392
Views
0
CrossRef citations to date
0
Altmetric
Review

A patent review of NLRP3 inhibitors to treat autoimmune diseases

, , & ORCID Icon
Pages 455-470 | Received 03 Mar 2023, Accepted 14 Jul 2023, Published online: 26 Jul 2023

References

  • Neill DR, Wong SH, Bellosi A, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464(7293):1367–1370. doi: 10.1038/nature08900
  • Schroder K, Tschopp J. The inflammasomes. Cell. 2010;140(6):821–832. doi: 10.1016/j.cell.2010.01.040
  • Fullard N, O’Reilly S. Role of innate immune system in systemic sclerosis. Semin Immunopathol. 2015;37:511–517. doi: 10.1007/s00281-015-0503-7
  • Alexandre YO, Cocita CMD, Ghilas S, et al. Deciphering the role of DC subsets in MCMV infection to better understand immune protection against viral infections. Front Microbiol. 2014;5:378. doi: 10.3389/fmicb.2014.00378
  • Bourgeois C, Kuchler K. Fungal pathogens-a sweet and sour treat for toll-like receptors. Front Cell Infect Microbiol. 2012;2:142. doi: 10.3389/fcimb.2012.00142
  • Dzopalic T, Rajkovic I, Dragicevic A, et al. The response of human dendritic cells to co-ligation of pattern-recognition receptors. Immunol Res. 2012;52(1–2):20–33. doi: 10.1007/s12026-012-8279-5
  • Martinon F, Burns K, Tschopp J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol Cell. 2002;10(2):417–426. doi: 10.1016/S1097-2765(02)00599-3
  • Gentile LF, Cuenca AL, Cuenca AG, et al. Improved emergency myelopoiesis and survival in neonatal sepsis by caspase-1/11 ablation. Immunology. 2015;145(2):300–311. doi: 10.1111/imm.12450
  • Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130–142. doi: 10.1111/imr.12287
  • Sanders MG, Parsons MJ, Howard AGA, et al. Single-cell imaging of inflammatory caspase dimerization reveals differential recruitment to inflammasomes. Cell Death Dis. 2015;6(7):e1813. doi: 10.1038/cddis.2015.186
  • Ozaki E, Campbell M, Doyle SL. Targeting the NLRP3 inflammasome in chronic inflammatory diseases: current perspectives. J Inflamm Res. 2015;8:15–27. doi: 10.2147/JIR.S51250
  • Inoue M, Shinohara ML. The role of interferon-β in the treatment of multiple sclerosis and experimental autoimmune encephalomyelitis - in the perspective of inflammasomes. Immunology. 2013;139(1):11–18. doi: 10.1111/imm.12081
  • Eigenbrod T, Dalpke AH. Bacterial RNA: an underestimated stimulus for innate immune responses. J Immunol. 2015;195(2):411–418. doi: 10.4049/jimmunol.1500530
  • Ito M, Shichita T, Okada M, et al. Bruton’s tyrosine kinase is essential for NLRP3 inflammasome activation and contributes to ischaemic brain injury. Nat Commun. 2015;6(1):7360. doi: 10.1038/ncomms8360
  • Inoue M, Shinohara ML. NLRP3 inflammasome and MS/EAE. Autoimmune Dis. 2013;2013:859145. doi: 10.1155/2013/859145
  • Bauernfeind FG, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183:787–791. doi: 10.4049/jimmunol.0901363
  • Franchi L, Eigenbrod T, Núñez G. Cutting edge: TNF-alpha mediates sensitization to ATP and silica via the NLRP3 inflammasome in the absence of microbial stimulation. J Immunol. 2009;183:792–796. doi: 10.4049/jimmunol.0900173
  • Tannahill GM, Curtis AM, Adamik J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature. 2013;496(7444):238–242. doi: 10.1038/nature11986
  • Zangiabadi S, Abdul-Sater AA. Regulation of the NLRP3 Inflammasome by Posttranslational Modifications. J Immunol. 2022;208(2):286–292. doi: 10.4049/jimmunol.2100734
  • Perregaux D, Gabel CA. Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem. 1994;269(21):15195–15203. doi: 10.1016/S0021-9258(17)36591-2
  • Surprenant A, Rassendren F, Kawashima E, et al. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science. 1996;272(5262):735–738. doi: 10.1126/science.272.5262.735
  • Muñoz-Planillo R, Kuffa P, Martínez-Colón G, et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 2013;38(6):1142–1153. doi: 10.1016/j.immuni.2013.05.016
  • Murakami T, Ockinger J, Yu J, et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci. 2012;109(28):11282–11287. doi: 10.1073/pnas.1117765109
  • Domingo-Fernández R, Coll RC, Kearney J, et al. The intracellular chloride channel proteins CLIC1 and CLIC4 induce IL-1β transcription and activate the NLRP3 inflammasome. J Biol Chem. 2017;292(29):12077–12087. doi: 10.1074/jbc.M117.797126
  • Tang T, Lang X, Xu C, et al. Clics-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 2017;8(1):202. doi: 10.1038/s41467-017-00227-x
  • Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 2008;9(8):847–856. doi: 10.1038/ni.1631
  • Zhou R, Yazdi AS, Menu P, et al. A role for mitochondria in NLRP3 inflammasome activation. Nature. 2011;469(7329):221–225. doi: 10.1038/nature09663
  • Sanman LE, Qian Y, Eisele NA, et al. Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. Elife. 2016;5:e13663. doi: 10.7554/eLife.13663
  • Wen H, Gris D, Lei Y, et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol. 2011;12:408–415. doi: 10.1038/ni.2022
  • Chen J, Chen ZJ. Ptdins4p on dispersed trans-golgi network mediates NLRP3 inflammasome activation. Nature. 2018;564(7734):71–76. doi: 10.1038/s41586-018-0761-3
  • Cai X, Chen J, Xu H, et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasome activation. Cell. 2014;156(6):1207–1222. doi: 10.1016/j.cell.2014.01.063
  • Lu A, Magupalli VG, Ruan J, et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 2014;156(6):1193–1206. doi: 10.1016/j.cell.2014.02.008
  • Schmidt FI, Lu A, Chen JW, et al. A single domain antibody fragment that recognizes the adaptor ASC defines the role of ASC domains in inflammasome assembly. J Exp Med. 2016;213(5):771–790. doi: 10.1084/jem.20151790
  • Boucher D, Monteleone M, Coll RC, et al. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 2018;215(3):827–840. doi: 10.1084/jem.20172222
  • Swanson KV, Deng M, Ting JP. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol. 2019;19:477–489. doi: 10.1038/s41577-019-0165-0
  • Shi J, Zhao Y, Wang Y, et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 2014;514(7521):187–192. doi: 10.1038/nature13683
  • Ding J, Wang K, Liu W, et al. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 2016;535(7610):111–116. doi: 10.1038/nature18590
  • Liu X, Zhang Z, Ruan J, et al. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 2016;535(7610):153–158. doi: 10.1038/nature18629
  • Yang D, He Y, Muñoz-Planillo R, et al. Caspase-11 requires the Pannexin-1 channel and the purinergic P2X7 pore to mediate pyroptosis and endotoxic shock. Immunity. 2015;43(5):923–932. doi: 10.1016/j.immuni.2015.10.009
  • Gaidt MM, Ebert TS, Chauhan D, et al. Human monocytes engage an alternative inflammasome pathway. Immunity. 2016;44(4):833–846. doi: 10.1016/j.immuni.2016.01.012
  • Shalhoub J, Falck-Hansen MA, Davies AH, et al. Innate immunity and monocyte-macrophage activation in atherosclerosis. J Inflamm (Lond). 2011;8(1):9. doi: 10.1186/1476-9255-8-9
  • Mccall SH, Sahraei M, Young AB, et al. Osteoblasts express nlrp3, a nucleotide-binding domain and leucine-rich repeat region containing receptor implicated in bacterially induced cell death. J Bone Miner Res. 2008;23:30–40. doi: 10.1359/jbmr.071002
  • Kummer JA, Broekhuizen R, Everett H, et al. Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem. 2007;55(5):443–452. doi: 10.1369/jhc.6A7101.2006
  • Artlett CM, Sassi-Gaha S, Rieger JL, et al. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum. 2011;63(11):3563–3574. doi: 10.1002/art.30568
  • Lalor SJ, Dungan LS, Sutton CE, et al. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity. J Immunol. 2011;186:5738–5748. doi: 10.4049/jimmunol.1003597
  • Knochelmann HM, Dwyer CJ, Bailey SR, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458–469. doi: 10.1038/s41423-018-0004-4
  • Artlett CM, Thacker JD. Molecular activation of the NLRP3 inflammasome in fibrosis: common threads linking divergent fibrogenic diseases. Antioxid Redox Signal. 2015;22:1162–1175. doi: 10.1089/ars.2014.6148
  • La Cava A. Tregs are regulated by cytokines: implications for autoimmunity. Autoimmun Rev. 2008;8(1):83–87. doi: 10.1016/j.autrev.2008.08.002
  • Ben-Sasson SZ, Hu-Li J, Quiel J, et al. IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A. 2009;106(17):7119–7124. doi: 10.1073/pnas.0902745106
  • Chung Y, Chang SH, Martinez GJ, et al. Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity. 2009;30:576–587. doi: 10.1016/j.immuni.2009.02.007
  • Kahlenberg JM, Thacker SG, Berthier CC, et al. Inflammasome activation of IL-18 results in endothelial progenitor cell dysfunction in systemic lupus erythematosus. J Immunol. 2011;187(11):6143–6156. doi: 10.4049/jimmunol.1101284
  • Hoffman HM, Mueller JL, Broide DH, et al. Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome. Nat Genet. 2001;29:301–305. doi: 10.1038/ng756
  • Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–550. doi: 10.1146/annurev.immunol.021908.132612
  • Okamura H, Nagata K, Komatsu T, et al. A novel costimulatory factor for gamma interferon induction found in the livers of mice causes endotoxic shock. Infect Immun. 1995;63(10):3966–3972. doi: 10.1128/iai.63.10.3966-3972.1995
  • Nakanishi K, Yoshimoto T, Tsutsui H, et al. Interleukin-18 is a unique cytokine that stimulates both Th1 and Th2 responses depending on its cytokine milieu. Cytokine Growth Factor Rev. 2001;12(1):53–72. doi: 10.1016/s1359-6101(00)00015-0
  • Oliveira CB, Lima CAD, Vajgel G, et al. The role of NLRP3 inflammasome in lupus nephritis. Int J Mol Sci. 2021;22(22):12476. doi: 10.3390/ijms222212476
  • Shen H, Yang Y, Meng X, et al. NLRP3: A promising therapeutic target for autoimmune diseases. Autoimmun Rev. 2018;17(7):694–702. doi: 10.1016/j.autrev.2018.01.020
  • Da Cruz HLA, Cavalcanti CAJ, de Azêvedo Silva J, et al. Differential expression of the inflammasome complex genes in systemic lupus erythematosus. Immunogenetics. 2020;72:217–224. doi: 10.1007/s00251-020-01158-6
  • Tan W, Gu Z, Leng J, et al. Let-7f-5p ameliorates inflammation by targeting NLRP3 in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Biomed Pharmacother. 2019;118:109313. doi: 10.1016/j.biopha.2019.109313
  • Yang CA, Huang ST, Chiang BL. Sex-dependent differential activation of NLRP3 and AIM2 inflammasomes in SLE macrophages. Rheumatology (Oxford). 2015;54(2):324–331. doi: 10.1093/rheumatology/keu318
  • Honarpisheh M, Desai J, Marschner JA, et al. Regulated necrosis-related molecule mRNA expression in humans and mice and in murine acute tissue injury and systemic autoimmunity leading to progressive organ damage, and progressive fibrosis. Biosci Rep. 2016;36(6):e00425. doi: 10.1042/BSR20160336
  • Zhao J, Zhang H, Huang Y, et al. Bay11-7082 attenuates murine lupus nephritis via inhibiting NLRP3 inflammasome and NF-κB activation. Int Immunopharmacol. 2013;17(1):116–122. doi: 10.1016/j.intimp.2013.05.027
  • Kahlenberg JM, Yalavarthi S, Zhao W, et al. An essential role of caspase 1 in the induction of murine lupus and its associated vascular damage. Arthritis & Rheumat. 2014;66(1):152–162. doi: 10.1002/art.38225
  • Yang Q, Yu C, Yang Z, et al. Deregulated NLRP3 and NLRP1 inflammasomes and their correlations with disease activity in systemic lupus erythematosus. J Rheumatol. 2014;41(3):444–452. doi: 10.3899/jrheum.130310
  • Ma ZZ, Sun HS, Lv JC, et al. Expression and clinical significance of the NEK7-NLRP3 inflammasome signaling pathway in patients with systemic lupus erythematosus. J Inflamm (Lond). 2018;15(1):16. doi: 10.1186/s12950-018-0192-9
  • Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. doi: 10.1002/path.2277
  • Martínez-Godínez MA, Cruz-Domínguez MP, Jara LJ, et al. Expression of NLRP3 inflammasome, cytokines and vascular mediators in the skin of systemic sclerosis patients. Isr Med Assoc J. 2015;17:5–10.
  • Birnhuber A, Crnkovic S, Biasin V, et al. IL-1 receptor blockade skews inflammation towards Th2 in a mouse model of systemic sclerosis. Eur Respir J. 2019;54(3):1900154. doi: 10.1183/13993003.00154-2019
  • Worrell JC, O’Reilly S. Bi-directional communication: conversations between fibroblasts and immune cells in systemic sclerosis. J Autoimmun. 2020;113:102526. doi: 10.1016/j.jaut.2020.102526
  • Lin C, Jiang Z, Cao L, et al. Role of NLRP3 inflammasome in systemic sclerosis. Arthritis Res Ther. 2022;24(1):196. doi: 10.1186/s13075-022-02889-5
  • Zhen Y, Zhang H. NLRP3 inflammasome and inflammatory bowel disease. Front Immunol. 2019;10:276. doi: 10.3389/fimmu.2019.00276
  • Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol. 2007;178:4641–4649. doi: 10.4049/jimmunol.178.7.4641
  • Ishiguro Y. Mucosal proinflammatory cytokine production correlates with endoscopic activity of ulcerative colitis. J Gastroenterol. 1999;34(1):66–74. doi: 10.1007/s005350050218
  • Monteleone G, Trapasso F, Parrello T, et al. Bioactive IL-18 expression is up-regulated in Crohn’s disease. J Immunol. 1999;163(1):143–147. doi: 10.4049/jimmunol.163.1.143
  • Sartor RB. Cytokines in intestinal inflammation: pathophysiological and clinical considerations. Gastroenterology. 1994;106(2):533–539. doi: 10.1016/0016-5085(94)90614-9
  • Liu L, Li X. NLRP3 inflammasome in inflammatory bowel disease: friend or foe? Dig Dis Sci. 2017;62(9):2211–2214. doi: 10.1007/s10620-017-4650-7
  • Villani A, Lemire M, Fortin G, et al. Common variants in the NLRP3 region contribute to crohn’s disease susceptibility. Nat Genet. 2009;41(1):71–76. doi: 10.1038/ng.285
  • Bauer C, Duewell P, Mayer C, et al. Colitis induced in mice with dextran sulfate sodium (dss) is mediated by the NLRP3 inflammasome. Gut. 2010;59(9):1192–1199. doi: 10.1136/gut.2009.197822
  • Makkar R, Behl T, Bungau S, et al. Understanding the role of inflammasomes in rheumatoid arthritis. Inflammation. 2020;43(6):2033–2047. doi: 10.1007/s10753-020-01301-1
  • Guo C, Fu R, Wang S, et al. NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol. 2018;194(2):231–243. doi: 10.1111/cei.13167
  • Handel ML, McMorrow LB, Gravallese EM. Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. Arthritis Rheum. 1995;38:1762–1770. doi: 10.1002/art.1780381209
  • Georganas C, Liu H, Perlman H, et al. Regulation of IL-6 and IL-8 expression in rheumatoid arthritis synovial fibroblasts: the dominant role for NF-kappa B but not C/EBP beta or c-Jun. J Immunol. 2000;165:7199–7206. doi: 10.4049/jimmunol.165.12.7199
  • Mathews RJ, Robinson JI, Battellino M, et al. Evidence of NLRP3-inflammasome activation in rheumatoid arthritis (RA); genetic variants within the NLRP3-inflammasome complex in relation to susceptibility to RA and response to anti-TNF treatment. Ann Rheum Dis. 2014;73(6):1202–1210. doi: 10.1136/annrheumdis-2013-203276
  • Choulaki C, Papadaki G, Repa A, et al. Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther. 2015;17(1):257. doi: 10.1186/s13075-015-0775-2
  • Vande Walle L, Van Opdenbosch N, Jacques P, et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 2014;512(7512):69–73. doi: 10.1038/nature13322
  • Pfizer Inc. Efficient synthesis of furan sulfonamide compounds useful in the synthesis of new IL-1 inhibitors. US6022984A. 2000.
  • Perregaux DG, Mcniff P, Laliberte R, et al. Identification and characterization of a novel class of interleukin-1 post-translational processing inhibitors. J Pharmacol Exp Ther. 2001;299:187–197.
  • Laliberte RE, Perregaux DG, Hoth LR, et al. Glutathione s-transferase omega 1-1 is a target of cytokine release inhibitory drugs and may be responsible for their effect on interleukin-1beta posttranslational processing. J Biol Chem. 2003;278:16567–16578. doi: 10.1074/jbc.M211596200
  • Coll RC, Robertson AAB, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015;21(3):248–255. doi: 10.1038/nm.3806
  • Tapia-Abellán A, Angosto-Bazarra D, Martínez-Banaclocha H, et al. MCC950 closes the active conformation of NLRP3 to an inactive state. Nat Chem Biol. 2019;15(6):560–564. doi: 10.1038/s41589-019-0278-6
  • Coll RC, Hill JR, Day CJ, et al. MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 2019;15(6):556–559. doi: 10.1038/s41589-019-0277-7
  • Hochheiser IV, Pilsl M, Hagelueken G, et al. Structure of the NLRP3 decamer bound to the cytokine release inhibitor CRID3. Nature. 2022;604:184–189. doi: 10.1038/s41586-022-04467-w
  • Galderma Research and Development SNC. NLRP3 inhibitors for the treatment of inflammatory skin disorders. US20190192478A1. 2019.
  • Hou B, Zhang Y, Liang P, et al. Inhibition of the NLRP3-inflammasome prevents cognitive deficits in experimental autoimmune encephalomyelitis mice via the alteration of astrocyte phenotype. Cell Death Dis. 2020;11(5):377. doi: 10.1038/s41419-020-2565-2
  • Ding H, Sun X, Xu H. Pharmacological suppression of NLRP3 inflammasome attenuated the development of autoimmune thyroiditis. Cell Immunol. 2023;384:104659. doi: 10.1016/j.cellimm.2022.104659
  • Zhai Y, Meng X, Ye T, et al. Inhibiting the NLRP3 inflammasome activation with MCC950 ameliorates diabetic encephalopathy in db/db mice. Molecules. 2018;23(3):522. doi: 10.3390/molecules23030522
  • The University Of Queensland. Sulfonylureas and related compounds and use of same. WO2016131098A1. 2016.
  • Inflazome Ltd. Treatment or prevention of psychiatric brain disorders using the NLRP3 inhibitor n-((1,2,3,5,6,7-hexahydro-s-indacen-4-yl)carbamoyl)-1 -isopropyl-1 h-pyrazole-3-sulfonamide WO2021089781A1. 2021.
  • Available from: https://www.alzforum.org/therapeutics/inzomelid.
  • Available from: https://clinicaltrials.gov/ct2/show/NCT04015076.
  • Available from: https://www.clinicaltrialsregister.eu/ctr-search/trial/2020-000489-40/GB#P.
  • Available from: https://cen.acs.org/business/mergers-&-acquisitions/Roche-buys-Inflazome-445-million/98/i37.
  • Inflazome Ltd. Novel sulfonamide carboxamide compounds.WO2019008025A1. 2019.
  • Available from: https://www.isrctn.com/ISRCTN16847938
  • Available from: https://www.isrctn.com/ISRCTN85338453.
  • IFM Therapeutics, Inc. Compounds and compositions for treating conditions associated with nlrp activity. WO 2017/184623 A1. 2017.
  • IFM Therapeutics, Inc. Compounds and compositions for treating conditions associated with nlrp activity. WO 2017/184624 A1. 2017.
  • The University Of Queensland. Sulfonylureas and related compounds and use of same. WO 2017/140778 A1. 2017.
  • The University Of Queensland. Novel compounds and uses. WO 2018/215818 A1. 2018.
  • Available from: https://www.businesswire.com/news/home/20181127005232/en/Genentech-Acquires-Jecure-Therapeutics.
  • Jecure Therapeutics Inc. Chemical compounds as inhibitors of interleukin-1 activity. WO2018136890A1. 2018.
  • Nodthera Ltd. Sulfonylurea derivatives and uses thereof. WO2020249667A1. 2020.
  • Nodthera Ltd. Sulphamoyl urea derivatives containing alkyl-oxacycloalkyl moiety and uses thereof. WO2022051582A1. 2022.
  • Inflazome Ltd. NLRP3 inhibitors. WO2020104657A1. 2020.
  • Inflazome Ltd. Novel sulfoneurea compounds. WO2020035466A1. 2020.
  • Novartis inflammasome research Inc. Compounds and compositions for treating conditions associated with nlrp activity. WO2020086728A1. 2020.
  • Available from: https://news.bms.com/news/details/2017/Bristol-Myers-Squibb-Completes-Previously-Announced-Acquisition-of-IFM-Therapeutics/default.aspx.
  • IFM Therapeutics, Inc. Compounds and compositions for treating conditions associated with nlrp activity. WO 2017/184604 A1. 2017.
  • Inflazome Ltd. Sulfonamide derivates as NLRP3 inhibitors. WO2019166633A1. 2019.
  • Inflazome Ltd. Novel compounds. WO2019166632A1. 2019.
  • Novartis inflammasome research Inc. Compounds and compositions for treating conditions associated with NLRP3 activity. WO2020102576A1. 2020.
  • IFM Therapeutics, Inc. Compounds and compositions for treating conditions associated with NLRP activity. WO2019023147A1. 2019.
  • Inflazome Ltd. Novel Compounds. WO2019068772A1. 2019.
  • Available from: https://zyduslife.com/zyduslife.
  • Cadila Healthcare Ltd. Novel substituted sulfonylurea derivatives. WO2019043610A1. 2019.
  • Inflazome ltd. Compounds. WO2021165245A1. 2021.
  • Inflazome Ltd. Macrocyclic sulfonylurea derivatives useful as NLRP3 inhibitors. WO2021032591A1. 2021.
  • Inflazome Ltd. Macrocyclic sulfonylamide derivatives useful as NLRP3 inhibitors. WO2021032588A1. 2021.
  • Nodthera Ltd. Amino heterocyclic compounds and uses thereof. WO2020157069A1. 2020.
  • Inflazome Ltd. NLRP3 Inhibitors. WO2021043966A1. 2021.
  • AC Immune SA. Dihydrooxazole and thiourea derivatives modulating the NLRP3 inflammasome pathway. WO2021255279A1. 2021.
  • Janssen Pharmaceuticals NV. Compounds. WO2021239885A1. 2021.
  • Janssen Pharmaceuticals NV. Phthalazinone derivatives as NLRP3 inflammasome inhibitors. WO2022229315A1. 2022.
  • Janssen Pharmaceuticals NV. 4-alkoxy-6-oxo-pyridazine derivatives modulating NLRP3. WO2022184842A1. 2022.
  • Janssen Pharmaceuticals NV. New compounds. WO2022063876A1. 2022.
  • Janssen Pharmaceuticals NV. New compounds. WO2022063896A1. 2022.
  • Novartis AG. NLRP3 inflammasome inhibitors. WO2020021447A1. 2020.
  • IFM Therapeutics, Inc. NLRP3 modulators. WO 2017/184746 A1. 2017.
  • IFM Therapeutics, Inc. NLRP3 modulators. WO 2017/184735 A1. 2017.
  • Innate Tumor Immunity, Inc. Substituted imidazo-quinolines as NLRP3 modulators. WO 2018/152396 A1 . 2018.
  • Novartis AG NLRP3 inflammasome inhibitors. US20200361898A1. 2020.
  • Nodthera Ltd. Carbamate derivatives and uses thereof. WO2020152361A1. 2020.
  • Ventus Therapeutics U.S., Inc. Pyridazine compounds for inhibiting NLRP3. WO2022216971A1. 2022.
  • University of Turin. NLRP3 inflammasome-inhibiting compounds and the use thereof. WO2022234447A1. 2022.
  • Icahn School of Medicine at Mount Sinai. Benzoxazolone inhibitors of inflammasomes. WO2022187804A1. 2022.
  • Guo C, Fulp JW, Jiang Y, et al. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-n-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem Neurosci. 2017;8(10):2194–2201. doi: 10.1021/acschemneuro.7b00124
  • Virginia Commonwealth University. Cryopyrin inhibitors for preventing and treating inflammation. US10343985B2. 2019.
  • The University Of Manchester. Cyclic diarylboron derivatives as NLRP3 inflammasome inhibitors. WO 2017/017469 A1. 2017.
  • Available from: 10.1021/cen-09807-cover.
  • Mangan MSJ, Olhava EJ, Roush WR, et al. Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 2018;17(8):588–606. doi: 10.1038/nrd.2018.97

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.