229
Views
1
CrossRef citations to date
0
Altmetric
Review

A patent review of MAPK inhibitors (2018 – present)

ORCID Icon, , ORCID Icon, & ORCID Icon
Pages 421-444 | Received 26 May 2023, Accepted 26 Jul 2023, Published online: 01 Aug 2023

References

  • Gong X, Hu M, Liu J, et al. Decoding kinase-adverse event associations for small molecule kinase inhibitors. Nat Commun. 2022;13(1):4349. doi: 10.1038/s41467-022-32033-5
  • Dummer R, Flaherty KT, Robert C, et al. COLUMBUS 5-year update: a randomized, open-label, phase III trial of encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF V600–mutant melanoma. J Clin Oncol. 2022;40(36):4178–4188. doi: 10.1200/JCO.21.02659
  • Skoulidis F, Li BT, Dy GK, et al. Sotorasib for lung cancers with KRAS p. G12C mutation. N Engl J Med. 2021;384(25):2371–2381. doi: 10.1056/NEJMoa2103695
  • Tsuboi M, Herbst RS, John T, et al. Overall survival with osimertinib in resected EGFR-Mutated NSCLC. N Engl J Med. 2023;389(2):137–147. doi: 10.1056/NEJMoa2304594
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 2011;75(1):50–83. doi: 10.1128/MMBR.00031-10
  • Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12(1):9–18. doi: 10.1038/sj.cr.7290105
  • Sun Y, Liu W-Z, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduction. 2015;35(6):600–604. doi: 10.3109/10799893.2015.1030412
  • Boulton TG, Yancopoulos GD, Gregory JS, et al. An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science. 1990;249(4964):64–67. doi: 10.1126/science.2164259
  • Chen Z, Gibson TB, Robinson F, et al. MAP kinases. Chem Rev. 2001;101(8):2449–2476. doi: 10.1021/cr000241p
  • Yan L, Carr J, Ashby PR, et al. Knockout of ERK5 causes multiple defects in placental and embryonic development. BMC Dev Biol. 2003;3(1):11. doi: 10.1186/1471-213X-3-11
  • Regan CP, Li W, Boucher DM, et al. Erk5 null mice display multiple extraembryonic vascular and embryonic cardiovascular defects. Proc Natl Acad Sci USA. 2002;99(14):9248–9253. doi: 10.1073/pnas.142293999
  • Kyriakis JM, Avruch J. Pp54 microtubule-associated protein 2 kinase. A novel serine/threonine protein kinase regulated by phosphorylation and stimulated by poly-L-lysine. J Biol Chem. 1990;265(28):17355–17363. doi: 10.1016/S0021-9258(17)44910-6
  • Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: Regulation, function and role in human disease. Biochim Biophys Acta, Mol Cell Res. 2007;1773(8):1341–1348. doi: 10.1016/j.bbamcr.2006.12.009
  • Bennett B, Blease K, Ye Y, et al. CC-90001, a second generation Jun N-Terminal Kinase (JNK) inhibitor for the treatment of idiopathic pulmonary fibrosis. 313. C38. UNDERSTANDING THERAPEUTICS IN IPF, Washington, DC: American Thoracic Society; 2017. p. A5409–A.
  • Cicenas J, Zalyte E, Rimkus A, et al. JNK, p38, ERK, and SGK1 inhibitors in cancer. Cancers. 2018;10(1):1. doi: 10.3390/cancers10010001
  • Ma FY, Flanc RS, Tesch GH, et al. A pathogenic role for c-jun amino-terminal kinase signaling in renal fibrosis and tubular cell apoptosis. J Am Soc Nephrol. 2007;18(2):472–484. doi: 10.1681/ASN.2006060604
  • Graczyk PP. JNK inhibitors as anti-inflammatory and neuroprotective agents. Future Med Chem. 2013;5(5):539–551. doi: 10.4155/fmc.13.34
  • Bogoyevitch MA. The isoform-specific functions of the c-Jun N-terminal Kinases (JNKs): differences revealed by gene targeting. Bio Essays. 2006;28(9):923–934. doi: 10.1002/bies.20458
  • Koch P, Gehringer M, Laufer SA. Inhibitors of c-Jun N-Terminal Kinases: An Update. J Med Chem. 2015;58(1):72–95. doi: 10.1021/jm501212r
  • Lee JC, Laydon JT, McDonnell PC, et al. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994;372(6508):739–746. doi: 10.1038/372739a0
  • Jiang Y, Chen C, Li Z, et al. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J Biol Chem. 1996;271(30):17920–17926. doi: 10.1074/jbc.271.30.17920
  • Li Z, Jiang Y, Ulevitch RJ, et al. The primary structure of p38γ: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun. 1996;228(2):334–340. doi: 10.1006/bbrc.1996.1662
  • Wang XS, Diener K, Manthey CL, et al. Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem. 1997;272(38):23668–23674. doi: 10.1074/jbc.272.38.23668
  • Haddad J. VX-745. Vertex Pharmaceuticals. Curr Opin Investig Drugs2001;2 (8):1070–1076.
  • Son SH, Lee N-R, Gee MS, et al. Chemical knockdown of phosphorylated p38 Mitogen-Activated Protein Kinase (MAPK) as a novel approach for the treatment of Alzheimer′ s Disease. ACS Central Sci. 2023;9(3):417–426. doi: 10.1021/acscentsci.2c01369
  • Wang C, Hockerman S, Jacobsen EJ, et al. Selective inhibition of the p38α MAPK–MK2 axis inhibits inflammatory cues including inflammasome priming signals. J Exp Med. 2018;215(5):1315–1325. doi: 10.1084/jem.20172063
  • Alevy YG, Patel AC, Romero AG, et al. IL-13-induced airway mucus production is attenuated by MAPK13 inhibition. J Clin Invest. 2012;122(12):4555–4568. doi: 10.1172/JCI64896
  • Escós A, Risco A, Alsina-Beauchamp D, et al. p38γ and p38δ Mitogen Activated Protein Kinases (MAPKs), new stars in the MAPK galaxy. Front Cell Dev Biol. 2016;4:31. doi: 10.3389/fcell.2016.00031
  • Azevedo R, van Zeeland M, Raaijmakers H, et al. X-ray structure of p38α bound to TAK-715: comparison with three classic inhibitors. Acta Crystallogr D Biol Crystallogr. 2012;68(8):1041–1050. doi: 10.1107/S090744491201997X
  • Li D, Duan L, Zheng T, et al., inventors; Shanghai Pharmaceuticals Holding Co., Ltd., assignee. Preparation of nitrogen-containing heterocyclic compounds as p38 protein kinase inhibitors patent WO2020108659. 2020.
  • Bemis GW, Salituro FG, Duffy JP, et al., inventors; Vertex Pharmaceuticals Inc., assignee. Preparation of annelated pyrimidinones and analogs as p38 kinase inhibitors patent WO9827098. 1998.
  • investors.vrtx.com [Internet]. Boston (MA): vertex pharmaceuticals incorporated. Vertex Pharmaceuticals Reports Third Quarter 2001 Financial Results [cited 2023 May 26]. Available from: https://investors.vrtx.com/news-releases/news-release-details/vertex-pharmaceuticals-reports-third-quarter-2001-financial
  • Ding C. Drug evaluation: VX-702, a MAP kinase inhibitor for rheumatoid arthritis and acute coronary syndrome. Curr Opin Invest Drugs. 2006;7(11):1020–1025.
  • Alam JJ inventor, EIP Pharma, LLC, assignee. Compositions and methods for treating dementia patent WO2017185073. 2017.
  • Prins ND, Harrison JE, Chu H-M, et al. A phase 2 double-blind placebo-controlled 24-week treatment clinical study of the p38 alpha kinase inhibitor neflamapimod in mild Alzheimer’s disease. Alzheimer’s Res Ther. 2021;13(1):1–12. doi: 10.1186/s13195-021-00843-2
  • Jiang Y, Alam JJ, Gomperts SN, et al. Preclinical and randomized clinical evaluation of the p38α kinase inhibitor neflamapimod for basal forebrain cholinergic degeneration. Nat Commun. 2022;13(1):5308. doi: 10.1038/s41467-022-32944-3
  • eippharma.com [Internet]. Boston (MA): EIP Pharma, Inc. National Institute on Aging (NIA) awards $21M grant to support key phase 2b study of EIP Pharma’s neflamapimod in dementia with Lewy bodies [cited 2023 May 26]. Available from: https://www.eippharma.com/news/national-institute-on-aging-nia-awards-21m-grant-to-support-key-phase-2b-study-of-eip-pharmas-neflamapimod-in-dementia-with-lewy-bodies/
  • Heo J, Shin H, Lee J, et al. Synthesis and biological evaluation of N-cyclopropylbenzamide-benzophenone hybrids as novel and selective p38 mitogen activated protein kinase (MAPK) inhibitors. Bioorganic Med Chem Lett. 2015;25(17):3694–3698. doi: 10.1016/j.bmcl.2015.06.036
  • Kim N-J, Inn K-S, Lee J-K, et al., inventors; PRAZER THERAPEUTICS INC, assignee. Compound Having p38 removal capability, preparation method thereor and composition for treating chronic inflammatory disease, comprising same patent WO2021187766A1. 2021.
  • Inn K-S, Kim N-J, Lee J-K, et al., inventors; PRAZER THERAPEUTICS INC, assignee. Novel compound exhibiting anti-inflammatory activity as p38 map kinase inhibitor patent WO2022164041A1. 2022.
  • Inn K-S, Kim N-J, Lee J-K, et al., inventors; PRAZER THERAPEUTICS INC, assignee. Novel compound exhibiting therapeutic effect on inflammatory disease as p38 map kinase inhibitor patent WO2023282414A1. 2023.
  • Kim NJ, In GS, Kim SW, et al., inventors; University-Industry Cooperation Group of Kyunghee University, assignee. Preparation of benzophenone derivatives, and pharmaceutical compositions comprising them for the treatment of hepatitis B patent KR2019023760. 2019.
  • Ottosen ER, Sørensen MD, Björkling F, et al. Synthesis and structure− activity relationship of aminobenzophenones. A novel class of p38 MAP kinase inhibitors with high antiinflammatory activity. J Med Chem. 2003;46(26):5651–5662. doi: 10.1021/jm030851s
  • Angell R, Aston NM, Bamborough P, et al. Biphenyl amide p38 kinase inhibitors 3: Improvement of cellular and in vivo activity. Bioorganic Med Chem Lett. 2008;18(15):4428–4432. doi: 10.1016/j.bmcl.2008.06.048
  • Choi M-S, Heo J, Yi C-M, et al. A novel p38 mitogen activated protein kinase (MAPK) specific inhibitor suppresses respiratory syncytial virus and influenza a virus replication by inhibiting virus-induced p38 MAPK activation. Biochem Biophys Res Commun. 2016;477(3):311–316. doi: 10.1016/j.bbrc.2016.06.111
  • Kim S-Y, Kim H, Kim S-W, et al. An effective antiviral approach targeting hepatitis B virus with NJK14047, a novel and selective biphenyl amide p38 mitogen-activated protein kinase inhibitor. Antimicrob Agents Chemother. 2017;61(8):e00214–17. doi: 10.1128/AAC.00214-17
  • Gee MS, Kim S-W, Kim N, et al. A novel and selective p38 mitogen-activated protein kinase inhibitor attenuates LPS-induced neuroinflammation in BV2 microglia and a mouse model. Neurochem Res. 2018;43(12):2362–2371. doi: 10.1007/s11064-018-2661-1
  • Gee MS, Son SH, Jeon SH, et al. A selective p38α/β MAPKs inhibitor alleviates neuropathology and cognitive impairment by modulating microglia function in 5XFAD mouse. Alz Res Therapy. 2020;12(1):45. doi: 10.1186/s13195-020-00617-2
  • Lee J-H, Son S-H, Kim N-J, et al. P38 MAPK inhibitor NJK14047 suppresses CDNB-Induced atopic dermatitis-like symptoms in BALB/c Mice. Biomol Ther. 2022;30(6):501–509. doi: 10.4062/biomolther.2022.024
  • Lee J-H, Son S-H, Kim N-J, et al. NJK14047 Suppression of the p38 MAPK ameliorates OVA-Induced allergic asthma during sensitization and challenge periods. Biomol Ther. 2023;31(2):183–192. doi: 10.4062/biomolther.2022.078
  • Aston NM, Bamborough P, Buckton JB, et al. p38α mitogen-activated protein kinase inhibitors: optimization of a series of biphenylamides to give a molecule suitable for clinical progression. J Med Chem. 2009;52(20):6257–6269. doi: 10.1021/jm9004779
  • Hockerman SL, Monahan JB, Selness SR, et al. Methyl/fluoro-pyridinyl-methoxy substituted pyridinone-pyridinyl compounds and fluoro-pyrimidinyl-methoxy substituted pyridinone-pyridinyl compounds patent WO2014197846. 2014.
  • Xing L, Devadas B, Devraj RV, et al. Discovery and characterization of atropisomer PH‐797804, a p38 MAP kinase inhibitor, as a clinical drug candidate. ChemMedchem. 2012;7(2):273–280. doi: 10.1002/cmdc.201100439
  • Anderson DR, Decrescenzo GA, inventors; Aclaris Therapeutics, Inc., assignee. Preparation of deuterated pyridinyl/pyrazolyl/phenyl-methoxy substituted pyridinone-pyridinyl-pyrimidine MK2 pathway inhibitors and their therapeutic uses patent WO2021022186. 2021.
  • Devadas B, Walker J, Selness SR, et al., inventors; Pharmacia Corporation, assignee. Preparation of substituted pyridinones as modulators of p38 MAP kinase patent WO2003068230. 2003.
  • Haller V, Nahidino P, Forster M, et al. An updated patent review of p38 MAP kinase inhibitors (2014-2019). Expert Opin Ther Patents. 2020;30(6):453–466. doi: 10.1080/13543776.2020.1749263
  • Gordon D, Kivitz A, Singhal A, et al. Selective inhibition of the MK2 pathway: data from a phase iia randomized clinical trial in rheumatoid arthritis. ACR Open Rheumatol. 2023;5(2):63–70. doi: 10.1002/acr2.11517
  • investor.aclaristx.com [Internet]. Wayne (PA): Aclaris Therapeutics Inc. Aclaris therapeutics announces preliminary topline data from 12-week phase 2a study of oral zunsemetinib (ATI-450) for moderate to severe hidradenitis suppurativa [cited 2023 May 26]. Available from: http://investor.aclaristx.com/news-releases/news-release-details/aclaris-therapeutics-announces-preliminary-topline-data-12-week
  • Shapiro PS, Hasday JD, Mackerell AD Jr., et al. Non-catalytic substrate-selective p38α-specific MAPK inhibitors with endothelial-stabilizing and anti-inflammatory activity, and methods of use thereof patent WO2017223284A1. 2017.
  • Shapiro PS, Mackerell AD Jr., Hasday JD, et al., inventors; University of Maryland, assignee. Non-ATP/catalytic site p38 mitogen activated protein kinase inhibitors patent WO2020118194. 2020.
  • Hasday J, Tulapurkar M, Lal R, et al. A second generation non-catalytic substrate-selective p38alpha inhibitor that stabilizes endothelial barrier function and reduces lethal LPS-induced acute lung injury in mice. D101. MECHANISTIC STUDIES OF LUNG INJURY AND REPAIR, Virtual. American Thoracic Society; 2020. p. A7714–A.
  • Fletcher S, Shapiro P, Mackerell A, et al., inventors; Univ. Maryland, assignee. Non-ATP/catalytic site p38 mitogen activated protein kinase inhibitors patent WO2021183970A1. 2021.
  • Galan A, Luo W, Lal R, et al. P38alpha mitogen-activated protein kinase inhibitors patent WO2021236449A1. 2021.
  • Shah NG, Tulapurkar ME, Ramarathnam A, et al. Novel noncatalytic substrate-selective p38α-specific MAPK inhibitors with endothelial-stabilizing and anti-inflammatory activity. J Immunol. 2017;198(8):3296–3306. doi: 10.4049/jimmunol.1602059
  • Kayyali US, Pennella CM, Trujillo C, et al. Cytoskeletal changes in hypoxic pulmonary endothelial cells are dependent on MAPK-activated protein kinase MK2. J Biol Chem. 2002;277(45):42596–42602. doi: 10.1074/jbc.M205863200
  • Damarla M, Hasan E, Boueiz A, et al. Mitogen activated protein kinase activated protein kinase 2 regulates actin polymerization and vascular leak in ventilator associated lung injury. Plos One. 2009;4(2):e4600. doi: 10.1371/journal.pone.0004600
  • Holtzman M, Romero A, Alevy Y, et al., inventors; Washington University, assignee. Preparation of substituted pyrazole derivatives for use as MAPK13 activity inhibitors patent US20150183777A1. 2015.
  • Yurtsever Z, Patel DA, Kober DL, et al. First comprehensive structural and biophysical analysis of MAPK13 inhibitors targeting DFG-in and DFG-out binding modes. Biochim Biophys Acta Gen Subj. 2016;1860(11):2335–2344. doi: 10.1016/j.bbagen.2016.06.023
  • Holtzman MJ, Romero AD, Gerovac BJ, et al., inventors; Washington University, assignee. Ureas as mitogen-activated protein kinase inhibitors, methods of making, and methods of use thereof patent WO2019232275. 2019.
  • Pargellis C, Tong L, Churchill L, et al. Inhibition of p38 MAP kinase by utilizing a novel allosteric binding site. Nat Struct Biol. 2002;9(4):268–272. doi: 10.1038/nsb770
  • Wada M, Canals D, Adada M, et al. P38 delta MAPK promotes breast cancer progression and lung metastasis by enhancing cell proliferation and cell detachment. Oncogene. 2017;36(47):6649–6657. doi: 10.1038/onc.2017.274
  • Patel AC, Morton JD, Kim EY, et al. Genetic segregation of airway disease traits despite redundancy of calcium-activated chloride channel family members. Physiol Genomics. 2006;25(3):502–513. doi: 10.1152/physiolgenomics.00321.2005
  • Feng Y, Yoon SO, inventors; Ohio State Innovation Foundation Reaction Biology Corporation, assignee. Indazoles and related compounds as kinase inhibitors for the treatment of neurodegenerative diseases and their preparation patent WO2021050672. 2021.
  • Feng Y, Yoon SO, inventors; Ohio State Innovation Foundation Reaction Biology Corporation, assignee. Synthesis of pyrazolyl Kinase inhibitors for treating neurodegenerative diseases associated with inflammation patent WO2022081552. 2022.
  • Feng Y, Park H, Bauer L, et al. Thiophene-pyrazolourea derivatives as potent, orally bioavailable, and isoform-selective JNK3 inhibitors. ACS Med Chem Lett. 2021;12(1):24–29. doi: 10.1021/acsmedchemlett.0c00533
  • Kamenecka T, Habel J, Duckett D, et al. Structure-activity relationships and X-ray structures describing the selectivity of aminopyrazole inhibitors for c-Jun N-terminal Kinase 3 (JNK3) over p38. J Biol Chem. 2009 May 08;284(19):12853–12861. doi: 10.1074/jbc.M809430200
  • Zheng K, Iqbal S, Hernandez P, et al. Design and synthesis of highly potent and isoform selective JNK3 inhibitors: SAR studies on aminopyrazole derivatives. J Med Chem. 2014;57(23):10013–10030. doi: 10.1021/jm501256y
  • Feng Y, LoGrasso P, Zheng K, et al., inventors; The Scripps Research Institute, assignee. Preparation of substituted pyrazolylbenzamides as JNK kinase inhibitors patent WO2015084936. 2015.
  • Park H, Iqbal S, Hernandez P, et al. Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci Rep. 2015;5(1):8047. doi: 10.1038/srep08047
  • Feng Y, Park H, Ryu JC, et al. N-Aromatic-substituted indazole derivatives as brain-penetrant and orally bioavailable JNK3 inhibitors. ACS Med Chem Lett. 2021;12(10):1546–1552. doi: 10.1021/acsmedchemlett.1c00334
  • Zhang T, Inesta-Vaquera F, Niepel M, et al. Discovery of potent and selective covalent inhibitors of JNK. Chem Biol. 2012;19(1):140–154. doi: 10.1016/j.chembiol.2011.11.010
  • Gray N, Zhang T, inventors; Dana-Farber Cancer Institute, Inc., assignee. Preparation of pyrimidineamine compounds as inhibitors of c-Jun-N-terminal kinase (JNK) patent WO2013074986. 2013.
  • Lu W, Liu Y, Gao Y, et al. Development of a covalent inhibitor of c-Jun N-Terminal Protein Kinase (JNK) 2/3 with Selectivity over JNK1. J Med Chem. 2023;66(5):3356–3371. doi: 10.1021/acs.jmedchem.2c01834
  • Gray NS, Zhang T, Liu Y, et al., inventors; Dana-Farber Cancer Institute, Inc., assignee. Preparation of pyrazolopyridine inhibitors of c-Jun N-terminal kinases and uses thereof patent WO2020123925. 2020.
  • Jun J, Baek J, Yang S, et al. Discovery of a potent and selective JNK3 inhibitor with neuroprotective effect against amyloid β-induced neurotoxicity in primary rat neurons. Int J Mol Sci. 2021;22(20):11084. doi: 10.3390/ijms222011084
  • Jang M, Oh Y, Cho H, et al. Discovery of 1-Pyrimidinyl-2-Aryl-4,6-Dihydropyrrolo [3,4-d]Imidazole-5(1H)-Carboxamide as a Novel JNK Inhibitor. Int J Mol Sci. 2020;21(5):1698. doi: 10.3390/ijms21051698
  • Oh Y, Jang M, Cho H, et al. Discovery of 3-alkyl-5-aryl-1-pyrimidyl-1H-pyrazole derivatives as a novel selective inhibitor scaffold of JNK3. J Enzyme Inhib Med Chem. 2020;35(1):372–376. doi: 10.1080/14756366.2019.1705294
  • Jun J, Baek J, Kang D, et al. Novel 1,4,5,6-tetrahydrocyclopenta[d]imidazole-5-carboxamide-based JNK3 inhibitors: Design, synthesis, molecular docking, and therapeutic potential in neurodegenerative diseases. Eur J Med Chem. 2023;245:114917. doi: 10.1016/j.ejmech.2022.114917
  • M-H K, Lee J, Jung K, et al. Syntheses and biological evaluation of 1-heteroaryl-2-aryl-1H-benzimidazole derivatives as c-Jun N-terminal kinase inhibitors with neuroprotective effects. Bioorg Med Chem. 2013;21(8):2271–2285. doi: 10.1016/j.bmc.2013.02.021
  • Hah J-M, Kim MH, Lee JH, et al., inventors; ERICA Industry-University Cooperation Foundation Hanyang University, assignee. Novel benzimidazole derivates, isomers thereof or pharmaceutically acceptable salt thereof and pharmaceutic composition comprising the same patent KR20140111521. 2014.
  • Hah JM, Yang SI, inventors; ERICA Industry-University Cooperation Foundation Hanyang University, assignee. Preparation of novel benzimidazole derivatives having JNK inhibitory activity and their uses patent WO2018151562. 2018.
  • Hah JM, Jang MY, inventors; ERICA Industry-University Cooperation Foundation Hanyang University, assignee. Preparation of pyrroloimidazole derivative as protein kinase inhibitor patent WO2021172871. 2021.
  • Ha JM, Oh YR, inventors; ERICA Industry-University Cooperation Foundation Hanyang University, assignee. Novel pyrazole derivatives having protein kinase inhibitory activity and uses thereof patent KR20210069576. 2021.
  • Hah J-M, Jun JH, Baek JH, et al. Preparation of imidazole derivative having inhibitory activity on protein phosphorylation patent WO2023022463. 2023.
  • Hah J-M, Yang SI, Lee JH, et al. Preparation of novel imidazole derivatives having JNK inhibitory activity and their uses patent WO2017131425. 2017.
  • Jun J, Yang S, Lee J, et al. Discovery of novel imidazole chemotypes as isoform-selective JNK3 inhibitors for the treatment of Alzheimer’s disease. Eur J Med Chem. 2023;245:114894. doi: 10.1016/j.ejmech.2022.114894
  • Shin HJ, Ki MH, Kwon HS, et al., inventors; Samjin Pharmaceutical Co., Ltd., assignee. Preparation of imidazole derivatives as JNK inhibitors patent WO2020022787. 2020.
  • Li J, Lou J, Chen Y, et al., inventors; Wuhan LL Science and Technology Development Co., Ltd., assignee. Preparation of the Jnk inhibitor and pharmaceutical composition and their applications patent WO2021063207. 2021.
  • Li J, Lou J, Guo X, et al., inventors; Wuhan LL Science and Technology Development Co., Ltd., assignee. Preparation of aza-heterocyclic compound as JNK inhibitor for treatment of diseases-related to JNK activity patent CN113698408. 2021.
  • Li J, Lou J, Zeng J, et al., inventors; Wuhan LL Science and Technology Development Co., Ltd., assignee. JNK inhibitor, pharmaceutical composition thereof and use thereof patent WO2022048684. 2022.
  • Bennett BL, Elsner J, Erdman P, et al., inventors; Signal Pharmaceuticals, LLC, assignee. Preparation of substituted diaminocarboxamide and diaminocarbonitrile pyrimidines as JNK pathway inhibitors patent WO2012145569. 2012.
  • Angell RM, Atkinson FL, Brown MJ, et al. N-(3-Cyano-4,5,6,7-tetrahydro-1-benzothien-2-yl)amides as potent, selective, inhibitors of JNK2 and JNK3. Bioorganic Med Chem Lett. 2007;17(5):1296–1301. doi: 10.1016/j.bmcl.2006.12.003
  • Mardinoglu A, Boren J, Uhlen M, et al. Treatment of fatty liver disease and hepatocellular carcinoma (HCC) with small molecule compound JNK-IN-5A patent WO2023016950. 2023.
  • Long J, Jiao L, Huang Y, et al., inventors; Suzhou Shian Dingtai Biomedical Technology Co., Ltd., assignee. Quinazoline benzamide compound and its derivative, pharmaceutical composition used in preparing of JNK inhibitor and its application patent CN115073436. 2022.
  • Salem AK, SAME A, inventors; University of Iowa Research Foundation, assignee. Preparation of 2-aminothiophene-3-carbonitrile derivatives as Jnk inhibitors and anticancer agents patent WO2020263989. 2020.
  • Abdel-Rahman SA, Wafa EI, Ebeid K, et al. Thiophene derivative-loaded nanoparticles mediate anticancer activity through the inhibition of kinases and microtubule assembly. Adv Ther. 2021;4(7):2100058. doi: 10.1002/adtp.202100058
  • Griswold-Prenner I, Chen K, inventors; Imago Pharmaceuticals, Inc., assignee. Treatment of fibrotic disorders with Jun N-terminal kinase (JNK) pathway inhibitors patent WO2018049353. 2018.
  • Sham HL, Konradi AW, Hom RK, et al., inventors; Elan Pharmaceuticals, Inc., assignee. Preparation of N-(thiophen-3-yl)acetamide derivatives as inhibitors of JNK N-terminal kinase patent WO2010091310. 2010.
  • Gehringer M, Muth F, Koch P, et al. C-Jun N-terminal kinase inhibitors: a patent review (2010 – 2014). Expert Opin Ther Patents. 2015;25(8):849–872. doi: 10.1517/13543776.2015.1039984
  • Chen H, Inventor Application of C-Jun N-terminal kinase inhibitor SU3327 in antibiotics patent CN111773216. 2020.
  • Xiao S, inventor; Rutgers, The State University of New Jersey, assignee. Method and pharmaceutical composition for treating, preventing, and/or ameliorating chemotherapy-induced premature ovarian failure using JNK inhibitor patent US20230062911. 2023.
  • Wu Y, Liao C, Liao Y, et al. Application of JNK-IN-8 in the preparation of neuroprotective agent for dry age-related macular degeneration patent CN109303782. 2019.
  • Wang Y, Ren X, inventors; Shenzhen TargetRx Biomedical Co., Ltd., assignee. Dihydroimidazopyrazinone compound and composition containing same, application thereof in treatment of proliferative diseases regulated by RAS/RAF/MEK/ERK kinase patent WO2020073862A1. 2020.
  • Ward RA, Anderton MJ, Bethel P, et al. Discovery of a Potent And Selective Oral Inhibitor of ERK1/2 (AZD0364) that is efficacious in both monotherapy and combination therapy in models of Nonsmall Cell Lung Cancer (NSCLC). J Med Chem. 2019;62(24):11004–11018. doi: 10.1021/acs.jmedchem.9b01295
  • Ward RA, Jones CD, Swallow S, et al., inventors; AstraZeneca AB, assignee. Preparation of dihydroimidazopyrazinone derivatives as inhibitors of ERK1 and/or ERK2 kinase for the treatment of cancer patent WO2017080979. 2017.
  • Flemington V, Davies EJ, Robinson D, et al. AZD0364 is a potent and selective ERK1/2 inhibitor that enhances antitumor activity in KRAS-Mutant tumor models when combined with the MEK Inhibitor, SelumetinibCombination of AZD0364 and Selumetinib in KRAS-Mutant NSCLC. Mol Cancer Ther. 2021;20(2):238–249. doi: 10.1158/1535-7163.MCT-20-0002
  • Cao J, Geng M, Huang M, et al., inventors; Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai Haihe Pharmaceutical Co., Ltd., assignee. Preparation of ERK kinase inhibitors patent WO2017114510. 2017.
  • Li L, Geng M, Huang Y, et al., inventors; Shanghai Haihe Pharmaceutical Co., Ltd. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, assignee. Compound having ERK kinase inhibitory activity and use thereof patent WO2019062949. 2019.
  • Blake JF, Chicarelli MJ, Garrey RF, et al., inventors; Array BioPharma Inc. Genentech, Inc., assignee. PReparation of aminopyrimidinylpyridinone derivatives and analogs for use as serine/threonine kinase inhibitors patent WO2013130976. 2013.
  • Venkatesan AM, Thompson SK, Smith RA, et al., inventors; Asana BioSciences, LLC, assignee. Preparation of heterocyclic compounds as inhibitors of ERK1 and ERK2 and their use in the treatment of cancer patent WO2016205418. 2016.
  • Finegan KG, Perez-Madrigal D, Hitchin JR, et al. ERK5 is a critical mediator of inflammation-driven cancer. Cancer Res. 2015;75(4):742–753. doi: 10.1158/0008-5472.CAN-13-3043
  • Wang X, Tournier C. Regulation of cellular functions by the ERK5 signalling pathway. Cell Signal. 2006;18(6):753–760. doi: 10.1016/j.cellsig.2005.11.003
  • Kasler HG, Victoria J, Duramad O, et al. ERK5 is a novel type of mitogen-activated protein kinase containing a transcriptional activation domain. Mol Cell Biol. 2000;20(22):8382–8389. doi: 10.1128/MCB.20.22.8382-8389.2000
  • Deng X, Elkins JM, Zhang J, et al. Structural determinants for ERK5 (MAPK7) and leucine rich repeat kinase 2 activities of benzo[e]pyrimido-[5,4-b]diazepine-6(11H)-ones. Eur J Med Chem. 2013;70:758–767. doi: 10.1016/j.ejmech.2013.10.052
  • Gray NS, Waller D, Choi HG, et al., inventors; Dana-Farber Cancer Institute, Inc., assignee. Preparation of pyrimido-diazepinone compounds for treating disorders patent WO2014145909. 2014.
  • Nguyen D, Lemos C, Wortmann L, et al. Discovery and characterization of the potent and highly selective (Piperidin-4-yl)pyrido[3,2-d]pyrimidine Based in vitro Probe BAY-885 for the Kinase ERK5. J Med Chem. 2019;62(2):928–940. doi: 10.1021/acs.jmedchem.8b01606
  • Nalawansha DA, Crews CM. Protacs: an emerging therapeutic modality in precision medicine. Cell Chem Biol. 2020;27(8):998–1014. doi: 10.1016/j.chembiol.2020.07.020
  • Lochhead PA, Tucker JA, Tatum NJ, et al. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun. 2020;11(1):1383. doi: 10.1038/s41467-020-15031-3
  • Gray NS, Wang J, Ferguson FM, et al., inventors; Dana-FarberCancer Institute, Inc., assignee. Preparation of substituted 6-oxo-6,11-dihydro-5H-benzo[e]pyrimido[5,4-b][1,4]diazepine derivatives as bi-specific ERK5 degraders for treatment of cancer and inflammatory diseases patent WO2021061894. 2021.
  • Aouadi M, Binetruy B, Caron L, et al. Role of MAPKs in development and differentiation: lessons from knockout mice. Biochimie. 2006;88(9):1091–1098. doi: 10.1016/j.biochi.2006.06.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.