162
Views
1
CrossRef citations to date
0
Altmetric
Review

Emerging compounds and therapeutic strategies to treat infections from Trypanosoma brucei: an overhaul of the last 5-years patents

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 247-263 | Received 26 Dec 2022, Accepted 16 Mar 2023, Published online: 27 Mar 2023

References

  • https://www.cdc.gov/dpdx/trypanosomiasisafrican/index.html, 26 Nov 2022.
  • Kasozi KI, MacLeod ET, Ntulume I, et al. An update on African Trypanocide pharmaceutics and resistance. Front Vet Sci. 2022;9:828111.
  • Awadzi K. Clinical picture and outcome of serious adverse events in the treatment of onchocerciasis. Filaria J. 2003;2(Suppl 1):S6.
  • Bitonti AJ, Dumont JA, McCann PP. Characterization of Trypanosoma brucei S-adenosyl-L-methionine decarboxylase and its inhibition by Berenil, pentamidine and methylglyoxal bis(guanylhydrazone). Biochem J. 1986;237:685–689.
  • Sands M, Kron MA, Brown RB. Pentamidine: a review. Rev Infect Dis. 1985;7:625–634.
  • Coppens I, Courtoy PJ. The adaptative mechanisms of Trypanosoma brucei for sterol homeostasis in its different life-cycle environments. Annu Rev Microbiol. 2000;54:129–156.
  • Perie J, Riviere-Alric I, Blonski C, et al. Inhibition of the glycolytic enzymes in the trypanosome: an approach in the development of new leads in the therapy of parasitic diseases. Pharmac Ther. 1993;60:347–365.
  • Willson M, Callens M, Kuntz DA, et al. Synthesis and activity of inhibitors highly specific for the glycolytic enzymes from Trypanosoma brucei. Mol Biochem Parasitol. 1993;59:201–210.
  • Fairlamb AH, Henderson GB, Cerami A. Trypanothione is the primary target for arsenical drugs against African trypanosomes. Proc Natl Acad Sci USA. 1989;86:2607–2611.
  • Flynn IW, Bowman IBR. Further studies on the mode of action of arsenicals on trypanosomes pyruvate kinase. Trans R Soc Trop Med Hyg. 1969;63(1):121.
  • Bacchi CJ, Nathan HC, Hutner SH, et al. Polyamine metabolism: a potential therapeutic target in trypanosomes. Science. 1980;210:332–334.
  • Vincent IM, Creek D, Watson DG, et al. A molecular mechanism for eflornithine resistance in African trypanosomes. PLoS Pathog. 2010;6:e1001204.
  • Metcalf BW, Bey P, Danzin C, et al. Catalytic irreversible inhibition of mammalian ornithine decarboxylase (E.C.4.1.1.17) by substrate and product analogues. J Am Chem Soc. 1978;100:2551–2553.
  • Fairlamb AH, Henderson GB, Bacchi CJ, et al. In vivo effects of difluoromethylornithine on trypanothione and polyamine levels in bloodstream forms of Trypanosoma brucei. Mol Biochem Parasitol. 1987;24:185–191.
  • McCann PP, Pegg AE. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther. 1992;54:195–215.
  • Lutje V, Probyn K, Seixas J, et al. Chemotherapy for second-stage human African trypanosomiasis: drugs in use. Cochrane Database Syst Rev. 2021;12:CD015374.
  • Wilkinson SR, Taylor MC, Horn D, et al. A mechanism for cross‐resistance to nifurtimox and benznidazole in trypanosomes. Proc Natl Acad Sci USA. 2008;105:5022–5027.
  • Hall BS, Bot C, Wilkinson SR. Nifurtimox activation by trypanosomal type I nitroreductases generates cytotoxic nitrile metabolites. J Biol Chem. 2011;286:13088–13095.
  • Patterson S, Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol. 2014;30:289–298.
  • Bernhard S, Kaiser M, Burri C, et al. Fexinidazole for human African trypanosomiasis, the fruit of a successful public-private partnership. Diseases. 2022;10:90.
  • Tweats D, Bourdin Trunz B, Torreele E. Genotoxicity profile of fexinidazole—A drug candidate in clinical development for human African trypanosomiasis (sleeping sickness). Mutagenesis. 2012;27:523–532.
  • Mesu V, Kalonji WM, Bardonneau C, et al. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. Lancet. 2018;391:144–154.
  • Kan de Betu Kumesu V, Mutombo Kalonji W, Bardonneau C, et al. Safety and efficacy of oral fexinidazole in children with gambiense human African trypanosomiasis: a multicentre, single-arm, open-label, phase 2–3 trial. Lancet Glob Health. 2022;10:e1665–e1674.
  • Kande Betu Ku Mesu V, Mutombo Kalonji W, Bardonneau C, et al. Oral fexinidazole for stage 1 or early stage 2 African Trypanosoma brucei gambiense trypanosomiasis: a prospective, multicentre, open-label, cohort study. Lancet Glob Health. 2021;9:e999–e1008.
  • Watson JA, Strub-Wourgraft N, Tarral A, et al. Pharmacokinetic-pharmacodynamic assessment of the hepatic and bone marrow toxicities of the new trypanoside fexinidazole. Antimicrob Agents Chemother. 2019;63:e02515–e02518.
  • Fernando da Silva Santos-Júnior P, Rocha Silva L, José Quintans-Júnior L. Nitro compounds against trypanosomatidae parasites: heroes or villains? Bioorg Med Chem Lett. 2022;75:128930.
  • Moher D, Liberati A, Tetzlaff J, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.
  • McKerrow JH. Update on drug development targeting parasite cysteine proteases. PLoS Negl Trop Dis. 2018;12:4–7.
  • Doyle PS, Zhou YM, Engel JC, et al. A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother. 2007;51:3932–3939.
  • Clayton J. Chagas disease: pushing through the pipeline. Nature. 2010;465:12–15.
  • Harper E, Berger A. On the size of the active site in proteases: pronase. Biochem Biophys Res Commun. 1972;46:1956–1960.
  • Johé P, Jaenicke E, Neuweiler H, et al. Structure, interdomain dynamics, and pH-dependent autoactivation of pro-rhodesain, the main lysosomal cysteine protease from African trypanosomes. J Biol Chem. 2021;296:100565.
  • Kerr ID, Lee JH, Farady CJ, et al. Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem. 2009;284(38):25697–25703.
  • Ettari R, Tamborini L, Angelo IC, et al. Inhibition of rhodesain as a novel therapeutic modality for human African trypanosomiasis. J Med Chem. 2013;56:5637–5658.
  • The Texas A&M University System, the Board of Reagents of the University of Texas System. Inhibitors of cysteine proteases. WO 2022/187491 A1. 2022.
  • Quadrel s.r.l. Compound for use in the treatment of protozoal diseases and process for production of said compound. WO 2022/063790 A1. 2021.
  • Aurigene Discovery Tech Ltd. Method of modulating TIGIT and PD-1 signalling pathways using 1,2,4-oxadiazole compounds. WO2019175799A2. 2019.
  • The Board of Reagents of the University of Texas System. Novel antiparasitic compounds and methods. WO 2021/077102 A1. 2020.
  • Vyera Pharmaceuticals, LLC. DHFR inhibitors, compositions, and methods related thereto. WO 2019/032458 Al. 2019.
  • Cullia G, Tamborini L, Conti P, et al. Folates in Trypanosoma brucei: achievements and opportunities. ChemMedChem. 2018;13:2150–2158.
  • Panecka-Hofman J, Poehner I, Wade RC. Anti-trypanosomatid structure-based drug design-lessons learned from targeting the folate pathway. Expert Opin Drug Discov. 2022;17:1029–1045.
  • Università degli Studi di Modena e Reggio-Emilia, Universidade do Porto, IMBC – Istituto de Biologia Molecular e Celular. Triaminopyrimidine derivatives with antiparasitic activity. WO 2020/188437 Al. 2020.
  • Cavazzuti A, Paglietti G, Hunter WN, et al. Discovery of potent pteridine reductase inhibitors to guide antiparasite drug development. Proc Natl Acad Sci USA. 2008;105:1448–1453.
  • Institut National de la Sante et de la Recherche Medicale (INSERM), Ecole Polytechnique, Université de Bordeaux, Institut Pasteaur. Centre National de la Recherche Scientifique. 6-6 or 5-6 fused bicyclic compounds comprising a pyri(mi)dine ring useful in the treatment of infectious diseases. WO 2022/129376 A1. 2022.
  • Novartis AG Preparation of functionalized 5,6-fused bicyclic compounds and compositions for the treatment of parasitic diseases. WO 2018/220531 Al. 2018.
  • Universiteit Gent; Universiteit Antwerpen. Nucleoside analogues for the treatment of parasitic infections. WO 2019/076633 A1. 2019.
  • Qh H, Rj L, Zp F, et al. Discovery of a potent benzoxaborole-based anti-pneumococcal agent targeting leucyl-tRNA synthetase. Sci Rep. 2013;3:2475.
  • Rock FL, Mao WM, Yaremchuk A, et al. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science. 2007;316:1759–1761.
  • Liu CT, Tomsho JW, Benkovic SJ. The unique chemistry of benzoxaboroles: current and emerging applications in biotechnology and therapeutic treatments. Bioorg Med Chem. 2014;22:4462–4473.
  • Jones DC, Foth BJ, Urbaniak MD, et al. Genomic and proteomic studies on the mode of action of oxaboroles against the African trypanosome. PLoS Negl Trop Dis. 2015;9:e0004299.
  • Hammarton TC. Cell cycle regulation in Trypanosoma brucei. Mol Biochem Parasitol. 2007;153:1–8.
  • Hammarton TC, Monnerat S, Mottram JC. Cytokinesis in trypanosomatids. Curr Opin Microbiol. 2007;10:520–527.
  • Mbang-Benet DE, Sterkers Y, Crobu L, et al. RNA interference screen reveals a high proportion of mitochondrial proteins essential for correct cell cycle progress in Trypanosoma brucei. BMC Genomics. 2015;16:297.
  • Begolo D, Vincent IM, Giordani F, et al. The trypanocidal benzoxaborole AN7973 inhibits trypanosome mRNA processing. PLoS Pathog. 2018;14:e1007315.
  • ANACOR Pharmaceuticals, INC., the Government of the United States, as represented by the Secretary of the Army. Novel oxaborole analogues and uses thereof. WO 2018/160845 A1. 2018.
  • Räz B, Iten M, Grether-Bühler Y, et al. The Alamar Blue assay to determine drug sensitivity of African trypanosomes (T. b. rhodesiense and T. b. gambiense) in vitro. Acta Trop. 1997;68:139–147.
  • Moreno-Herrera A, Cortez-Maya S, Bocanegra-Garcia V, et al. Recent advances in the development of broad-spectrum antiprotozoal agents. Curr Med Chem. 2021;28:583–606.
  • Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod. 2012;75:311–335.
  • Rani R, Narasimhan B, Varma RS, et al. Naphthoquinone derivatives exhibit apoptosis-like effect and anti-trypanosomal activity against Trypanosoma evansi. Vet Parasitol. 2021;290:109367.
  • Dantas-Pereira L, Cunha-Junior EF, Andrade-Neto VV, et al. Naphthoquinones and derivatives for chemotherapy: perspectives and limitations of their anti-trypanosomatids activities. Curr Pharm Des. 2021;27:1807–1824.
  • Luisi G, Carradori S. New compounds for the management of Trypanosoma brucei infection. In: Vermelho AB, Supuran CT, editors. Antiprotozoal Drug Development and Delivery. Topics in Medicinal Chemistry. Vol 39, Cham: Springer; 2022. p. 113–141.
  • Boniface PK, Elizabeth FI. Flavonoid-derived privileged scaffolds in anti-Trypanosoma brucei drug discovery. Curr Drug Targets. 2019;20:1295–1314.
  • Tasdemir D, Kaiser M, Brun R, et al. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: in vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob Agents Chemother. 2006;50:1352–1364.
  • Alotaibi A, Ebiloma GU, Williams R, et al. Activity of compounds from temperate propolis against Trypanosoma brucei and Leishmania mexicana. Molecules. 2021;26:3912.
  • Jones AJ, Grkovic T, Sykes ML, et al. Trypanocidal activity of marine natural products. Mar Drugs. 2013;11:4058–4082.
  • Kajimura Y, Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot. 1996;49:129–135.
  • Tenfold Technologies, LLC., University of Mississippi. Anti-pathogen composition and methods of use thereof. WO 2018/183383 Al. 2018.
  • Danazumi AU, Gital SI, Idris S, et al. Immunoinformatic design of a putative multi-epitope vaccine candidate against Trypanosoma brucei gambiense. Comput Struct Biotechnol J. 2022;20:5574–5585.
  • Stijlemans B Vaccine compositions for trypanosomatids. WO 2022/207793 Al.
  • Ryazanov AG, Pavur KS, Dorovkov MV. Alpha-kinases: a new class of protein kinases with a novel catalytic domain. Curr Biol. 1999;9:R43–5.
  • Shanghai Yao Yuan Biotechnology CO., LTD. Derivatives of glycero-manno-heptose ADP for use in modulating immune response. WO 2020/216327 Al.
  • Shanghai Yao Yuan Biotechnology CO., LTD. Derivatives of glycero-manno-heptose phosphate and their use in modulating an immune response. WO 2020/216326 Al.
  • Ohio State Innovation Foundation. Live attenuated parasitic vaccine. US 2020/0147148 Al.
  • La Jolla Pharmaceutical Company. Methods of treating iron overload. WO 2018/048944 Al.
  • Vermelho AB, Rodrigues GC, Supuran CT. Why hasn’t there been more progress in new Chagas disease drug discovery? Expert Opin Drug Discov. 2020;15:145–158.
  • Morrison LJ, Steketee PC, Tettey MD, et al. Pathogenicity and virulence of African trypanosomes: from laboratory models to clinically relevant hosts. Virulence. 2023;14:2150445.
  • Álvarez-Rodríguez A, Jin BK, Radwanska M, et al. Recent progress in diagnosis and treatment of human African trypanosomiasis has made the elimination of this disease a realistic target by 2030. Front Med. 2022;9:1037094.
  • Franco JR, Cecchi G, Priotto G, et al. Human African trypanosomiasis cases diagnosed in non-endemic countries (2011-2020). PLoS Negl Trop Dis. 2022;16:e0010885.
  • KI K, ET M, SC W. Systematic review and meta-analysis on human African trypanocide resistance. Pathogens. 2022;11:1100.
  • Berriman M, Ghedin E, Hertz-Fowler C, et al. The genome of the African trypanosome Trypanosoma brucei. Science. 2005;309:416–422.
  • Ivens AC, Peacock CS, Worthey EA, et al. The genome of the kinetoplastid parasite, Leishmania major. Science. 2005;309:436–442.
  • Oberholzer M, Marti G, Baresic M, et al. The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence. FASEB J. 2007;21:720–731.
  • Dos Santos Nascimento IJ, de Aquino TM, da Silva-Júnior EF. Cruzain and rhodesain inhibitors: last decade of advances in seeking for new compounds against American and African trypanosomiases. Curr Top Med Chem. 2021;21:1871–1899.
  • Barbosa da Silva E, DA R, IS F, et al. Structure-based optimization of quinazolines as cruzain and TbrCATL inhibitors. J Med Chem. 2021;64:13054–13071.
  • Quintana JF, Zoltner M, Field MC. Evolving differentiation in African trypanosomes. Trends Parasitol. 2021;37:296–303.
  • Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Genet. 2009;7:493–503.
  • Batram C, Jones NG, Janzen CJ, et al. Expression site attenuation mechanistically links antigenic variation and development in Trypanosoma brucei. Elife. 2014;3:e02324.
  • Li B, Espinal A, Cross GAM. Trypanosome telomeres are protected by a homologue of mammalian TRF. Mol Cell Biol. 2005;25:5011–5021.
  • Li B, Zhao Y. Regulation of antigenic variation by Trypanosoma brucei telomere proteins depends on their unique DNA binding activities. Pathogens. 2021;10:967.
  • Kim DH, Achcar F, Breitling R, et al. LC-MS based absolute metabolite quantification: application to metabolic flux measurement in trypanosomes. Metabolomics. 2015;11:1721–1732.
  • Ali JAM, Creek DJ, Burgess K, et al. Pyrimidine salvage in Trypanosoma brucei in bloodstream forms and trypanocidal action of halogenated pyrimidines. Mol Pharmacol. 2013;83:439–453.
  • Mantilla BS, Marchese L, Casas-Sánchez A, et al. Proline metabolism is essential for Trypanosoma brucei brucei survival in the tsetse vector. PLoS Pathog. 2017;13:e1006158.
  • Leroux & Krauth-Siegel. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol. 2016;206:67–74.
  • Gu X, Reid D, Higham DJ, et al. Mathematical modelling of polyamine metabolism in bloodstream-form Trypanosoma brucei: an application to drug target identification. PLoS ONE. 2013;8:e53734.
  • Heby O, Persson L, Rentala M. Targeting the polyamine biosynthetic enzymes: a promising approach to therapy of African sleeping sickness, Chagas’ disease, and leishmaniasis. Amino Acids. 2007;33:359–366.
  • Millerioux Y, Ebikeme C, Biran M, et al. Metabolic adaptation for acetate production. Mol Microbiol. 2013;90:114–129.
  • Villafraz O, Baudouin H, Mazet M, et al. The trypanosome UDP-glucose pyrophosphorylase is imported by piggybacking into glycosomes, where unconventional sugar nucleotide synthesis takes place. mBio. 2021;12:e00375–21.
  • Richmond G, Gibellini F, Young S, et al. Lipidomic analysis of bloodstream and procyclic from Trypanosoma brucei. Parasitology. 2020;137:1357–1392.
  • Smith TK, Bütikofer P. Lipid metabolism in Trypanosoma brucei. Mol Biochem Parasitol. 2010;172:66–79.
  • van Hellemond JJ, Tielens AGM. Adaptations in the lipid metabolism of the protozoan parasite Trypanosoma brucei. FEBS Lett. 2006;580:5552–5558.
  • Price HP, Menon MR, Panethymitaki C, et al. Myristoyl-CoA:protein N-myristoyltransferase, an essential enzyme and potential drug target in kinetoplastid parasites. J Biol Chem. 2003;278:7206–7721.
  • Frearson J, Brand S, McElroy S. N-myristoyltransferase inhibitors as new leads to treat sleeping sickness. Nature. 2010;464:728–732.
  • Spinks D, Smith V, Thompson S, et al. Development of Small-Molecule Trypanosoma brucei N-Myristoyltransferase Inhibitors: Discovery and Optimisation of a Novel Binding Mode. Chem Med Chem. 2015;10(11):1821. DOI:10.1002/cmdc.201500301.
  • JR H, Brand S, Smith V, et al. A molecular hybridization approach for the design of potent, highly selective, and brain-penetrant N-myristoyltransferase inhibitors. J Med Chem. 2018;61:8374–8389.
  • Supuran CT. Inhibition of carbonic anhydrase from Trypanosoma cruzi for the management of Chagas disease: an underexplored therapeutic opportunity. Future Med Chem. 2016;8:311–324.
  • Capasso C, CT S. Bacterial, fungal and protozoan carbonic anhydrases as drug targets. Expert Opin Ther Targets. 2015;19:1689–1704.
  • Betu Kumeso VK, Kalonji WM, Rembry S, et al. Efficacy and safety of acoziborole in patients with human African trypanosomiasis caused by Trypanosoma brucei gambiense: a multicentre, open-label, single-arm, phase 2/3 trial. Lancet Infect Dis. 2022;S1473-3099(22):660.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.