88
Views
1
CrossRef citations to date
0
Altmetric
Review

Natural products as a source of new anticancer chemotypes

, ORCID Icon, , , , & show all
Pages 721-744 | Received 01 Aug 2023, Accepted 27 Sep 2023, Published online: 10 Oct 2023

References

  • Singh IP, Ahmad F, Chatterjee D, et al. Natural products: drug discovery and development. Drug discovery and development. Poduri R., eds. Springer Singapore; 2021. p. 11–65. doi: 10.1007/978-981-15-5534-3_2
  • Pirintsos S, Panagiotopoulos A, Bariotakis M, et al. From traditional ethnopharmacology to modern natural drug discovery: a methodology discussion and specific examples. Molecules. 2022;27(13):4060. doi: 10.3390/molecules27134060
  • Zou R, Chen B, Sun J, et al. Recent advances of activation techniques-based discovery of new compounds from marine fungi. Fitoterapia. 2023;167:105503. doi: 10.1016/j.fitote.2023.105503
  • Tiwari P, Bae H. Endophytic fungi: key insights, emerging prospects, and challenges in natural product drug discovery. Microorganisms. 2022;10(2):360. doi: 10.3390/microorganisms10020360
  • Najmi A, Javed SA, Al Bratty M, et al. Modern approaches in the discovery and development of plant-based natural products and their analogues as potential therapeutic agents. Molecules. 2022;27(2):349. doi: 10.3390/molecules27020349
  • El-Hossary EM, Abdel-Halim M, Ibrahim ES, et al. Natural products repertoire of the red Sea. Mar Drugs. 2020;18(9):457. doi: 10.3390/md18090457
  • Stefano GB, Pilonis N, Ptacek R, et al. Reciprocal evolution of opiate science from medical and cultural perspectives. Med Sci Monit. 2017;23:2890–2896. doi: 10.12659/MSM.905167
  • Zarin MKZ, Dehaen W, Salehi P, et al. Synthesis and modification of morphine and codeine, leading to diverse libraries with improved pain relief properties. Pharmaceutics. 2023;15(6):1779. doi: 10.3390/pharmaceutics15061779
  • Ruetsch YA, Böni T, Borgeat A. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem. 2001;1(3):175–182. doi: 10.2174/1568026013395335
  • Vlachojannis J, Magora F, Chrubasik S. Willow species and aspirin: different mechanism of actions. Phytother Res. 2011;25(7):1102–1104. doi: 10.1002/ptr.3386
  • Stasiłowicz A, Tomala A, Podolak I, et al. Cannabis sativa L. as a natural drug Meeting the Criteria of a multitarget approach to treatment. Int J Mol Sci. 2021;22(2):778. doi: 10.3390/ijms22020778
  • Castanas E. From traditional ethnopharmacology to modern natural drug discovery: a methodology discussion and specific examples. Molecules. 2022;27(13):4060. doi: 10.3390/molecules27134060
  • Naeem A, Hu P, Yang M, et al. Natural products as anticancer agents: Current status and future perspectives. Molecules. 2022;27(23):8367. doi: 10.3390/molecules27238367.
  • Huang M, Lu JJ, Ding J. Natural products in cancer therapy: past, present and future. Nat Prod Bioprospect. 2021;11(1):5–13. doi: 10.1007/s13659-020-00293-7
  • Zou H, Li Y, Liu X, et al. Roles of plant-derived bioactive compounds and related microRnas in cancer therapy. Phytother Res. 2021;35(3):1176–1186. doi: 10.1002/ptr.6883
  • Asma ST, Acaroz U, Imre K, et al. Natural products/bioactive compounds as a source of anticancer drugs. Cancers. 2022;14(24):6203. doi: 10.3390/cancers14246203
  • Pedraza-Fariña LG. Mechanisms of oncogenic cooperation in cancer initiation and metastasis. Yale J Biol Med. 2006;79(3–4):95–103.
  • Gielecińska A, Kciuk M, Mujwar S, et al. Substances of natural origin in medicine: plants vs. Cancer. Cancer Cells. 2023;12(7):986. doi: 10.3390/cells12070986
  • Fitzgerald RC, Antoniou AC, Fruk L. The future of early cancer detection. Nat Med. 2022;28(4):666–677. doi: 10.1038/s41591-022-01746-x
  • Emran TB, Shahriar A, Mahmud AR, et al. Multidrug resistance in cancer: understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front Oncol. 2022;12:891652. doi: 10.3389/fonc.2022.891652
  • Gallego-Jara J, Lozano-Terol G, Sola-Martínez RA, et al. A Compressive review about Taxol®: history and future challenges. Molecules. 2020;25(24):5986. doi: 10.3390/molecules25245986
  • Milano G, Innocenti F, Minami H. Liposomal irinotecan (onivyde): exemplifying the benefits of nanotherapeutic drugs. Cancer Sci. 2022;113(7):2224–2231. doi: 10.1111/cas.15377
  • Motyka S, Jafernik K, Ekiert H, et al. Podophyllotoxin and its derivatives: potential anticancer agents of natural origin in cancer chemotherapy. Biomed Pharmacother. 2023;158:114145. doi: 10.1016/j.biopha.2022.114145
  • Tang Z, Tang N, Jiang S, et al. The chemosensitizing role of metformin in anti-cancer therapy. Anticancer Agents Med Chem. 2021;21(8):949–962. doi: 10.2174/1871520620666200918102642
  • Di Sotto A, Mancinelli R, Gullì M, et al. Chemopreventive potential of Caryophyllane Sesquiterpenes: an overview of preliminary evidence. Cancers. 2020;12(10):3034. doi: 10.3390/cancers12103034
  • Devarajan N, Jayaraman S, Mahendra J, et al. Berberine—A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother Res. 2021;35(6):3059–3077. doi: 10.1002/ptr.7032
  • Cocetta V, Quagliariello V, Fiorica F, et al. Resveratrol as Chemosensitizer Agent: state of art and future perspectives. Int J Mol Sci. 2021;22(4):2049. doi: 10.3390/ijms22042049
  • Nozhat Z, Heydarzadeh S, Memariani Z. Chemoprotective and chemosensitizing effects of apigenin on cancer therapy. Cancer Cell Int. 2021;21(1):574. doi: 10.1186/s12935-021-02282-3
  • Bordoloi D, Roy NK, Monisha J, et al. Multi-targeted agents in cancer cell chemosensitization: what we learnt from curcumin thus far. Recent Pat Anticancer Drug Discov. 2016;11(1):67–97. doi: 10.2174/1574892810666151020101706
  • Marin JJ, Lozano E, Herraez E, et al. Chemoresistance and chemosensitization in cholangiocarcinoma. Mol Basis Dis. 2018;1864(4):1444–1453. doi: 10.1016/j.bbadis.2017.06.005
  • Moher D, Liberati A, Tetzlaff J. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLOS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097
  • Pallauf K, Duckstein N, Rimbach G. A literature review of flavonoids and lifespan in model organisms. Proc Nutr Soc. 2017;76(2):145–162. doi: 10.1017/S0029665116000720
  • Wen L, Jiang Y, Yang J, et al. Structure, bioactivity, and synthesis of methylated flavonoids. Ann N Y Acad Sci. 2017;1398(1):120–129. doi: 10.1111/nyas.13350
  • Rahaiee S, Assadpour E, Faridi Esfanjani A, et al. Application of nano/microencapsulated phenolic compounds against cancer. Adv Colloid Interface Sci. 2020;279:102153. doi: 10.1016/j.cis.2020.102153
  • Ponte LGS, Pavan ICB, Mancini MCS, et al. The hallmarks of flavonoids in cancer. Molecules. 2021;26(7):2029. doi: 10.3390/molecules26072029
  • Rizvi MMA. Anti-colon cancer drug containing diosmin and naringenin and preparation method thereof. 2020;IN2020–11031417.
  • Chiangmai University. Pharmaceutical compositions having synergistic effects of natural extracts for cancer treatment undergoing chemotherapy. WO 2021/006822 Al.
  • Ricci A, Gallorini M, Del Bufalo D, et al. Negative modulation of the angiogenic cascade induced by Allosteric Kinesin Eg5 inhibitors in a Gastric adenocarcinoma in vitro model. Molecules. 2022;27(3):957. doi: 10.3390/molecules27030957.
  • Piazza GA, Ward A, Chen X, et al. PDE5 and PDE10 inhibition activates cGMP/PKG signaling to block Wnt/β-catenin transcription, cancer cell growth, and tumor immunity. Drug Discov Today. 2020;25(8):1521–1527. doi: 10.1016/j.drudis.2020.06.008
  • Whitehead Institute for Biomedical Research. Analogs of the natural product icariin. WO 2020/033498 Al.
  • Li Y, Sun B, Zhai J, et al. Synthesis and antibacterial activity of four natural chalcones and their derivatives. Tetrahedron Lett. 2019;60(43):151165. doi: 10.1016/j.tetlet.2019.151165
  • Rammohan A, Reddy SJ, Sravya R, et al. Chalcone synthesis, properties and medicinal applications: a review. Environ Chem Lett. 2020;18(2):433–458. doi: 10.1007/s10311-019-00959-w
  • Mathew E, Salian V, Joe H, et al. Third-order nonlinear optical studies of two novel chalcone derivatives using Z-scan technique and DFT method. Opt Laser Technol. 2019;120:105697. doi: 10.1016/j.optlastec.2019.105697
  • Halpani C, Mishra S. Lewis acid catalyst System for claisen-Schmidt reaction under solvent free condition. Tetrahedron Lett. 2020;61(31):152175. doi: 10.1016/j.tetlet.2020.152175
  • Oh HN, Lee M, Kim E, et al. Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine. 2019;63:153014. doi: 10.1016/j.phymed.2019.153014
  • Gao F, Hung G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev. 2020;40(5):2049–2084. doi: 10.1002/med.21698
  • Constantinescu T, Lungu CN. Anticancer activity of natural and synthetic chalcones. Int J Mol Sci. 2021;22(21):11306. doi: 10.3390/ijms222111306
  • Mirzaei S, Hadizadeh F, Eisvand F, et al. Synthesis, structure-activity relationship and molecular docking studies of novel quinoline-chalcone hybrids as potential anticancer agents and tubulin inhibitors. J Mol Struct. 2020;1202:127310. doi: 10.1016/j.molstruc.2019.127310
  • Baig MS, Altamash Ansari YB, Bhagyashree AM. A pharmaceutical chalcone derivative and a process of preparation thereof. 2022;IN2022–21053268.
  • Qatar university. Preparation of aminosubstituted chalcones as potential antitumor agents for the treatment of cancers such as breast cancer. US 2020/0392119 Al.
  • Khanusiya MM, Gadhawala ZM A novel synthetic chalcone-sulfonamide hybrids bearing anticancer activityp. IN2018–21034893.
  • Xin S, Zhou D, Li N. Chapter 8 - bioactive stilbenes from plants, editor(s): atta-ur-rahman, studies in natural products chemistry. Vol. 73, Elsevier; 2022. p. 265–403. doi: 10.1016/B978-0-323-91097-2.00006-6
  • Université de Nantes, Centre National de la Recherche Scientifique, université du mans. Disulfunate stilbenes for use in the treatment of proliferative diseases. WO.
  • Everest Pharm. Industrial Co., LTD. Pharmaceutical compounds for treating colorectal cancer. US 2020/0038340 Al.
  • McCormack D, McFadden D. A review of pterostilbene antioxidant activity and disease modification. Oxid Med Cell Longev. 2013;2013:575482. doi: 10.1155/2013/575482
  • City of Hope. Methods and compositions for treating endometrial cancer. US 2019/0083510 Al.
  • Brown University. Small molecule CB002-analogs restore the p53 pathway and target S-Phase checkpoint. WO 2021/232012 Al.
  • Alkaloids and other nitrogen-containing derivatives, editor: carradori S., Bentham Science Publishers. 2023. doi: 10.2174/97898151236781230301
  • Luo Y, Yin S, Lu J, et al. Tumor microenvironment: a prospective target of natural alkaloids for cancer treatment. Cancer Cell Int. 2021;21(1):386. doi: 10.1186/s12935-021-02085-6
  • Ares Pharmaceuticals, LLC. Synthesis of dimeric cinchona alkaloids as anticancer agents. US 2022/0372029 Al.
  • Ares Pharmaceuticals, LLC. Synthetic cinchona alkaloids against cancer. WO 2022/173460 Al.
  • Mukerjee N, Mukerjee D, Gaikwad NM, et al. Computational approaches for ameliorating by inhibition of PALB2 BRCA2 in ovarian cancer using isoquinoline alkaloid berberine. 2022;IN2022–31022581.
  • University of Sharjay. Novel nature-inspired anticancer and antibacterial motifs and pharmaceutical composition thereof. US 2021/0317121 Al.
  • University of South Carolina. Use of manzamines as antiproliferative agent. US 2021/0244725 Al.
  • Chengdu Anticancer Bioscience LTD. Benzophenanthridine alkaloids and methods of use. WO 2021/073603 Al.
  • Fang ZZ, Zhang YY, Ge GB, et al. Identification of cytochrome P450 (CYP) isoforms involved in the metabolism of corynoline, and assessment of its herb-drug interactions. Phytother Res. 2011;25(2):256–263. doi: 10.1002/ptr.3255
  • Cahlíková L, Opletal L, Kurfürst M, et al. Acetylcholinesterase and butyrylcholinesterase inhibitory compounds from chelidonium majus (Papaveraceae). Nat Prod Commun. 2010;5(11):1751–1754. doi: 10.1177/1934578X1000501110
  • Ohio State Innovation Foundation, University of North Carolina at Greensboro, The University of Illinois Board of Trustees, MYCOSYNTHETIX, INC. Semi-synthetic analogues of epipolythiodioxopiperazine alkaloids. WO 2020/237169 Al.
  • Hamann MT A synthetic novel pyrroloiminoquinine alkaloid and method of use. WO 2020/146569 Al.
  • The University of Illinois Board of Trustees. Isocarbostyril alkaloids and functionalization thereof. WO 2020/117894 Al.
  • Mohammad NS, Nazli R, Zafar H, et al. Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial. Pak J Med Sci. 2022;38(1):219–226. doi: 10.12669/pjms.38.1.4396
  • Oy GranulaAb Ltd. Method and a compound for preventing mammalian cancer cell proliferation and for treating cancer. US 2021/0030673 Al.
  • Yan C, Li Y, Liu H, et al. Antitumor mechanism of cannabidiol hidden behind cancer hallmarks. Biochim Biophys Acta Rev Cancer. 2023;1878(4):188905. doi: 10.1016/j.bbcan.2023.188905
  • Woerdenbag HJ, Olinga P, Kok EA, et al. Potential, limitations and risks of Cannabis-derived products in cancer treatment. Cancers. 2023;15(7):2119. doi: 10.3390/cancers15072119
  • Nelson Mandela University. Cannabinoid combinations and their use in the treatment of cancer. WO 2022/043961 Al.
  • Almeida CF, Teixeira N, Correia-da-Silva G, et al. Cannabinoids in breast cancer: differential susceptibility according to subtype. Molecules. 2021;27(1):156. doi: 10.3390/molecules27010156
  • Srin Therapeutics, Inc. Cannabinoid compositions and methods of use thereof for immune modulation, immuneprotection, and treatment of cancer. WO 2020/163775 Al.
  • The State of Israel, Ministry of Agriculture & Rural development, Agricultural research organization (aro) (Volcani center). Compositions and methods for the treatment of cutaneous T-cell lymphoma (CTCL). WO 2020/121312 Al.
  • Digestix Bioscience Inc. Compositions and methods for treating dysplastic and early-stage neoplastic conditions. WO 2021/245677 Al.
  • Scicann Therapeutics Inc. Cannabinoid compositions and use thereof. WO 2020/194237 Al.
  • Firstlight Pharmaceuticals LLC. Cannabinoid prodrug compounds. WO 2021/062231 A2.
  • Council of Scientific & Industrial Research. Cannabinoids C- and O-glycosides possessing anti-proliferative and anti-metastatic properties and process for preparation thereof. WO 2023/053134 Al.
  • Al&Am Pharmachem Ltd. Tetrahydrocannabinolic-cannabinolic acid derivatives and uses thereof. US 2021/0087159 Al.
  • Sisto F, Carradori S, Guglielmi P, et al. Synthesis and Evaluation of Thymol-based synthetic derivatives as dual-action inhibitors against different strains of H. pylori and AGS cell line. Molecules. 2021;26(7):1829. doi: 10.3390/molecules26071829
  • Sisto F, Carradori S, Guglielmi P, et al. Synthesis and biological evaluation of carvacrol-based derivatives as dual inhibitors of H. pylori strains and AGS cell proliferation. Pharmaceuticals. 2020;13(11):405. doi: 10.3390/ph13110405
  • K-Gen, Inc. Diterpenoid compounds that act on protein kinase C (PKC). WO 2021/062030 Al.
  • Tsai JY, Rédei D, Hohmann J, et al. 12-deoxyphorbol esters induce growth arrest and apoptosis in human lung cancer A549 cells via activation of PKC-δ/PKD/ERK signaling pathway. Int J Mol Sci. 2020;21(20):7579. doi: 10.3390/ijms21207579
  • Sun Yat-Sen University. Daphnane diterpenoid resistant to prostate cancer and preparation method thereof. US 2023/0159551 Al.
  • The University of Sydney. Medicinal use of serrulatane diterpenes. US 2021/0212982 Al.
  • The Cures Ltd. Novel therapeutic preparations comprising Scutellaria barbata. WO 2020/255133 Al.
  • Neonc Technologies, Inc. Pharmaceutical compositions comprising POH derivatives. WO 2021/061752 Al.
  • Uniwersytet Medyczny Im. Piastow Slaskich We Wroclawiu. A new terpenoid derivative and its use in chemoprevention and supporting cancer chemotherapy. WO 2020/226520 Al.
  • University of Iowa Research Foundation. Nanoparticles comprising quinone w methods and compositions for use. WO 2020/257658 Al.
  • Sadeghi E, Imenshahidi M, Hosseinzadeh H. Molecular mechanisms and signaling pathways of black cumin (Nigella sativa) and its active constituent, thymoquinone: a review. Mol Biol Rep. 2023;50(6):5439–5454. doi: 10.1007/s11033-023-08363-y
  • Moshahid Alam Rizvi M Dose reduction of the anticancer drug cisplatin modulated by thymoquinone against liver cancer cells (HepG2) through apoptosis and cell cycle arrest. IN202011051115.
  • Karpagam Academy of Higher Education. Herbal gel formulation from the extract of curcumin and Annona Muricata Linn and the manufacturing method therof. IN2022-41072885.
  • Shoolini University of Biotechnology and Management Sciences. A method for analysis of anti-glioblastoma activity of essential oil extracted from Aegle marmelos. IN2022-11065081.
  • The Adored Beast Apothecary Ltd.Natural product extracts and methods of use thereof. WO 2022/032394 Al.
  • Gaikwad DK, Narayankar CU, Desai NM, et al. Synthesis of blood cancer cell growth inhibitor using the extract of Opuntia and other herb. 2021; AU 2021107254 A4.
  • Van NA. Ligand-guided selection of aptamers against T-cell receptor-cluster of differentiation 3 (TCR-CD3) expressed on Jurkat.E6 cells. Anal Biochem. 2016;512:1–7. WO 2021/232072 Al. doi: 10.1016/j.ab.2016.08.007.
  • Patil VA. Aqueous and Ethanolic extract of Bauhinia foveolate leaves for anticancer use. 2022;IN2022–41132784.
  • King Sand University. Cenchrus ciliaris L. as anticancer agent. US 2019/0231841 A1.
  • Lee HS, Park CB, Kim JM, et al. Mechanism of anticancer activity of buforin IIb, a histone H2A-derived peptide. Cancer Lett. 2008;271(1):47–55. doi: 10.1016/j.canlet.2008.05.041
  • Panvir Therapeutics. Anti-tumor peptides. WO 2022/262942 Al.
  • Li D, Xu Y. Buforin IIb induced cell cycle arrest in liver cancer. Anim Cells Syst. 2019;23(3):176–183. doi: 10.1080/19768354.2019.1595139
  • Han Y, Lu M, Zhou J. Buforin IIb induces androgen-independent prostate cancer cells apoptosis though p53 pathway in vitro. Toxicon. 2019;168:16–21. doi: 10.1016/j.toxicon.2019.06.016
  • Demuris Limited, The Francis Crick Institute Limited. Zinc complexes and their uses. WO 2022/018430 Al.
  • The Reagents of the University of California. Elongation factor 1-alpha inhibitors and uses thereof. WO 2021/158899 Al.
  • Latvian Institute of Organic Synthesis. Structurally simplified diazonamide analogs as antimitotic agents. WO 2021/130515 Al.
  • William Marsh Rise University. Trioxacarcin analogs and dimers as potent anticancer agents. WO 2019/036537 A1.
  • Hosseini SS, Nazifi P, Amini M, et al. Crocin suppresses colorectal cancer cell proliferation by regulating miR-143/145 and KRAS/RREB1 pathways. ACAMC. 2023 Jul 18;23(17):1916–1923. doi: 10.2174/1871520623666230718145100
  • Li HX, Jing YX, Chai YH, et al. Mechanism of procyanidin b2 in the treatment of chronic myeloid leukemia based on integrating network pharmacology and molecular docking. ACAMC. 2023 May 26;23(16):1838–1847. doi: 10.2174/1871520623666230526122524
  • Ahmad H, Crotts M, Jacobs J, et al. Shikonin Causes non-apoptotic cell death in B16F10 melanoma. ACAMC. 2023 Jun 30;23(16):1880–1887. doi: 10.2174/1871520623666230701000338
  • Li X, Yuan X, Fu H, et al. Konjac Glucomannan, in combination with cisplatin, suppresses lymphoma malignant progression by inducing ferroptosis. Anticancer Agents Med Chem. 2023 May 29. doi: 10.2174/1871520623666230529160837
  • Yan Q, Su S, Dai G, et al. Prebiotics modulate gut microbiota-mediated T-cell immunity to enhance the inhibitory effect of Sintilimab in Lewis lung adenocarcinoma model mice. ACAMC. 2023 Jul 7;23(17):1966–1973.
  • Gallorini M, Carradori S, Panieri E, et al. Modulation of NRF2: biological dualism in cancer, targets and possible therapeutic applications. Antioxid Redox Signal. 2023 Jul 20; doi: 10.1089/ars.2022.0213
  • Singhai M, Pandey V, Ashique S, et al. Design and evaluation of SLNs encapsulated curcumin-based topical formulation for the management of cervical cancer. ACAMC. 2023 Jun 26;23(16):1866–1879. doi: 10.2174/1871520623666230626145750
  • Di Giacomo S, Mariano A, Gullì M, et al. Role of Caryophyllane Sesquiterpenes in the entourage effect of Felina 32 hemp inflorescence phytocomplex in triple negative MDA-MB-468 breast cancer cells. Molecules. 2021;26(21):6688. doi: 10.3390/molecules26216688
  • Izzo AA, Teixeira M, Alexander SP, et al. A practical guide for transparent reporting of research on natural products in the British journal of pharmacology: reproducibility of natural product research. Br J Pharmacol. 2020;177(10):2169–2178. doi: 10.1111/bph.15054
  • Shanmugaraj B, Bulaon CJ, Phoolcharoen W. Plant molecular farming: a viable platform for recombinant biopharmaceutical production. Plants. 2020;9(7):842. doi: 10.3390/plants9070842
  • Dreyfuss RC, Nielsen J, Nicol D. Patenting nature—a comparative perspective. J Law Biosci. 2018;5(3):550–589. doi: 10.1093/jlb/lsy021
  • Wong AY, Chan AW. Myriad and its implications for patent protection of isolated natural products in the United States. Chin Med. 2014;9(1):17. doi: 10.1186/1749-8546-9-17
  • Li F, Wang Y, Li D, et al. Are we seeing a resurgence in the use of natural products for new drug discovery? Ex Op Drug Discov. 2019;14(5):417–420. doi: 10.1080/17460441.2019.1582639
  • [cited 2023 Sep 1]. https://link.epo.org/web/epo_guidelines_for_examination_2023_hyperlinked_en.pdf
  • Chan WJ, Adiwidjaja J, McLachlan AJ, et al. Interactions between natural products and cancer treatments: underlying mechanisms and clinical importance. Cancer Chemother Pharmacol. 2023;91(2):103–119. doi: 10.1007/s00280-023-04504-z
  • Choudhury A, Singh PA, Bajwa N, et al. Pharmacovigilance of herbal medicines: concerns and future prospects. J Ethnopharmacol. 2023;309:116383. doi: 10.1016/j.jep.2023.116383
  • [cited 2023 Sep 12]. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-mitomycin-low-grade-upper-tract-urothelial-cancer#:~:text=On%20April%2015%2C%202020%2C%20the,cancer%20(LG%2DUTUC)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.