Sheffels E, Kortum RL. Breaking oncogene addiction: getting RTK/RAS-Mutated cancers off the SOS. J Med Chem. 2021;64(10):6566–6568.
  • Baltanás FC, Pérez-Andrés M, Ginel-Picardo A, et al. Functional redundancy of Sos1 and Sos2 for lymphopoiesis and organismal homeostasis and survival. Mol Cell Biol. 2013;33(22):4562–4578.
  • Baltanás FC, García-Navas R, Santos E. SOS2 comes to the fore: differential functionalities in physiology and pathology. Int J Mol Sci. 2021;22(12):6613.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.