114
Views
0
CrossRef citations to date
0
Altmetric
Review

Drugs and nanoformulations for the management of Leishmania infection: a patent and literature review (2015-2022)

, , , &
Pages 137-150 | Received 21 Dec 2022, Accepted 06 Apr 2023, Published online: 12 Apr 2023

References

  • Kuzuki T, Perry B, Mowbray C. NTD drug discovery booster, achievements and next steps. Yakugaku Zasshi. 2022;142(7):685–689.
  • WHO, 2022 https://www.who.int/health-topics/leishmaniasis#tab=tab_1
  • Volpedo G, Huston RH, Holcomb EA, et al. From infection to vaccination: reviewing the global burden, history of vaccine development, and recurring challenges in global leishmaniasis protection. Expert Rev Vaccines. 2021;20(11):1431–1446. DOI:10.1080/14760584.2021.1969231
  • Kaye P, Scott P. Leishmaniasis: complexity at the host–pathogen interface. Nat Rev Microbiol. 2011;9(8):604–615.
  • van Griensven J, Diro E. Visceral leishmaniasis. Infect Dis Clin North Am. 2012;26(2):309–322.
  • Lindoso JAL, Moreira CHV, Cunha MA, et al. Visceral leishmaniasis and HIV coinfection: current perspectives. HIV AIDS (Auckl). 15 2018;10: 193–201. DOI:10.2147/HIV.S143929
  • Sundar S, Chakravarty J. Visceral leishmaniasis. Ponte-Sucre A, Padrón-Nieves M, editors. Cham (Switzerland): Springer; 2018. p. 159–176.
  • Alvar J, Vélez ID, Bern C, et al. WHO leishmaniasis control team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE. 2012;7(5):e35671. DOI:10.1371/journal.pone.0035671
  • Mokni M. Leishmanioses cutanées [Cutaneous leishmaniasis]. Ann Dermatol Venereol. 2019;146(3):232–246.
  • Reithinger R, Dujardin JC, Louzir H, et al. Cutaneous leishmaniasis. Lancet Infect Dis. 2007;7(7):581–596. DOI:10.1016/S1473-3099(07)70209-8
  • Gabriel Á, Valério-Bolas A, Palma-Marques J, et al. Cutaneous leishmaniasis: the complexity of host’s effective immune response against a polymorphic parasitic disease. J Immunol Res. 2019;2603730:1–16.
  • Strazzulla A, Cocuzza S, Pinzone MR, et al. Mucosal leishmaniasis: an underestimated presentation of a neglected disease. BioMed Res Int. 2013;2013:1–7.
  • Abadías-Granado I, Diago A, Cerro PA, et al. Leishmaniasis cutánea y mucocutánea. Actas Dermo-Sifiliográficas. 2021;112(7):601–618. DOI:10.1016/j.ad.2021.02.008
  • Stamm LV. Human migration and leishmaniasis-on the move. JAMA Dermatol. 2016;152(4):373–374.
  • Channon JY, Roberts MB, Blackwell JM. A study of the differential respiratory burst activity elicited by promastigotes and amastigotes of Leishmania donovani in murine resident peritoneal macrophages. Immunology. 1984;53(2):345–355.
  • McConville MJ, de Souza D, Saunders E, et al. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol. 2007;23(8):368–375. DOI:10.1016/j.pt.2007.06.009
  • Fidalgo LM, Gille L. Mitochondria and trypanosomatids: targets and drugs. Pharm Res. 2011;28(11):2758–2770.
  • Desjeux P. Prevention of Leishmania donovani infection. BMJ. 2010;29(341):c6751.
  • Handler MZ, Patel PA, Kapila R, et al. Cutaneous and mucocutaneous Leishmaniasis: clinical perspectives. J Am Acad Dermatol. 2015;73(6):897–908. DOI:10.1016/j.jaad.2014.08.051
  • World Health Organization (WHO). Control of leishmaniasis: report of a meeting of the WHO expert committee on the control of Leishmaniases, geneva. Geneva: World Health Organ; 2010.
  • Losada-Barragán M, Umaña-Pérez A, Durães J, et al. Thymic microenvironment is modified by malnutrition and Leishmania infantum infection. Front Cell Infect Microbiol. 12 2019;9: 252.doi: 10.3389/fcimb.2019.00252
  • Nylén S, Eidsmo L. Tissue damage and immunity in cutaneous Leishmaniasis. Parasite Immunol. 2012;34(12):551–561.
  • Rojas R, Valderama L, Valderama M, et al. Resistance to antimony and treatment failure in human Leishmania (Viannia) infection. J Infect Dis. 2006;193(10):1375–1383. DOI:10.1086/503371
  • Hohman LS, Peters NC. CD4+ T cell-mediated immunity against the phagosomal pathogen Leishmania: implications for Vaccination. Trends Parasitol. 2019;35(6):423–435.
  • Rodriguez-Pinto D, Saravia NG, McMahon-Pratt D. CD4 T cell activation by B cells in human Leishmania (Viannia) infection. BMC Infect Dis. 2014;14(1):108. 25. DOI:10.1186/1471-2334-14-108
  • Kedzierski L, Sakthianandeswaren A, Curtis JM, et al. Leishmaniasis: current treatment and prospects for new drugs and vaccines. Curr Med Chem. 2009;16(5):599–614. DOI:10.2174/092986709787458489
  • Soni M, Pratap JV. Development of novel anti-leishmanials: the case for structure-based approaches. Pathogens. 2022;11(8):950. 22. DOI:10.3390/pathogens11080950
  • Briggs N, Wei BM, Ahuja C, et al. Mucocutaneous Leishmaniasis in a pregnant immigrant. Open Forum Infect Dis. 2022;9(8):ofac360. 22. DOI:10.1093/ofid/ofac360
  • Monge-Maillo B, López-Vélez R. Miltefosine for visceral and cutaneous leishmaniasis: drug characteristics and evidence-based treatment recommendations. Clin Infect Dis. 2015;60(9):1398–1404. 1. DOI:10.1093/cid/civ004
  • Amato V, Amato J, Nicodemo A, et al. Traitement par iséthionate de pentamidine de la leishmaniose muqueuse [Treatment of mucocutaneous leishmaniasis with pentamidine isothionate]. Ann Dermatol Venereol. 1998;125(8):492–495.
  • Sundar S, Chakravarty J. Paromomycin in the treatment of leishmaniasis. Expert Opin Investig Drugs. 2008;17(5):787–794.
  • Conceição-Silva F, Leite-Silva J, Morgado FN. The binomial parasite-host immunity in the healing process and in reactivation of human tegumentary Leishmaniasis. Front Microbiol. 2018;9:1308. 19. DOI:10.3389/fmicb.2018.01308
  • Kumar VU, Kt MF, Sharma A, et al. The possible role of selected vitamins and minerals in the therapeutic outcomes of Leishmaniasis. Biol Trace Elem Res. 2023;2(4):1672–1688. Epub ahead of print. 2022. DOI:10.1007/s12011-022-03311-6
  • Galvão EL, Pedras MJ, Cota GF, et al. How cutaneous leishmaniasis and treatment impacts patients’ lives: a cross-sectional study. PLoS ONE. 2019;14(1):e0211374. 25. DOI:10.1371/journal.pone.0211374
  • dos Santos Ferreira C, Martins PS, Demicheli C, et al. Thiol-induced reduction of antimony (V) into antimony (III): a comparative study with trypanothione, cysteinyl-glycine, cysteine, and glutathione. Biometals. 2003;16(3):441–446. DOI:10.1023/A:1022823605068
  • Matoussi N, Ameur HB, Amor SB, et al. Toxicité cardiaque de l’antimoniate de méglumine (Glucantime). A propos d’une observation [Cardiotoxicity of n-methyl-glucamine antimoniate (Glucantime). A case report]. Med Mal Infect. 2007;37(3):S257–9. DOI:10.1016/j.medmal.2007.08.001
  • Veiga JP, Wolff ER, Sampaio RN, et al. Renal tubular dysfunction in patients with mucocutaneous leishmaniasis treated with pentavalent antimonials. Lancet. 1983;2(8349):569. 3. DOI:10.1016/S0140-6736(83)90595-0
  • Maristany Bosch M, Cuervo G, Matas Martín E, et al. Neurological toxicity due to antimonial treatment for refractory visceral leishmaniasis. Clin Neurophysiol Pract. 25 2021;6: 164–167. DOI:10.1016/j.cnp.2021.03.008
  • Kato KC, Morais-Teixeira E, Reis PG, et al. Hepatotoxicity of the pentavalent antimonial drug: possible role of residual Sb(III) and protective effect of ascorbic acid. Antimicrob Agents Chemother. 2014;58(1):481–488. DOI:10.1128/AAC.01499-13
  • Liu M, Chen M, Yang Z. Design of amphotericin B oral formulation for antifungal therapy. Drug Deliv. 2017;24(1):1–9.
  • Stone NR, Bicanic T, Salim R, et al. Liposomal Amphotericin B (AmBisome(®)): a review of the pharmacokinetics, pharmacodynamics, clinical experience and future directions. Drugs. 2016;76(4):485–500.
  • Brajtburg J, Powderly WG, Kobayashi GS, et al. Amphotericin B: delivery system. Antimicrob Agents Chemother. 1990;34(3):381–384. DOI:10.1128/AAC.34.3.381
  • Sabra R, Branch RA. Amphotericin B nephrotoxicity. Drug Saf. 1990;5(2):94–108.
  • Kaminsky R. Miltefosine Zentaris. Curr Opin Invest Drugs. 2002;3(4):550–554.
  • Berman J. Miltefosine to treat leishmaniasis. Expert Opin Pharmacother. 2005 Jul;6(8):1381–1388.
  • ZENTARIS AG: impavido registration certificate for Miltefosine capsules 10 mg and 50 mg. Issued by Drug Controller General India. 2002.
  • ZENTARIS AG: impavido registration certificate for Miltefosine capsules 10 mg and 50 mg. Issued by German Registration Authority. 2004.
  • Santos Nogueira F D, Avino VC, Galvis-Ovallos F, et al. Use of miltefosine to treat canine visceral leishmaniasis caused by Leishmania infantum in Brazil. Parasites Vectors. 2019;12(1):79. 8. DOI:10.1186/s13071-019-3323-0
  • Verma NK, Singh G, Dey CS. Miltefosine induces apoptosis in arsenite-resistant Leishmania donovani promastigotes through mitochondrial dysfunction. Exp Parasitol. 2007;116(1):1–13.
  • Schlossberg D, Samuel R. Miltefosine (Impavido, Miltex). Antibiot manual a Guid to commonly used anti-microbialsp. 287–288, 2011.
  • Singh G, Dey CS. Induction of apoptosis-like cell death by pentamidine and doxorubicin through differential inhibition of topoisomerase II in arsenite-resistant L. donovani. Acta Trop. 2007;103(3):172–185.
  • Basselin M, Lawrence F, Robert-Gero M. Pentamidine uptake in Leishmania donovani and Leishmania amazonensis promastigotes and axenic amastigotes. Biochem J. 1996;15(2):315.
  • Naafs B. Pentamidine-induced diabetes mellitus. Trans R Soc Trop Med Hyg. 1985;79(1):141.
  • Kanyok TP, Reddy MV, Chinnaswamy J, et al. In vivo activity of paromomycin against susceptible and multidrug-resistant Mycobacterium tuberculosis and M. avium complex strains. Antimicrob Agents Chemother. 1994;38(2):170–173. DOI:10.1128/AAC.38.2.170
  • Davidson RN, den Boer M, Ritmeijer K. Paromomycin. Trans R Soc Trop Med Hyg. 2009;103(7):653–660.
  • Sundar S, Jha TK, Thakur CP, et al. Injectable paromomycin for Visceral leishmaniasis in India. N Engl J Med. 2007;356(25):2571–2581. DOI:10.1056/NEJMoa066536
  • Kasabalis D, Chatzis MK, Apostolidis K, et al. Evaluation of nephrotoxicity and ototoxicity of aminosidine (paromomycin)-allopurinol combination in dogs with leishmaniosis due to Leishmania infantum: a randomized, blinded, controlled study. Exp Parasitol. 2019;206:107768.
  • Letzring DP, Wolf AS, Brule CE, et al. Translation of CGA codon repeats in yeast involves quality control components and ribosomal protein L1. RNA. 2013;9(9):1208–1217. DOI:10.1261/rna.039446.113
  • Verrest L, Wasunna M, Kokwaro G, et al. Geographical Variability in Paromomycin Pharmacokinetics Does Not Explain Efficacy Differences between Eastern African and Indian Visceral Leishmaniasis Patients. Clin Pharmacokinet. 2021;60(11):1463–1473. DOI:10.1007/s40262-021-01036-8
  • White NJ. Delaying antimalarial drug resistance with combination chemotherapy. Parassitologia. 1999;41(1–3):301–308.
  • Maldonado V, Loza-Mejía MA, Chávez-Alderete J. Repositioning of pentoxifylline as an immunomodulator and regulator of the renin-angiotensin system in the treatment of COVID-19. Med Hypotheses. 2020;144:109988.
  • Lessa HA, Machado P, Lima F, et al. Successful treatment of refractory mucosal leishmaniasis with pentoxifylline plus antimony. Am J Trop Med Hyg. 2001;65(2):87–89. DOI:10.4269/ajtmh.2001.65.87
  • Nasiri-Toosi Z, Dashti-Khavidaki S, Khalili H, et al. A review of the potential protective effects of pentoxifylline against drug-induced nephrotoxicity. Eur J Clin Pharmacol. 2013;69(5):1057–1073. DOI:10.1007/s00228-012-1452-x
  • Cincura C, Costa RS, De Lima CMF, et al. Assessment of Immune and Clinical Response in Patients with Mucosal Leishmaniasis Treated with Pentavalent Antimony and Pentoxifylline. Trop Med Infect Dis. 2022;7(11):383. 16. DOI:10.3390/tropicalmed7110383
  • Brito G, Dourado M, Guimarães LH, et al. Oral Pentoxifylline Associated with Pentavalent Antimony: a Randomized Trial for Cutaneous Leishmaniasis. Am J Trop Med Hyg. 2017;96(5):1155–1159. DOI:10.4269/ajtmh.16-0435
  • Castro MDM, Cossio A, Navas A, et al. Pentoxifylline in the Treatment of Cutaneous Leishmaniasis: a Randomized Clinical Trial in Colombia. Pathogens. 2022;11(3):378. 21. DOI:10.3390/pathogens11030378
  • Seifert K, Croft SL. In vitro and in vivo interactions between miltefosine and other antileishmanial drugs. Antimicrob Agents Chemother. 2006;50(1):73–79.
  • Thakur CP, Kanyok TP, Pandey AK, et al. A prospective randomized, comparative, open-label trial of the safety and efficacy of paromomycin (aminosidine) plus sodium stibogluconate versus sodium stibogluconate alone for the treatment of visceral leishmaniasis. Trans R Soc Trop Med Hyg. 2000;94(4):429–431. DOI:10.1016/S0035-9203(00)90130-5
  • Parvez S, Yadagiri G, Gedda MR, et al. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020;10(1):12243. DOI:10.1038/s41598-020-69276-5
  • Lee H, Baek KH, Phan TN, et al. Discovery of Leishmania donovani topoisomerase IB selective inhibitors by targeting protein-protein interactions between the large and small subunits. Biochem Biophys Res Commun. 2021;569:193–198.
  • Marquis JF, Drolet M, Olivier M. Consequence of Hoechst 33342-mediated Leishmania DNA topoisomerase-I inhibition on parasite replication. Parasitology. 2003;26(1):21–30.
  • Singh G, Jayanarayan KG, Dey CS. Novobiocin induces apoptosis-like cell death in topoisomerase II over-expressing arsenite-resistant Leishmania donovani. Mol Biochem Parasitol. 2005;141(1):57–65.
  • Feng M, Jin Y, Yang S, et al. Sterol profiling of Leishmania parasites using a new HPLC-tandem mass spectrometry-based method and antifungal azoles as chemical probes reveals a key intermediate sterol that supports a branched ergosterol biosynthetic pathway. Int J Parasitol Drugs Drug Resist. 2022;20:27–42.
  • Wadanambi PM, Mannapperuma U. Computational study to discover potent phytochemical inhibitors against drug target, squalene synthase from Leishmania donovani. Heliyon. 2021;7(6):e07178.
  • Leroux AE, Krauth-Siegel RL. Thiol redox biology of trypanosomatids and potential targets for chemotherapy. Mol Biochem Parasitol. 2016;206(1–2):67–74.
  • Wanasen N, Soong L. L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol Res. 2008;41(1):15–25.
  • da Silva ER, Maquiaveli Cdo C, Magalhães PP. The leishmanicidal flavonols quercetin and quercitrin target Leishmania (Leishmania) amazonensis arginase. Exp Parasitol. 2012;130(3):183–188.
  • da Silva ER, Boechat N, Pinheiro LC, et al. Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase. Chem Biol Drug Des. 2015;86(5):969–978. DOI:10.1111/cbdd.12566
  • Perry MR, Prajapati VK, Menten J, et al. Arsenic exposure and outcomes of antimonial treatment in visceral leishmaniasis patients in Bihar, India: a retrospective cohort study. PLoS Negl Trop Dis. 2015;9(3):e0003518. DOI:10.1371/journal.pntd.0003518
  • Légaré D, Richard D, Mukhopadhyay R, et al. The Leishmania ATP-binding cassette protein PGPA is an intracellular metal-thiol transporter ATPase. J Biol Chem. 2001;276(28):26301±7. DOI:10.1074/jbc.M102351200
  • Mandal G, Mandal S, Sharma M, et al. Species-specific antimonial sensitivity in Leishmania is driven by post-transcriptional regulation of AQP1. PLoS Negl Trop Dis. 2015;9(2):e0003500. DOI:10.1371/journal.pntd.0003500
  • Nateghi-Rostami M, Tasbihi M, Darzi F. Involvement of tryparedoxin peroxidase (TryP) and trypanothione reductase (TryR) in antimony unresponsive of Leishmania tropica clinical isolates of Iran. Acta Trop. 2022;230:106392.
  • Singh J, Khan MI, Singh Yadav SP, et al. L-Asparaginase of Leishmania donovani: metabolic target and its role in Amphotericin B resistance. Int J Parasitol Drugs Drug Resist. 2017;7(3):337–349. DOI:10.1016/j.ijpddr.2017.09.003
  • Rebello KM, Andrade-Neto VV, Gomes CRB, et al. Miltefosine-Lopinavir Combination Therapy Against Leishmania infantum Infection: in vitro and in vivo Approaches. Front Cell Infect Microbiol. 28 28 2019;9: 229. DOI:10.3389/fcimb.2019.00229
  • Roatt BM, de Oliveira Cardoso JM, De Brito RCF, et al. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol. 2020;21(21):8965–8977. DOI:10.1007/s00253-020-10856-w
  • Ahmed H, Curtis CR, Tur-Gracia S, et al. Drug combinations as effective anti-leishmanials against drug resistant Leishmania mexicana. RSC Med Chem. 2020;11(8):905–912. DOI:10.1039/D0MD00101E
  • Andrade-Neto VV, Rebello KM, Pereira TM, et al. Effect of Itraconazole-Ezetimibe-Miltefosine Ternary Therapy in Murine Visceral Leishmaniasis. Antimicrob Agents Chemother. 2021;65(5): e02676-20. DOI:10.1128/AAC.02676-20
  • Yang YH, Buttery J. Antimicrobial resistance: a global one-health problem for all ages. World J Pediatr. 2018;6(6):521–522.
  • Handman E. Cell biology of Leishmania. Adv Parasitol. 1999;44:1–39.
  • Mukhopadhyay R, Dey S, Xu N, et al. Trypanothione overproduction and resistance to antimonials and arsenicals in Leishmania. Proc Natl Acad Sci U S A. 1996;93(19):10383–10387. DOI:10.1073/pnas.93.19.10383
  • García-Hernández R, Manzano JI, Castanys S, et al. Leishmania donovani develops resistance to drug combinations. PLoS Negl Trop Dis. 2012;6(12):e1974. DOI:10.1371/journal.pntd.0001974
  • Mukherjee A, Padmanabhan PK, Sahani MH, et al. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol. 2006;145(1):1–10. DOI:10.1016/j.molbiopara.2005.08.016
  • Whatmore RW. Nanotechnology—what is it? Should we be worried? Occup Med. 2006;56(5):295–299.
  • Heath JR. Nanotechnologies for biomedical science and translational medicine. Proc Natl Acad Sci. 2015;112(47):14436–14443.
  • Kumar N, Kumbhat S. Essentials in Nanoscience and Nanotechnology, 1st ed ed. Hoboken (USA): Wiley, 2016:p. 326–360. Chapter 8, Unique properties.
  • Stark WJ, Stoessel PR, Wohlleben, et al. A Industrial applications of nanoparticles. Chem Soc Rev. 2014;46(38).
  • Jamshaid H, Ud DF, Khan GM. Nanotechnology-based solutions for anti-leishmanial impediments: a detailed insight. J Nanobiotechnology. 2021;19(1):1–51.
  • Mitchell MJ, Billingsley MM, Haley, et al. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov. 2021;20(2):101–124. DOI:10.1038/s41573-020-0090-8
  • Salata OV. Applications of nanoparticles in biology and medicine. J Nanobiotechnology. 2004;6:1–6.
  • Thomas TC, Acuña-Narvaez R. The convergence of biotechnology and nanotechnology: why here, why now? J Commer Biotechnol. 2006;12(2):105–110.
  • Kirtane AR, Verma M, Karandikar P, et al. Nanotechnology approaches for global infectious diseases. Nat Nanotechnol. 2021;16(4):369–384. DOI:10.1038/s41565-021-00866-8
  • Joshi G, Quadir SS, Yadav KS. Road map to the treatment of neglected tropical diseases: nanocarriers interventions. J Control Release. 2021;339:51–74.
  • Pandian SRK, Panneerselvam T, Pavadai P, et al. Nano Based Approach for the Treatment of Neglected Tropical Diseases. Front Nanotechnol. 2021;3(3):1–21. DOI:10.3389/fnano.2021.665274
  • Zhang B, Chen J, Cao Y, et al. Ligand Design in Ligand-Protected Gold Nanoclusters. Small. 2021 Jul;17(27):e2004381.
  • Benelli G. Gold nanoparticles – against parasites and insect vectors. Acta Trop. 2018;178:73–80.
  • Saleem K, Khursheed Z, Hano C, et al. Applications of Nanomaterials in Leishmaniasis: a Focus on Recent Advances and Challenges. Nanomaterials. 2019;9(12):1749. DOI:10.3390/nano9121749
  • Smith L, Serrano DR, Mauger M, et al. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis. Mol Pharm. 2018;15(7):2570–2583. DOI:10.1021/acs.molpharmaceut.8b00097
  • El-Khadragy M, Alolayan EM, Metwally DM, et al. Clinical Efficacy Associated with Enhanced Antioxidant Enzyme Activities of Silver Nanoparticles Biosynthesized Using Moringa oleifera Leaf Extract, Against Cutaneous Leishmaniasis in a Murine Model of Leishmania major. Int J Environ Res Public Health. 2018;15(5):1037. DOI:10.3390/ijerph15051037
  • Ahmad A, Wei Y, Syed F, et al. Isatis tinctoria mediated synthesis of amphotericin B-bound silver nanoparticles with enhanced photoinduced antileishmanial activity: a novel green approach. J Photochem Photobiol B. 2016;161:17–24.
  • Ahmad A, Wei Y, Ullah S, et al. Synthesis of phytochemicals-stabilized gold nanoparticles and their biological activities against bacteria and Leishmania. Microb Pathog. 2017;110:304–312.
  • Ahmad A, Ullah S, Syed F, et al. Biogenic metal nanoparticles as a potential class of antileishmanial agents: mechanisms and molecular targets. Nanomedicine (Lond). 2020;15(8):809–828. DOI:10.2217/nnm-2019-0413
  • Albalawi AE, Alanazi AD, Sharifi I, et al. A Systematic Review of Curcumin and its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol. 2021 Sep;66(3):797–811.
  • Tiwari B, Pahuja R, Kumar P, et al. Nanotized Curcumin and Miltefosine, a Potential Combination for Treatment of Experimental Visceral Leishmaniasis. Antimicrob Agents Chemother. 2017;61(3): 23 23. DOI:10.1128/AAC.01169-16
  • Fattahi Bafghi A, Haghirosadat BF, Yazdian F, et al. A novel delivery of curcumin by the efficient nanoliposomal approach against Leishmania major. Prep Biochem Biotechnol. 2021;51(10):990–997. DOI:10.1080/10826068.2021.1885045
  • Tang H, Ye H, Zhang H, et al. Aggregation of nanoparticles regulated by mechanical properties of the nanoparticle-membrane system. Nanotechnology. 2018;29(40):405102. DOI:10.1088/1361-6528/aad443
  • Laradji M, Kumar PBS, Spangler EJ. Adhesion and Aggregation of Spherical Nanoparticles on Lipid Membranes. Chem Phys Lipids. 2020;233:104989.
  • Lavagna E, Barnoud J, Rossi G, et al. Size-dependent aggregation of hydrophobic nanoparticles in lipid membranes. Nanoscale. 2020;12(17):9452–9461. DOI:10.1039/D0NR00868K
  • Singh A, Yadagiri G, Negi M, et al. Carboxymethyl chitosan modified lipid nanoformulations as a highly efficacious and biocompatible oral anti-leishmanial drug carrier system. Int j biol macromol. 2022;04:373–385.
  • Mahmoudi M. The need for improved methodology in protein corona analysis. Nat Commun. 2022;13(1):1–4.
  • Tekie FSM, Hajiramezanali M, Geramifar P, et al. Controlling evolution of protein corona: a prosperous approach to improve chitosan-based nanoparticle biodistribution and half-life. Sci Rep. 2020;10(1):1–14. DOI:10.1038/s41598-020-66572-y
  • Sacchetti C, Motamedchaboki K, Magrini A, et al. Surface polyethylene glycol conformation influences the protein corona of polyethylene glycol-modified single-walled carbon nanotubes: potential implications on biological performance. ACS Nano. 2013;7(3):1974–1989. DOI:10.1021/nn400409h
  • Sanchez-Moreno P, Buzon P, Boulaiz H, et al. Balancing the effect of corona on therapeutic efficacy and macrophage uptake of lipid nanocapsules. Biomaterials. 2015;61:266–278.
  • Peng M, Li H, Luo Z, et al. Dextran-coated superparamagnetic nanoparticles as potential cancer drug carriers in vivo. Nanoscale. 2015;7(25):11155–11162. DOI:10.1039/C5NR01382H
  • Natte K, Friedrich JF, Wohlrab S, et al. Impact of polymer shell on the formation and time evolution of nanoparticle–protein corona. Colloids Surf B Biointerfaces. 2013;104:213–220.
  • Mohammad-Beigi H, Hayashi Y, Zeuthen CM, et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nat Commun. 2020;11(1):1–16. DOI:10.1038/s41467-020-18237-7
  • Domenico B, Donato C, Massimo F, et al., Inventors; Universita Degli Studi Magna Graecia di Catanzaro, assignee. Nanoparticulate systems for vehiculating drugs for the treatment of leishmania infection-related pathologies. PCT patent WO2015/177820. 2015.
  • Sanyog J, Kaushik T, inventors; National Institute Of Pharmaceutical Education & Research, assignee. Novel lipid drug conjugates for improved oral delivery of amphotericin b and nanoformulations thereof. India patent IN2015DE01450. 2016.
  • Neena G, Sonali G, Kala SAK, et al., inventors; Council of Scientific & Industrial Research, Assignee. A novel antileishmanial formulation. India patent IN2015DE00125. 2016.
  • Neena G, Sonali G, Kala SAK, et al., inventors; Council of Scientific & Industrial Research, assignee. A novel antileishmanial formulation. PCT patent WO2016113763. 2016.
  • Kawthar B, Christian B, Philippe L, et al., inventors; Centre National De La Recherche Scientifique, Universite Paris Saclay, assignees. Antiparasitic and/or antifungal composition comprising hydrophobized chitosan. United States patent US10172947. 2019.
  • Kawthar B, Christian B, Philippe L, et al., inventors; Centre National De La Recherche Scientifique, Universite Paris Saclay, assignees. Antiparasitic and/or antifungal composition comprising hydrophobized chitosan. United States patent US20160243243. 2016.
  • Faraco AAG, Coelho EAF, Franca JR, et al., inventors; Universidade Federal De Minas Gerais, assignee. Uso de nanopartículas de quitosana e condroitina para o tratamento de leishmaniose. Brazil patent BR102013017881. 2020 Mar 4.
  • Moreira ACOM, da Costa FN, Moreira RA, inventors; Fundação Edson Queiroz, assignee. Processo de obtenção e uso de nanopartícula a base de hemicelulose contendo óleos essenciais com atividade antiparasitária em doenças negligenciadas. Brazil patent BR102014031328. 2021.
  • Bharat PV, Anilbhai PP, inventors. Lipidic nanoparticles based composition and method of formulation and use thereof. India patent IN279598. 2017.
  • Satoskar AR, Fuchs JF, Kinghorn AD, et al., inventors; Ohio State Innovation Foundation, assignee. Antileishmanial compositions and methods of use. United States patent US10174072. 2019.
  • Satoskar AR, Fuchs JF, Kinghorn AD, et al., inventors; Ohio State Innovation Foundation, assignee. Antileishmanial compositions and methods of use. United States patent US20170305959. 2017.
  • Madhusudan B, Ranjan MA, Susmita M, et al., inventors; All India Institute of Medical Sciences, assignee. Novel nanocarrier for efficient drug delivery. India patent IN201611009768. 2018.
  • Soumyajit M, Akash P, Prit P, inventors; University of Mississippi, assignee. Amphotericin Loaded Pegylated Lipid Nanoparticles and Methods of Use. United States patent US20210330598. 2021.
  • Chandradhish G, Peter S, inventors; Max Planck Institute, assignee. Amphotericin B conjugated stabilized gold nanoparticles and uses thereof. PCT patent WO2021/116475. 2021.
  • Chandradhish G, Peter S, inventors; Max Planck Institute, assignee. Amphotericin B conjugated stabilized gold nanoparticles and uses thereof. Europe Patent Office EP3834848. 2021.
  • WIPO [Internet]. Geneva, Switzerland: world Intellectual Property; c1967-2022. Patenting Nanotechnology: exploring the Challenges; 2011 Apr [cited 2022 Dec 13]; [about 7 screens]. Available from: https://www.wipo.int/wipo_magazine/en/2011/02/article_0009.html
  • Peters P Mind the gap: spanning the divide between patents and journal articles [Internet]. 2019 Feb 1 [cited 2022 Dec 13]. Available from: https://www.cas.org/resources/blog/mind-gap-spanning-divide-between-patents-and-journal-articles

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.