291
Views
0
CrossRef citations to date
0
Altmetric
Review

Proteolysis-Targeting Chimeras (PROTACs) targeting the BCR-ABL for the treatment of chronic myeloid leukemia – a patent review

ORCID Icon & ORCID Icon
Pages 397-420 | Received 07 Mar 2023, Accepted 19 Jul 2023, Published online: 26 Jul 2023

References

  • Paik Y-K, Jeong S-K, Omenn GS, et al. The chromosome-centric human proteome project for cataloging proteins encoded in the genome. Nature Biotechnol. 2012;30(3):221–223. doi: 10.1038/nbt.2152
  • Human Proteome Map. [cited 2023 Feb 7]. Available from: http://www.humanproteomemap.org/
  • Dikic I. Proteasomal and autophagic degradation systems. Annu Revi Biochem. 2017;86(1):193–224. doi: 10.1146/annurev-biochem-061516-044908. .
  • Cao C, He M, Wang L, et al. Chemistries of bifunctional PROTAC degraders. Chem Soc Rev. 2022;51(16):7066–7114. doi: 10.1039/D2CS00220E
  • Dale B, Cheng M, Park K-S, et al. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21(10):638–654. doi: 10.1038/s41568-021-00365-x. .
  • Blood Cancers - Hematology.org. [accessed 2023 Mar 2]. https://www.hematology.org/education/patients/blood-cancers
  • Ludwig R, Virchow K, Bennett JH, et al. Rudolf Virchow (1821-1902). Ca A Cancer J Clinicians. 1975;25(2):91–92. doi: 10.3322/canjclin.25.2.91
  • Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022. Ca A Cancer J Clinicians. 2022;72(1):7–33. doi: 10.3322/caac.21708
  • Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023. Ca A Cancer J Clinicians. 2023;73(1):17–48. doi: 10.3322/caac.21763
  • Roskoski R. Targeting BCR-Abl in the treatment of Philadelphia-chromosome positive chronic myelogenous leukemia. Pharmacol Res. 2022;178:106156. doi: 10.1016/j.phrs.2022.106156
  • Cortes J, Pavlovsky C, Saußele S. Chronic myeloid leukaemia. Lancet. 2021;398(10314):1914–1926. doi: 10.1016/S0140-6736(21)01204-6.
  • Minciacchi VR, Kumar R, Krause DS. Chronic myeloid leukemia: a model disease of the past, present and future. Cells. 2021;10(1):117. doi: 10.3390/cells10010117.
  • Pan Y, Zeng S, Hao R, et al. The progress of small-molecules and degraders against BCR-ABL for the treatment of CML. Eur J Med Chem. 2022;238:114442.
  • Bavaro L, Martelli M, Cavo M, et al. Mechanisms of disease progression and resistance to tyrosine kinase inhibitor therapy in chronic myeloid leukemia: an update. Int J Mol Sci. 2019;20(24):6141. doi: 10.3390/ijms20246141
  • Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and giemsa staining. Nature. 1973;243(5405):290–293. doi: 10.1038/243290a0.
  • Peiris MN, Li F, Donoghue DJ. BCR: a promiscuous fusion partner in hematopoietic disorders. Oncotarget. 2019;10(28):2738–2754. doi: 10.18632/oncotarget.26837.
  • Bartram CR, de Klein A, Hagemeijer A, et al. Translocation of c-abl oncogene correlates with the presence of a Philadelphia chromosome in chronic myelocytic leukaemia. Nature. 1983;306(5940):277–280. doi: 10.1038/306277a0
  • Groffen J, Stephenson J, Heisterkamp N, et al. Philadelphia chromosomal breakpoints are clustered within a limited region, bcr, on chromosome 22. Cell. 1984;36(1):93–99. doi: 10.1016/0092-8674(84)90077-1
  • Vetrie D, Helgason GV, Copland M. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nat Rev Cancer. 2020;20(3):158–173. doi: 10.1038/s41568-019-0230-9.
  • Ben-Neriah Y, Daley GQ, Mes-Masson A-M, et al. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–214. doi: 10.1126/science.3460176
  • Konopka JB, Watanabe SM, Witte ON. An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell. 1984;37(3):1035–1042. doi: 10.1016/0092-8674(84)90438-0.
  • Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by The P210 bcr/abl gene of the philadelphia chromosome. Science. 1990;247(4944):824–830. doi: 10.1126/science.2406902.
  • Kharbanda S, Pandey P, Jin S, et al. Functional interaction between DNA-PK and c-Abl in response to DNA damage. Nature. 1997;386(6626):732–735. doi: 10.1038/386732a0
  • Ren R. Mechanisms of BCR–ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer. 2005;5(3):172–183. doi: 10.1038/nrc1567
  • Zhao X, Ghaffari S, Lodish H, et al. Structure of the Bcr-Abl oncoprotein oligomerization domain. Nat Struct Biol. 2002;9(2):117–120. doi: 10.1038/nsb747
  • Pendergast AM, Muller AJ, Havlik MH, et al. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Cell. 1991;66(1):161–171. doi: 10.1016/0092-8674(91)90148-R
  • Deininger MWN, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–3356. doi: 10.1182/blood.V96.10.3343.
  • Walker LC, Ganesan TS, Dhut S, et al. Novel chimaeric protein expressed in Philadelphia positive acute lymphoblastic leukaemia. Nature. 1987;329(6142):851–853. doi: 10.1038/329851a0
  • Adnan-Awad S, Kim D, Hohtari H, et al. Characterization of p190-Bcr-Abl chronic myeloid leukemia reveals specific signaling pathways and therapeutic targets. Leukemia. 2001;35(7):1964–1975. doi: 10.1038/s41375-020-01082-4
  • Wetzler M, Talpaz M, Van Etten RA, et al. Subcellular localization of Bcr, Abl, and Bcr-Abl proteins in normal and leukemic cells and correlation of expression with myeloid differentiation. J Clin Investig. 1993;92(4):1925–1939. doi: 10.1172/JCI116786
  • Steelman LS, Abrams SL, Whelan J, et al. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia. 2008;22(4):686–707. doi: 10.1038/leu.2008.26
  • Amarante-Mendes GP, Rana A, Datoguia TS, et al. BCR-ABL1 tyrosine kinase complex signaling transduction: challenges to overcome resistance in chronic myeloid leukemia. Pharmaceutics. 2022;14(1):215. doi: 10.3390/pharmaceutics14010215
  • Hukku S, Baboo HA, Venkataratnam S, et al. Splenic irradiation in chronic myeloid leukemia. Acta Radiol Oncol. 1983;22(1):9–12. doi: 10.3109/02841868309134332
  • Morstyn G, Sullivan J, Fairhead S. Effect of high dose busulphan on leukaemic progenitor cells in chronic myeloid leukaemia. Australian And New Zealand Journal Of Medicine. 1981;11(5):609–614. doi: 10.1111/j.1445-5994.1981.tb03534.x.
  • Kantarjian HM, O’Brien S, Cortes JE, et al. Complete cytogenetic and molecular responses to interferon-α-based therapy for chronic myelogenous leukemia are associated with excellent long-term prognosis. Cancer. 2003;97(4):1033–1041. doi: 10.1002/cncr.11223
  • Yoffe G, Blick M, Kantarjian H. Molecular analysis of interferon-induced suppression of Philadelphia chromosome in patients with chronic myeloid leukemia. Blood. 1987;69(3):961–963. doi: 10.1182/blood.V69.3.961.961.
  • Mcglave P. Successful allogeneic bone-marrow transplantation for patients in the accelerated phase of chronic granulocytic leukaemia. Lancet. 1982;320(8299):625–627. doi: 10.1016/S0140-6736(82)92737-4.
  • Fefer A, Cheever MA, Thomas ED. Disappearance of ph 1 -positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. N Engl J Med. 1979;300(7):333–337. doi: 10.1056/NEJM197902153000702
  • Deininger MWN, Goldman JM, Lydon N, et al. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL–Positive Cells. Blood. 1997;90(9):3691–3698. doi: 10.1182/blood.V90.9.3691
  • An X, Tiwari AK, Sun Y. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: A review. Leuk Res. 2010;34(10):1255–1268. doi: 10.1016/j.leukres.2010.04.016.
  • Desogus A, Schenone S, Brullo C. Bcr-Abl tyrosine kinase inhibitors: a patent review. Expert Opin Ther Patents. 2015;25(4):397–412. doi: 10.1517/13543776.2015.1012155
  • Zimmermann J, Sutter B, Burger HM, inventors; Novartis, assignee. Crystal modification of a N-phenyl-2-pyrimidineamine derivative, processes for its manufacture and its use. Patent WO 99/03854 p. A1; 1999.
  • Gambacorti-Passerini C, Antolini L, Mahon F-X, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. JNCI. 2011;103(7):553–561. doi: 10.1093/jnci/djr060
  • Druker BJ, Guilhot F, O’Brien SG, et al. Five-year follow-up oF patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–2417. doi: 10.1056/NEJMoa062867
  • Milojkovic D, Apperley J. Mechanisms of resistance to imatinib and second-generation tyrosine inhibitors in chronic myeloid leukemia. Clin Cancer Res. 2009;15(24):7519–7527. doi: 10.1158/1078-0432.CCR-09-1068.
  • Das J, Padmanabha R, Chen P, et al., inventors; Bristol-myers squibb company, assignee. cyclic protein tyrosine kinase inhibitors. Patent WO 2004/085388 A2; 2004.
  • Hewes B, Inventor W, assignee. Treatment of imatinib resistant leukemia. Patent WO 2008/150957 A2; 2008.
  • Gallagher N, Yin O, inventors; Novartis AG, assignee. Method of treating proliferative disorders and other pathological conditions mediated by Bcr-Abl, C-Kit, Ddr1, Ddr2 or Pdgf-R Kinase Activity. Patent WO 2011/062927 A1; 2011.
  • Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL Kinase Inhibitor. Science. 2004;305(5682):399–401. doi: 10.1126/science.1099480
  • Murray CK, Rozamus LW, Chaber JJ, et al., inventors; Ariad Pharmaceuticals, Inc., assignee. synthetic methods for preparing 3-(Imidazo[1,2-B]pyridazin-3-Ylethynyl)-4-Methyl-N-{4-[(4-Methylpiperazin-1-Yl)methyl]-3-(Trifluoromethyl)phenyl}benzamide mono hydrochloride, other salt forms of this compound and intermediates thereof. Patent WO 2014/093583 A2; 2014.
  • O’Hare T, Shakespeare WC, Zhu X, et al. AP24534, a Pan-BCR-ABL Inhibitor for chronic myeloid leukemia, potently inhibits the t315i mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–412. doi: 10.1016/j.ccr.2009.09.028
  • Dodd SK, Furet P, Grotzfeld RM, et al., inventors; Novartis AG, assignee. Benzamide derivatives for inhibiting the activity of Abl1, Abl2 and Bcr-Abl1. Patent WO 2013/171639 A1; 2013.
  • Wylie AA, Schoepfer J, Jahnke W, et al. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature. 2017;543(7647):733–737. doi: 10.1038/nature21702
  • Yao T, Xiao H, Wang H, et al. RecenT advances in PROTACs for drug targeted protein research. Int J Mol Sci. 2022;23(18):10328. doi: 10.3390/ijms231810328
  • Kenten JH, Roberts SF, inventors; Proteinix, Inc., assignee. Controlling protein levels in eucaryotic organisms. Patent US6559280B2; 2003.
  • Wang C, Zheng C, Wang H, et al. The state of the art of PROTAC technologies for drug discovery. Eur J Med Chem. 2022;235:114290. doi: 10.1016/j.ejmech.2022.114290
  • Weagel EG, Foulks JM, Siddiqui A, et al. Molecular glues: enhanced protein-protein interactions and cell proteome editing. Med Chem Res. 2022;31(7):1068–1087. doi: 10.1007/s00044-022-02882-2
  • Xiao M, Zhao J, Wang Q, et al. Recent advances of degradation technologies based on PROTAC mechanism. Biomolecules. 2022;12(9):1257. doi: 10.3390/biom12091257
  • Békés M, Langley DR, Crews CM. PROTAC targeted protein degraders: the past is prologue. Nat Rev Drug Discov. 2022;21(3):181–200. doi: 10.1038/s41573-021-00371-6
  • Sakamoto KM, Kim KB, Kumagai A, et al. Protacs: Chimeric molecules that target proteins to the Skp1–Cullin–F box complex for ubiquitination and degradation. Proc Nat Acad Sci. 2001;98(15):8554–8559. doi: 10.1073/pnas.141230798
  • Li K, Crews CM. Protacs: past, present and future. Chem Soc Rev. 2022;51(12):5214–5236. doi: 10.1039/D2CS00193D
  • Cromm PM, Crews CM. The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Central Sci. 2017;3(8):830–838. doi: 10.1021/acscentsci.7b00252
  • Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov. 2006;5(7):596–613. doi: 10.1038/nrd2056
  • Kleiger G, Mayor T. Perilous journey: a tour of the ubiquitin–proteasome system. Trends Cell Biol. 2014;24(6):352–359. doi: 10.1016/j.tcb.2013.12.003
  • Guedeney N, Cornu M, Schwalen F, et al. PROTAC technology: A new drug design for chemical biology with many challenges in drug discovery. Drug Discovery Today. 2023;28(1):103395. doi: 10.1016/j.drudis.2022.103395
  • Crews CM, Buckley D, Ciulli A, et al., inventors; Yale University; GlaxoSmithKline Intelectual Property Development Ltd.; Cambridge Enterprise Limited University of Cambridge, assignee. Compounds and methods for the enhanced degradation of targeted proteins and other polypeptides by an E3 ubiquitin ligase. Patent US10730862B2; 2014.
  • Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chem Soc Rev. 2022;51(19):8216–8257. doi: 10.1039/D2CS00387B
  • D’Amato R, inventor; Childern’s medical center corporation, assignee. methods and composition for inhibition of angiogenesis. Patent US8012996B2; 2011.
  • Muller GW, Stirling DI, Chen RSC, inventors; Celgene Corporation, assignee. Isoindolines, method of use, and pharmaceutical compositions. Patent US6555554B2; 2003
  • Silverman RI, inventor; Concert Pharmaceuticals, Inc., assignee. Deuterated Dasabuvir. Patent WO 2016/105547 A1; 2016.
  • Kazantsev A, Krasavin M. Ligands for cereblon: 2017–2021 patent overview. expert opinion on therapeutic patents. 2022;32(2):171–190. doi: 10.1080/13543776.2022.1999415
  • Umezawa H, Aoyagi T, Takeuchi T, et al., inventors; Microbial chemistry research foundation, assignee. biologically active substance, bestatin, and production thereof. Patent US4029547A; 1977.
  • Mainolfi N, Ji N, Kluge AF, et al., inventors; Kymera Therapeutics, Inc., assignee. IRAK degraders and uses thereof. Patent US10874743B2; 2020.
  • Liu J, Ma J, Liu Y, et al. Protacs: A novel strategy for cancer therapy. Semin Cancer Biol. 2020;67:171–179. doi: 10.1016/j.semcancer.2020.02.006
  • Vicente ATS, Salvador JAR. MDM2-Based Proteolysis-Targeting Chimeras (PROTACs): an innovative drug strategy for cancer treatment. Int J Mol Sci. 2022;23(19):11068. doi: 10.3390/ijms231911068
  • Haley GJ, Kong N, Liu EA, et al., inventors; F, inventors; FHoffMannLa Roche AG, assignee. HoffMannLa Roche AG, assignee. Novel Cis-Imidazolines. Patent WO 2005/123691 A1; 2005.
  • Bartkovitz DJ, Chu X, Ding Q, et al., inventors; HoffmannLa Roche, Inc., assignee. , inventors; HoffmannLa Roche, Inc., assignee. Substituted pyrrolidine-2-carboxamides. Patent US8354444B2; 2013.
  • Rao H, inventor; Board of Regents, The University of Texas System, assignee. Compositions and methods for cancer therapy. Patent WO 2021/007286 A1; 2019.
  • Xi J-Y, Zhang R-Y, Chen K, et al. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorg Chem. 2022;125(4):105848. doi: 10.1016/j.bioorg.2022.105848
  • Hu Z, Crews CM. Recent Developments in PROTAC‐mediated protein degradation: from bench to clinic. Chembiochem. 2022;23(2):1–23. doi: 10.1002/cbic.202100270.
  • He S, Dong G, Cheng J, et al. Strategies for designing proteolysis targeting chimaeras (PROTACs). Med Res Rev. 2022;42(3):1280–1342. doi: 10.1002/med.21877
  • Deshaies RJ, Crews C, Sakamoto KM, et al. Proteolysis targeting chimeric pharmaceutical. US7041298B2; 2002.
  • Li D, Yu D, Li Y, et al. A bibliometric analysis of PROTAC from 2001 to 2021. Eur J Med Chem. 2022;244(9):114838. doi: 10.1016/j.ejmech.2022.114838
  • He M, Cao C, Ni Z, et al. Protacs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Ther. 2022;7(1):181. doi: 10.1038/s41392-022-00999-9
  • He Y, Khan S, Huo Z, et al. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J Hematol Oncol. 2020;13(1):103. doi: 10.1186/s13045-020-00924-z
  • Anwar Z, Ali MS, Galvano A, et al. Protacs: the future of leukemia therapeutics. Front Cell Dev Biol. 2022;10:10. doi: 10.3389/fcell.2022.851087
  • Wolska-Washer A, Smolewski P. Targeting protein degradation pathways in tumors: focusing on their role in hematological malignancies. Cancers. 2022;14(15):3778. doi: 10.3390/cancers14153778.
  • Benowitz AB, Jones KL, Harling JD. The therapeutic potential of PROTACs. Expert Opin Ther Patents. 2021;31(1):1–24. doi: 10.1080/13543776.2021.1840553
  • Crews C, Toure M, Ko E, et al., inventors; Yale University, assignee. Proteolysis targeting chimera compounds and methods of preparing and using same. Patent WO 2017/079267 A1; 2017.
  • Phillips AJ, Nasveschuk CG, Henderson JA, et al., inventors; C4 Therapeutics, Inc., assignee. Heterocyclic degronimers for target protein degradation. Patent WO 2017/197055 A1; 2017.
  • Phillips AJ, Nasveschuk CG, Henderson JA, et al., inventors; C4 Therapeutics, Inc., assignee. Preparation of spirocyclic degronimers for target protein degradation. WO 2017/197036 A1; 2017
  • Phillips Andrew J, Nasveschuk Chris G, Henderson James A, et al. C3-carbon linked glutarimide degronimers for target protein degradation. Patent WO2017197046A1; 2017.
  • Phillips AJ, Nasveschuk CG, Henderson JA, et al., inventors; C4 Therapeutics, Inc., assignee. Preparation of amine-linked C3-glutarimide degronimers for target protein degradation. Patent WO 2017/197051 A1; 2017.
  • Phillips AJ, Nasveschuk CG, Henderson JA, et al., inventors; C4 Therapeutics, Inc., assignee. N/O-Linked degrons and degronimers for protein degradation. Patent WO 2018/237026 A1; 2018
  • Yang X, Jiang B, Yin Q, et al., inventors; ShanghaiTech University, assignee. Protein Degradation Targeting Bcr-Abl Compound And Antitumor Application Thereof. Patent WO 2019/19170150 A1; 2019.
  • Cai J, Li G, Chen Z, et al., inventors; Sichuan KelunBiotech Biopharmaceutical Co., Ltd., assignee. , inventors; Sichuan KelunBiotech Biopharmaceutical Co., Ltd., assignee. Multifunctional compound, preparation method therefor, and application thereof in pharmaceuticals. Patent WO 2019/201123 A1; 2019.
  • Crews CM, Burslem G, inventors; Yale University, assignee. Allosteric Bcr-abl proteolysis targeting chimeric compounds. Patent WO 2020/198055 A1; 2020.
  • You Q, Jiang Z, Wang Y, et al. inventors; China Pharmaceutical University, assignee. Proteolysis targeting chimeric molecule, preparation method, and application. Patent WO 2020/151229 A1; 2020.
  • Phillips AJ, Nasveschuk CG, Henderson JA, et al., inventors; C4 Therapeutics, Inc., assignee. Targeted protein degradation. Patent WO 2020/132561 A1; 2020.
  • Cheng L, Zeng S, Tu L, inventors; Sichuan Haisco Pharmaceutical Co., Ltd., assignee et al. Compound capable of degrading Bcr-Abl or PARP as well as preparation method and pharmaceutical application thereof. Patent CN113292536A; 2021.
  • Wei W, Jin J, Kaniskan HU, inventors; Beth Israel Deaconess Medical Center, Inc.; Icahn School of Medicine at Mount Sinai, assignees et al. Photo induced control of protein destruction. Patent WO 2021/016521 A1; 2021.
  • Kang C, Hung W, Keller TH, et al., inventors; Agency for Science, Technology and Research, assignee. Therapeutic compounds and methods of use thereof.Patent WO 2021/061053 A1; 2021.
  • Xiaoyun L, Ke D, Zhang Z, et al., inventors; Jinan University, assignee. Protein degradation targeting chimera and application thereof. Patent CN113372342A; 2021.
  • Lei M, Peng L, Luo Y, et al., inventors; Medshine Discovery, Inc., assignee. Proteolysis regulator and method for using same. Patent WO 20211/85291 A1; 2021.
  • Winter G, Mayor RC, Kubicek S, inventors ; Research Center for Molecular Medicine of the Austrian Academy of Sciences, assignee. Oxazole and Thioazole-type cullin ring ubiquitin ligase compounds and uses thereof Patent WO 2021/074414 A1; 2021.
  • Liyan C, Shenxin Z, Linglan T, et al., inventors; Hangzhou Medical College, assignee. Compound for inducing BCR-ABL protein degradation through targeted ubiquitination and application thereof. Patent CN114044775A; 2022.
  • Shenxin Z, Wenhai H, Zunyuan W, et al., inventors; Hangzhou Medical College, assignee. Bifunctional molecule for inducing BCR-ABL protein degradation based on VHL ligand as well as preparation method and application of bifunctional molecule. Patent CN115028678A; 2022.
  • Wegrzyniak E, Mcintosh J, Kato D, et al., inventors; Nurix Therapeutics, Inc.; Wegrzyniak E, assignee. Compounds for inhibiting or degrading target proteins, compositions, comprising the same, methods of their making, and methods of their use Patent WO 2022/235698 p. A1; 2022.
  • Nasveschuk CG, Anderson CD, Henderson JA, et al., inventors; C4 Therapeutics, Inc., assignee. Tricyclic heterobifunctional compounds for degradation of targeted proteins. Patent WO 2022/081928 A1; 2022.
  • Dahua C, Beibei Z, Pengfei X, et al., inventors; Yunnan University, assignee. Application of dasabuvir as novel ligand of E3 ligase to construction of PROTAC. Patent CN115089588A; 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.