218
Views
1
CrossRef citations to date
0
Altmetric
Review

Are patents important indicators of innovation for Chagas disease treatment?

, , , , , & ORCID Icon show all
Pages 193-209 | Received 06 Aug 2022, Accepted 31 Jan 2023, Published online: 15 Feb 2023

References

  • Álvarez-Hernández D-A, García-Rodríguez-Arana R, Ortiz-Hernández A, et al. A systematic review of historical and current trends in Chagas disease. Ther Adv Infect Dis. 2021;8:204993612110337.
  • Herazo R, Torres-Torres F, Mantilla CAG, et al. On-site experience of a project to increase access to diagnosis and treatment of Chagas disease in high-risk endemic areas of Colombia. Acta Trop. 2022;226:106219.
  • MSF. Overcoming neglect: finding ways to manage and control NTDs. 2022 [cited 2022 Aug 3]. Available from: https://www.msf.org/overcoming-neglect-report-ntds.
  • Coura JR, Viñas PA, Junqueira AC. Ecoepidemiology, short history and control of Chagas disease in the endemic countries and the new challenge for non-endemic countries. Mem Inst Oswaldo Cruz. 2014;109(7):856–862.
  • Guhl F, JD R. Poverty, migration, and Chagas disease. Curr Trop Med Rep. 2021;8(1):52–58.
  • Abras A, Ballart C, Fernández-Arévalo A, et al. Worldwide control and management of Chagas disease in a new era of globalization: a close look at congenital Trypanosoma cruzi infection. Clin Microbiol Rev. 2022;35(2):e00152–21.
  • Lidani KCF, Andrade FA, Bavia L, et al. Chagas disease: from discovery to a worldwide health problem. Front Public Health. 2019;7:166.
  • Miranda-Arboleda AF, Zaidel EJ, Marcus R, et al. Roadblocks in Chagas disease care in endemic and nonendemic countries: Argentina, Colombia, Spain, and the United States. The NET-heart project. Buscaglia CA, editor. PLoS Negl Trop Dis. 2021;15(12):e0009954.
  • Bern C, Messenger LA, Whitman JD, et al. Chagas disease in the United States: a public health approach. Clin Microbiol Rev. 2019;33(1):e00023–19.
  • Strasen J, Williams T, Ertl G, et al. Epidemiology of Chagas disease in Europe: many calculations, little knowledge. Clin Res Cardiol. 2014;103(1):1–10.
  • Rodea GB, Martinez Cuevas TI, Jimenez Ramos B, et al. Chagas disease: an overview of diagnosis. J Microbiol Exp. Internet]. 2018 [cited 2022 Aug 3];6(3). Available from https://medcraveonline.com/JMEN/chagas-disease-an-overview-of-diagnosis.html
  • Candia-Puma MA, Machaca-Luque LY, Roque-Pumahuanca BM, et al. Accuracy of diagnostic tests for the detection of Chagas disease: a systematic review and meta-analysis. Diagnostics. 2022;12(11):2752.
  • Navarro M, Reguero L, Subirà C, et al. Estimating Chagas disease prevalence and number of underdiagnosed, and undertreated individuals in Spain. Travel Med Infect Dis. 2022;47:102284.
  • As de S, Vermeij D, Parra-Henao G, et al. The CUIDA Chagas Project: towards the elimination of congenital transmission of Chagas disease in Bolivia, Brazil, Colombia, and Paraguay. Rev Soc Bras Med Trop. 2022;55:e0171–2022.
  • Buekens P, Cafferata ML, Alger J, et al. Congenital transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: an observational prospective study. Am J Trop Med Hyg 2018;98(2):478–485.
  • DNDi. Chagas disease facts. 2022. [cited 2022 Jun 10]. Available from: https://dndi.org/diseases/chagas/facts.
  • García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: promising new drugs, plants and targets. Biomed Pharmacother. 2021;142:112020.
  • Mejia AM, Hall BS, Taylor MC, et al. Benznidazole-resistance in Trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. J Infect Dis. 2012;206(2):220–228.
  • Almeida-Silva J, Menezes DS, Fernandes JMP, et al. The repositioned drugs disulfiram/diethyldithiocarbamate combined to benznidazole: searching for Chagas disease selective therapy, preventing toxicity and drug resistance. Front Cell Infect Microbiol. 2022;12:926699.
  • Torrico F, Gascón J, Barreira F, et al. New regimens of benznidazole monotherapy and in combination with fosravuconazole for treatment of Chagas disease (BENDITA): a phase 2, double-blind, randomised trial. Lancet Infect Dis. 2021;21(8):1129–1140.
  • Morillo CA, Waskin H, Sosa-Estani S, et al. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers. J Am Coll Cardiol. 2017;69(8):939–947.
  • Molina I, Gómez I Prat J, Salvador F, et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med. 2014;370(20):1899–1908.
  • Molina I, Salvador F, Sánchez-Montalvá A. The use of posaconazole against Chagas disease. Curr Opin Infect Dis. 2015;28(5):397–407.
  • Urbina JA. The long road towards a safe and effective treatment of chronic Chagas disease. Lancet Infect Dis. 2018;18(4):363–365.
  • Bahia MT, Andrade IMD, Martins TAF, et al. Fexinidazole: a potential new drug candidate for Chagas disease. pollastri MP, editor. PLoS Negl Trop Dis. 2012;6(11):e1870.
  • Bahia MT, Nascimento AFS, Mazzeti AL, et al. Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease. Antimicrob Agents Chemother. 2014;58(8):4362–4370.
  • DNDi. Fexinidazole for Chagas. 2013. [cited 2022 Jun 10]. Available from: https://dndi.org/research-development/portfolio/fexinidazole-chagas/.
  • Torrico F, Gascón J, Ortiz L, et al. A phase 2, randomized, multicenter, placebo-controlled, proof-of-concept trial of oral fexinidazole in adults with chronic indeterminate Chagas disease. Clin Infect Dis. 2022;76(3):ciac579.
  • Bijlmakers M-J. Ubiquitination and the proteasome as drug targets in trypanosomatid diseases. Front Chem. 2021;8:630888.
  • Khare S, Nagle AS, Biggart A, et al. Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature. 2016;537(7619):229–233.
  • Vermelho AB, Rodrigues GC, Supuran CT. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin Drug Discov. 2020;15(2):145–158.
  • Maldonado RA, Vasquez MA, Dimmock JR, et al. Antiparasitic effect of bis[3,5-bis(benzylidene)-4-oxo-1-piperidinyl]amide derivatives. US2016303105A1. 2016.
  • Escario G-TJA, Gomez BA, Nogal RJJ, et al. Amines derived from 2-benzyl-5-nitroindazole with antiprotozoal properties against Trypanosoma, leishmania and trichomonas. WO2019077174A1. 2019.
  • De OJVX, Pedron CN, Freire KA, et al. Antiprotozoal peptides derived from scorpion venom, nucleic acid molecule encoding same, composition comprising same, and uses thereof. WO2020237334A1. 2020.
  • Fanny P-B, Kerly FMP, Leoberto CT. compostos azometínicos derivados do 5-nitrofurano e uso. BR102018000642A2. 2019.
  • Iara RS, Policarpo ASJ, Renata BDO, et al. composições farmatêuticas tripanocidas e uso. BR102019010132A2. 2020.
  • Ribas SX, Costas SM, Cusso FO, et al. Metal complexes comprising polyamine compounds and said compounds for use as antiparasitic agents. ES2440896A1. 2014.
  • Thompson AM, Denny WA, Blaser A, et al. Nitroimidazooxazine analogues and their uses. EP2459570A1. 2012.
  • Ihara M, Ge J-F, Arai C, et al. Medicinal composition containing benzo[a]phenoxanthin compound as the active ingredient for preventing or treating protozoal disease. EP2269996A1. 2011.
  • Ferreira AMDC, Sabino GL, Paula QAD, et al. Complexos metálicos com ligantes indólicos ou oxindólicos e seus derivados imínicos e seu uso como agentes antiparasitários. BR102013026558A2. 2015.
  • Lidia ML, Eliezer JDLB, Marina AA. Hydrazide-N-acylhydrazone compounds, method for producing hydrazide-n-acylhydrazone compounds, use of intermediate compounds for producing hydrazide-N-acylhydrazones for the treatment of leishmaniasis and Chagas disease, and thus obtained pharmaceutical compositions. WO2014019044A1. 2014.
  • Wischik CM, Storey JMD, Marshall C, et al. Methods of synthesis and/or purification of diaminophenothiazinium compounds. EP3121169A1. 2017.
  • Thomas S, Hopper AT, Welsch M. Compositions and methods for treating infections. EP3411367A1. 2018.
  • Bakare O, Lee CM, Brandy Y, et al. Method for inhibiting Trypanosoma cruzi. US2015073177A1. 2015.
  • Rivera Sánchez GILDARDO, Nogueda Torres BENJAMÍN, Edgar Eduardo LARARAMÍREZ, et al. Use of ketanserin tartrate for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX; MX 2016017185 A. 2018. Available from: https://lens.org/039-960-260-143-774.
  • Rivera Sánchez GILDARDO, Nogueda Torres BENJAMÍN, Edgar Eduardo LARARAMÍREZ, et al. use of etofylline clofibrate for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX; MX 2016017186 A. 2018. Available from: https://lens.org/116-938-360-752-550.
  • Rivera Sánchez GILDARDO, Nogueda Torres BENJAMÍN. Edgar eduardo lara ramírez, et al. use of sodium piperacillin for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX; MX 2016017182 A. 2018. Available from: https://lens.org/192-503-972-641-943.
  • Rivera Sánchez GILDARDO, Nogueda Torres BENJAMÍN, Edgar Eduardo LARARAMÍREZ, et al. Use of doxazosin mesylate for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX; MX 2016017183 A. 2018. Available from: https://lens.org/098-531-817-092-340.
  • Rivera Sánchez GILDARDO, Nogueda Torres BENJAMÍN, Edgar Eduardo LARARAMÍREZ, et al. Use of sulfasalazine for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX; MX 2016017197 A. 2018. Available from: https://lens.org/093-774-853-711-385.
  • Ang SH, Krastel P, Leong SY, et al. Spiro-Indole Derivatives for the Treatment of Parasitic Diseases. EP2285808A1. 2011.
  • Gildardo RS, Benjamín NT, Edgar ELR, et al. Use of terfenadine for the treatment of Chagas disease as anti-Trypanosoma cruzi agent. MX2016016018A. 2018.
  • Cao Y, Jiang S, Kim H, et al. Solid Forms of N-(4-Fluoro-3-(6-(3-Methylpyridin-2-Yl)-[1,2,4]triazolo[1,5-A]pyrimidin-2-Yl)phenyl)-2,4-Dimethyloxazole-5-Carboxamide. EP3864018A1. 2021.
  • D’antonio E, Pierce J. One-Step Synthesis of Phosphate-Based Inhibitors and Applications Thereof. US2021130381A1. 2021.
  • Costi MP, Costantino L, Ferrari S, et al. Triaminopyrimidine derivatives with antiparasitic activity. WO2020188437A1. 2020.
  • Isabel E, Mellon C, Beaulieu C. Cysteine protease inhibitors for the treatment of parasitic diseases. EP2225196A1. 2010.
  • Quibell M. Inhibitors of cruzipain and other cysteine proteases. US2009247471A1. 2009.
  • Jn da SJ, Pr de A C, Yas M, et al. Do thiazolidine compounds act on intracellular amastigotes of Trypanosoma cruzi? A systematic review. Res Soc Dev. 2022;11(3):e38611326531.
  • Galdino SL, Moreira TLDB, De CTMU, et al. Imidazolidine and thiazolidine molecules with anti-T. cruzi activity. WO2012119212A1. 2012.
  • da Silva Ferreira W, Freire-de-lima L, Saraiva VB, et al. Novel 1,3,4-thiadiazolium-2-phenylamine chlorides derived from natural piperine as trypanocidal agents: chemical and biological studies. Bioorg Med Chem. 2008;16(6):2984–2991.
  • Braga SFP, Martins LC, da Silva EB, et al. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg Med Chem. 2017;25(6):1889–1900.
  • Brand S, Dodd P, Ko EJ, et al. Compounds. EP3331885A1. 2018.
  • Gildardo RS, Benjamín NT, Edgar ELR, et al. Use of the sodium cefoperazone for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX2016017177A. 2018.
  • Gildardo RS, Benjamín NT, Edgar ELR, et al. Use of sodium flucloxacillin for the treatment of Chagas disease as an anti-Trypanosoma cruzi agent. MX2016017175A. 2018.
  • Palos I, Lara-Ramirez EE, Lopez-Cedillo JC, et al. Repositioning FDA drugs as potential cruzain inhibitors from Trypanosoma cruzi: virtual screening, in vitro and in vivo studies. Molecules. 2017;22(6):1015.
  • Biggart A, Liang F, Mathison CJN, et al. [1,2,4]triazolo[1,5-A]pyrimidine derivatives as protozoan proteasome inhibitors for the treatment of parasitic diseases such as leishmaniasis. EP3083627A1. 2016.
  • Jiricek J, Lerario IK, Liang F, et al. 5,6-fused-bicyclic compounds and compositions for the treatment of parasitic diseases. EP3630771A1. 2020.
  • Etheridge RD. Protozoan phagotrophy from predators to parasites: an overview of the enigmatic cytostome‐cytopharynx complex of Trypanosoma cruzi. J Eukaryot MicrobiolInternet]. 2022 [cited 2022 Aug 3]; Available from; https://onlinelibrary.wiley.com/doi/10.1111/jeu.12896
  • Amorim JC, Batista M, da Cunha ES, et al. Quantitative proteome and phosphoproteome analyses highlight the adherent population during Trypanosoma cruzi metacyclogenesis. Sci Rep. 2017;7(1):9899.
  • Lucena ACR, Amorim JC, de Paula Lima CV, et al. Quantitative phosphoproteome and proteome analyses emphasize the influence of phosphorylation events during the nutritional stress of Trypanosoma cruzi: the initial moments of in vitro metacyclogenesis. Cell Stress Chaperones. 2019;24(5):927–936.
  • Haas J, Andrews SW, Jiang Y, et al. Substituted pyrazolo[1,5-A]pyrimidine compounds as trk kinase inhibitors. EP3372605A1. 2018.
  • D’antonio EL. Inhibitors of glucose kinases, along with methods of their formation and use. US2018280404A1. 2018.
  • D’antonio E. Monosaccharide amine and 3-nitro-2-phenyl-2H-chromene based inhibitors of glucose kinases. US2020339619A1. 2020.
  • Beltran-Hortelano I, Alcolea V, Font M, et al. The role of imidazole and benzimidazole heterocycles in Chagas disease: a review. Eur J Med Chem. 2020;206:112692.
  • Filardi LS, Brener Z. A nitroimidazole-thiadiazole derivative with curative action in experimental Trypanosoma cruzi infections. Ann Trop Med Parasitol. 1982;76(3):293–297.
  • Andrews SW, Haas J, Jiang Y, et al. Method of treatment using substituted imidazo[1,2b]pyridazine compounds. US2017114068A1. 2017.
  • Brand S, Gaza EV, Gilbert I, et al. Imidazo[1,2-B][1,2,4]triazine derivatives as antiparasitic agents. US10065965B2. 2018.
  • DRUGS. Fexinidazole FDA Approval History. 2021 [cited 2022 Jul 7]. Available from: https://www.drugs.com/history/fexinidazole.html
  • Ndsj E, Guilherme ADMJ, John FB, et al. 1,4-naftoquinonas substituídas com atividade tripanocida, composições farmacêuticas tripanocidas e usos. BR102018008669A2. 2019.
  • Aguiar CER, Hir de M, Bbm da S, et al. O estado da arte de derivados da lausona. Braz J Dev. 2020;6(8):57998–58006.
  • da Silva EN, IMM DM, Diogo EBT, et al. On the search for potential anti-Trypanosoma cruzi drugs: synthesis and biological evaluation of 2-hydroxy-3-methylamino and 1,2,3-triazolic naphthoquinoidal compounds obtained by click chemistry reactions. Eur J Med Chem. 2012;52:304–312.
  • Silva Júnior END, Jardim GAM, Menna-Barreto RFS, et al. Anti- Trypanosoma cruzi compounds: our contribution for the evaluation and insights on the mode of action of naphthoquinones and derivatives. J Braz Chem Soc Internet]. 2014 [cited 2022 Aug 3]; Available from. http://www.gnresearch.org/doi/10.5935/0103-5053.20140180
  • Villalonga P, Fernández de mattos S, Ramis G, et al. Cyclosquaramides as kinase inhibitors with anticancer activity. ChemMedChem. 2012;7(8):1472–1480.
  • Kumar SP, Glória PMC, Gonçalves LM, et al. Squaric acid: a valuable scaffold for developing antimalarials? MedChemComm. 2012;3(4):489.
  • Olmo F, Rotger C, Ramírez-Macías I, et al. Synthesis and biological evaluation of n, n ′-squaramides with high in vivo efficacy and low toxicity: toward a low-cost drug against Chagas disease. J Med Chem. 2014;57(3):987–999.
  • Rotger PMDC, Costa TA, Sánchez MM, et al. Antiparasitic activity of squaramide. WO2014184416A1. 2014.
  • Martín-Escolano R, Marín C, Vega M, et al. Synthesis and biological evaluation of new long-chain squaramides as anti-chagasic agents in the BALB/c mouse model. Bioorg Med Chem. 2019;27(5):865–879.
  • Roush WR, Choi JY, Podust L. Novel agents targeting Cyp51. WO2015048306A1. 2015.
  • Mazzeti AL, Capelari-Oliveira P, Bahia MT, et al. Review on experimental treatment strategies against Trypanosoma cruzi. J Exp Pharmacol. 2021;13:409–432.
  • Agnello S, Adams M, Kaiser M, et al. Antiprotozoal Compounds. EP3345917A1. 2018.
  • Bernatchez JA, Kil Y-S, Barbosa da Silva E, et al. Identification of leucinostatins from ophiocordyceps sp. as antiparasitic agents against Trypanosoma cruzi. ACS Omega. 2022;7(9):7675–7682.
  • Providello MV, Carneiro ZA, Portapilla GB, et al. Benefits of ascorbic acid in association with low-dose benznidazole in treatment of Chagas disease. Antimicrob Agents Chemother. 2018;62(9):e00514–18.
  • Lautenschlager SDOS, Desoti VC, Nakamura CV, et al. Ascorbic acid and quinone compounds for treating Chagas disease. US2019343794A1. 2019.
  • Avila-Sorrosa A, Tapia-Alvarado JD, Nogueda-Torres B, et al. Facile synthesis of a series of non-symmetric thioethers including a benzothiazole moiety and their use as efficient in vitro anti-Trypanosoma cruzi agents. Molecules. 2019;24(17):3077.
  • Martínez-Cerón S, Gutiérrez-Nágera NA, Mirzaeicheshmeh E, et al. Phenylbenzothiazole derivatives: effects against a Trypanosoma cruzi infection and toxicological profiles. Parasitol Res. 2021;120(8):2905–2918.
  • Alonso PJ, Charnley AK, Cotillo TI, et al. Benzothiazole derivative useful in the treatment of Chagas disease. WO2016055607A1. 2016.
  • Alencar MMF, Rab Dos SF, Câ H, et al. Epidemiologia da Doença de Chagas aguda no Brasil de 2007 a 2018. Res Soc Dev. 2020;9(10):e8449109120.
  • Dai R, Watal J. Product patents and access to innovative medicines. Soc Sci Med. 2021;291:114479.
  • Zaitchik A. Owning the sun: a people’s history of monopoly medicine from aspirin to COVID-19 vaccines. First hardcover ed. Berkeley California: Counterpoint; 2022.
  • Duschak V. A decade of targets and patented drugs for chemotherapy of Chagas disease. Recent Patents Anti-Infect Drug Disc. 2011;6(3):216–259.
  • Duschak V, Couto A. An insight on targets and patented drugs for chemotherapy of Chagas disease. Recent Patents Anti-Infect Drug Disc. 2007;2(1):19–51.
  • Duschak V. Targets and patented drugs for chemotherapy of Chagas disease in the last 15 years-period. Recent Patents Anti-Infect Drug Disc. 2016;11(2):74–173.
  • Rodriguez JB, Falcone BN, Szajnman SH. Detection and treatment of Trypanosoma cruzi: a patent review (2011-2015). Expert Opin Ther Pat. 2016;26(9):993–1015.
  • Akinsolu FT, de Paiva VN, Souza SS, et al. Patent landscape of neglected tropical diseases: an analysis of worldwide patent families. Glob Health. 2017;13(1):82.
  • Chein Feres MV, Da Silva LA, Silva AR. The constitutional principle of scientific development based on social interest and the patent legal system: the case of Chagas disease. Rev Direito Bras. 2018;20(8):81.
  • Flores-Quiroz VI, Zumaquero-Ríos L, Perez-Santos M. Pharmaceutical agents for the treatment of Chagas disease: patenting trends in the 2016–2021 period. Pharm Pat Anal. 2022;11(3):97–110.
  • Mansoldo FRP, Carta F, Angeli A, et al. Chagas disease: perspectives on the past and present and challenges in drug discovery. Molecules. 2020;25(22):5483.
  • Profiro de Oliveira JH, Arruda IES, Izak Ribeiro de Araújo J, et al. Why do few drug delivery systems to combat neglected tropical diseases reach the market? An analysis from the technology’s stages. Expert Opin Ther Pat. 2022;32(1):89–114.
  • Vermelho AB, Mori M, Donald WA, et al. Challenges and promises for obtaining new antiprotozoal drugs: what’s going wrong? Vermelho AB, Supuran CT . editors. Antiprotozoal drug dev deliv [internet]. Cham. Springer International Publishing. 2021. cited 2022 Aug 5. 321–329. Available from. https://link.springer.com/10.1007/7355_2021_136
  • Vermelho AB, Cardoso V, Mansoldo FRP, et al. Chagas disease: drug development and parasite targets. Vermelho AB, Supuran CT. editors. Antiprotozoal drug dev deliv [internet]. Cham: Springer International Publishing. 2022. cited 2022 Aug 5. 49–81. Available from. https://link.springer.com/10.1007/7355_2021_143.
  • Lexchin J. Are academia–pharma partnerships essential for novel drug discovery in the time of the COVID-19 pandemic? Expert Opin Drug Discov. 2021;16(5):475–479.
  • Pedrique B, Strub-Wourgaft N, Some C, et al. The drug and vaccine landscape for neglected diseases (2000–11): a systematic assessment. Lancet Glob Health. 2013;1(6):e371–e379.
  • Talevi A, Bellera CL. Challenges and opportunities with drug repurposing: finding strategies to find alternative uses of therapeutics. Expert Opin Drug Discov. 2020;15(4):397–401.
  • Harrer S, Shah P, Antony B, et al. Artificial intelligence for clinical trial design. Trends Pharmacol Sci. 2019;40(8):577–591.
  • Novartis. World Chagas disease day 2021. 2022. [cited 2022 Jun 20]. Available from: https://www.novartis.com/news/world-chagas-disease-day-2021.
  • Figueiredo CS, Melo RMV, Viana TT, et al. Clinical and echocardiographic characteristics after six months of sacubitril/valsartan in Chagas heart disease – a case series. Br J Clin Pharmacol. 2022;88(2):429–436.
  • Delgado-Osorio N, Vera-Polania F, Lopez-Isaza A, et al. Bibliometric assessment of the contributions of literature on Chagas disease in Latin America and the Caribbean. Recent Patents Anti-Infect Drug Disc. 2015;9(3):202–208.
  • Levin LG, Kreimer PR, Jensen P. Chagas disease across contexts: scientific knowledge in a globalized world. Med Anthropol. 2021;40(6):572–589.
  • Kreimer P. Social and Scientific Problems—A View from the History of Science. Science and society in Latin America: peripheral modernities. 1st. New York: Routledge. 2019 57–81. [cited 2022 Aug 4]. Available from: https://www.taylorfrancis.com/chapters/mono/10.4324/9780429266188-3/.
  • Martínez-Peinado N, Cortes-Serra N, Losada-Galvan I, et al. Emerging agents for the treatment of Chagas disease: what is in the preclinical and clinical development pipeline? Expert Opin Investig Drugs. 2020;29(9):947–959.
  • McMurray JJV, Packer M, Desai AS, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004.
  • Ramires FJA, Martinez F, Gómez EA, et al. Post hoc analyses of SHIFT and PARADIGM-HF highlight the importance of chronic Chagas’ cardiomyopathy comment on: “safety profile and efficacy of ivabradine in heart failure due to Chagas heart disease: a post hoc analysis of the SHIFT trial” by Bocchi et: correspondence. ESC Heart Fail. 2018;5(6):1069–1071.
  • Lopes RD, Gimpelewicz C, McMurray JJV. Chagas disease: still a neglected emergency? Lancet. 2020;395(10230):1113–1114.
  • Peña I, Pilar Manzano M, Cantizani J, et al. New compound sets identified from high throughput phenotypic screening against three kinetoplastid parasites: an open resource. Sci Rep. 2015;5(1):8771.
  • Thomas M, Brand S, De Rycker M, et al. Scaffold-hopping strategy on a series of proteasome inhibitors led to a preclinical candidate for the treatment of visceral leishmaniasis. J Med Chem. 2021;64(9):5905–5930.
  • Wyllie S, Brand S, Thomas M, et al. Preclinical candidate for the treatment of visceral leishmaniasis that acts through proteasome inhibition. Proc Natl Acad Sci. 2019;116(19):9318–9323.
  • Zhang H, Lin G. Microbial proteasomes as drug targets. Chitnis CE, editor. PLOS Pathog. 2021;17(12):e1010058.
  • Kourbeli V, Chontzopoulou E, Moschovou K, et al. An overview on target-based drug design against kinetoplastid protozoan infections: human African trypanosomiasis, Chagas disease and leishmaniases. Molecules. 2021;26(15):4629.
  • G-FINDER. New perspectives: neglected disease research and development; 2021.
  • Howard HR, Godek DM, Rodriguez S-M. Bicyclic antiparasitic compounds. US2019177304A1. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.