231
Views
1
CrossRef citations to date
0
Altmetric
Review

Proteasome inhibitors as anticancer agents

, , &
Pages 775-796 | Received 28 Jul 2023, Accepted 16 Oct 2023, Published online: 30 Oct 2023

References

  • Jang HH. Regulation of protein degradation by proteasomes in cancer. J Cancer Prev. 2018;23(4):153–161. doi: 10.15430/JCP.2018.23.4.153
  • Dong S, Chen H, Zhou Q, et al. Protein degradation control and regulation of bacterial survival and pathogenicity: the role of protein degradation systems in bacteria. Mol Biol Rep. 2021;48(11):7575–7585. doi: 10.1007/s11033-021-06744-9
  • Ignatz-Hoover JJ, Murphy EV, Driscoll JJ. Targeting proteasomes in cancer and infectious disease: a parallel strategy to Treat malignancies and microbes. Front Cell Infect Microbiol. 2022;12:925804. doi: 10.3389/fcimb.2022.925804
  • Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol. 2017;14(7):417–433. doi: 10.1038/nrclinonc.2016.206
  • Tu Y, Chen C, Pan J, et al. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis. Int J Clin Exp Pathol. 2012;5(8):726–738.
  • Rousseau A, Bertolotti A. Regulation of proteasome assembly and activity in health and disease. Nat Rev Mol Cell Biol. 2018;19(11):697–712. doi: 10.1038/s41580-018-0040-z
  • Dale B, Cheng M, Park KS, et al. Advancing targeted protein degradation for cancer therapy. Nat Rev Cancer. 2021;21(10):638–654. doi: 10.1038/s41568-021-00365-x
  • Schmidt M, Finley D. Regulation of proteasome activity in health and disease. Biochim Biophys Acta. 2014;1843(1):13–25. doi: 10.1016/j.bbamcr.2013.08.012
  • Thibaudeau TA, Smith DM, Ma Q. A practical review of proteasome pharmacology. Pharmacol Rev. 2019;71(2):170–197. doi: 10.1124/pr.117.015370
  • DeMartino GN, Proske RJ, Moomaw CR, et al. Identification, purification, and characterization of a PA700-dependent activator of the proteasome. J Biol Chem. 1996;271(6):3112–3118. doi: 10.1074/jbc.271.6.3112
  • Borissenko L, Groll M. 20S proteasome and its inhibitors: crystallographic knowledge for drug development. Chem Rev. 2007;107(3):687–717. doi: 10.1021/cr0502504
  • DeMartino GN, Slaughter CA. The proteasome, a novel protease regulated by multiple mechanisms. J Biol Chem. 1999;274(32):22123–22126. doi: 10.1074/jbc.274.32.22123
  • Tracz M, Bialek W. Beyond K48 and K63: non-canonical protein ubiquitination. Cell Mol Biol Lett. 2021;26(1):1. doi: 10.1186/s11658-020-00245-6
  • Lefaki M, Papaevgeniou N, Chondrogianni N. Redox regulation of proteasome function. Redox Biol. 2017;13:452–458. doi: 10.1016/j.redox.2017.07.005
  • Budenholzer L, Cheng CL, Li Y, et al. Proteasome structure and assembly. J Mol Biol. 2017;429(22):3500–3524. doi: 10.1016/j.jmb.2017.05.027
  • Bard JAM, Goodall EA, Greene ER, et al. Structure and function of the 26S proteasome. Annu Rev Biochem. 2018;87(1):697–724. doi: 10.1146/annurev-biochem-062917-011931
  • Structure MY. Dynamics and function of the 26S proteasome. Subcell Biochem. 2021;96:1–151.
  • Groll M, Ditzel L, Löwe J, et al. Structure of 20S proteasome from yeast at 2.4 a resolution. Nature. 1997;386(6624):463–471. doi: 10.1038/386463a0
  • Schrader J, Henneberg F, Mata RA, et al. The inhibition mechanism of human 20S proteasomes enables next-generation inhibitor design. Science. 2016;353(6299):594–598. doi: 10.1126/science.aaf8993
  • Park JE, Miller Z, Jun Y, et al. Next-generation proteasome inhibitors for cancer therapy. Transl Res. 2018;198:1–16. doi: 10.1016/j.trsl.2018.03.002
  • Rabl J, Smith DM, Yu Y, et al. Mechanism of gate opening in the 20S proteasome by the proteasomal ATPases. Mol Cell. 2008;30(3):360–368. doi: 10.1016/j.molcel.2008.03.004
  • Voges D, Zwickl P, Baumeister W. The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem. 1999;68(1):1015–1068. doi: 10.1146/annurev.biochem.68.1.1015
  • Kisselev AF, Callard A, Goldberg AL. Importance of the different proteolytic sites of the proteasome and the efficacy of inhibitors varies with the protein substrate. J Biol Chem. 2006;281(13):8582–8590. doi: 10.1074/jbc.M509043200
  • Aliabadi F, Sohrabi B, Mostafavi E, et al. Ubiquitin–proteasome system and the role of its inhibitors in cancer therapy. Open Biol. 2021;11(4):200390. doi: 10.1098/rsob.200390
  • Fricker LD. Proteasome inhibitor drugs. Annu Rev Pharmacol Toxicol. 2020;60(1):457–476. doi: 10.1146/annurev-pharmtox-010919-023603
  • Tsvetkov P, Adler J, Myers N, et al. Oncogenic addiction to high 26S proteasome level. Cell Death Dis. 2018;9(7):773. doi: 10.1038/s41419-018-0806-4
  • Voorhees PM, Dees EC, O’Neil B, et al. The proteasome as a target for cancer therapy. Clin Cancer Res. 2003;9(17):6316–6325.
  • Voutsadakis IA. Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol. 2017;39(3):1010428317692248. doi: 10.1177/1010428317692248
  • Guang MHZ, Kavanagh E, Dunne L, et al. Targeting Proteotoxic stress in cancer: a review of the role that protein quality control pathways play in oncogenesis. Cancers (Basel). 2019;11(1):66. doi: 10.3390/cancers11010066
  • Deshaies RJ. Proteotoxic crisis, the ubiquitin-proteasome system, and cancer therapy. BMC Biol. 2014;12(1):94. doi: 10.1186/s12915-014-0094-0
  • Goldberg AL. Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans. 2007;35(Pt 1):12–17. doi: 10.1042/BST0350012
  • Yang XF, Zhao Z-J, Liu J-J, et al. SAHA and/or MG132 reverse the aggressive phenotypes of glioma cells: an in vitro and vivo study. Oncotarget. 2017;8(2):3156–3169. doi: 10.18632/oncotarget.13680
  • Lee HK, Park SH, Nam MJ. Proteasome inhibitor MG132 induces apoptosis in human osteosarcoma U2OS cells. Hum Exp Toxicol. 2021;40(11):1985–1997. doi: 10.1177/09603271211017972
  • Kim B-S, Kim CU, Kim Y-J, et al. Proteasome inhibitors can induce caspase-3 activation and apoptosis in human CML cell lines. Blood. 2004;104(11):4681. doi: 10.1182/blood.V104.11.4681.4681
  • Matsuo Y, Sawai H, Ochi N, et al. Proteasome inhibitor MG132 inhibits Angiogenesis in pancreatic cancer by blocking NF-κB activity. Dig Dis Sci. 2010;55(4):1167–1176. doi: 10.1007/s10620-009-0814-4
  • Wang X, Yu J, Liu X, et al. PSMG2-controlled proteasome-autophagy balance mediates the tolerance for MEK-targeted therapy in triple-negative breast cancer. Cell Rep Med. 2022;3(9):100741. doi: 10.1016/j.xcrm.2022.100741
  • Deshmukh RR . Proteasome inhibition as a potential anti-breast cancer therapy: mechanisms of action and resistance-reversing strategies. Detroit (MI): Wayne State University Dissertations; 2015. https://digitalcommons.wayne.edu/oa_dissertations/1333
  • Zhang Y, Shi Y, Li X, et al. Proteasome inhibitor MG132 reverses multidrug resistance of gastric cancer through enhancing apoptosis and inhibiting P-gp. Cancer Biol Ther. 2008;7(4):540–546. doi: 10.4161/cbt.7.4.5483
  • Xu P, Zhang Y, Ge F, et al. Modulation of tumor microenvironment to enhance radiotherapy efficacy in esophageal squamous cell carcinoma by inhibiting carbonic anhydrase IX. Front Oncol. 2021;11:637252. doi: 10.3389/fonc.2021.637252
  • Guo N, Peng Z, Zhang J. Proteasome inhibitor MG132 enhances sensitivity to cisplatin on ovarian carcinoma cells in vitro and in vivo. Int J Gynecol Cancer. 2016;26(5):839–844. doi: 10.1097/IGC.0000000000000703
  • Seo PW, Lee KY. The proteasome inhibitor MG132 sensitizes lung cancer cells to TRAIL-induced apoptosis by inhibiting NF-κB activation. trd. Tuberc Respir Dis (Seoul). 2008;65(6):476–486. doi: 10.4046/trd.2008.65.6.476
  • Cheong HJ, Lee KS, Woo IS, et al. Up-regulation of the DR5 expression by proteasome inhibitor MG132 augments TRAIL-induced apoptosis in soft tissue sarcoma cell lines. Cancer Res Treat. 2011;43(2):124–130. doi: 10.4143/crt.2011.43.2.124
  • Li X, Pham V, Tippin M, et al. Flavokawain B targets protein neddylation for enhancing the anti-prostate cancer effect of bortezomib via Skp2 degradation. Cell Commun Signaling. 2019;17(1):25. doi: 10.1186/s12964-019-0338-2
  • Zhang Z, Zhang S, Lin B, et al. Combined treatment of marizomib and cisplatin modulates cervical cancer growth and invasion and enhances antitumor potential in vitro and in vivo. Front Oncol. 2022;12:974573. doi: 10.3389/fonc.2022.974573
  • Roeten MSF, Cloos J, Jansen G, et al. Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol. 2018;81(2):227–243. doi: 10.1007/s00280-017-3489-0
  • Jackson G, Einsele H, Moreau P, et al. Bortezomib, a novel proteasome inhibitor, in the treatment of hematologic malignancies. Cancer Treat Rev. 2005;31(8):591–602. doi: 10.1016/j.ctrv.2005.10.001
  • Reddy N, Czuczman MS. Enhancing activity and overcoming chemoresistance in hematologic malignancies with bortezomib: preclinical mechanistic studies. Ann Oncol. 2010;21(9):1756–1764. doi: 10.1093/annonc/mdq009
  • Duechler M, Linke A, Cebula B, et al. In vitro cytotoxic effect of proteasome inhibitor bortezomib in combination with purine nucleoside analogues on chronic lymphocytic leukaemia cells. Eur J Haematol. 2005;74(5):407–417. doi: 10.1111/j.1600-0609.2004.00406.x
  • VELCADE FDA. Food and drug administration. 2003.
  • VELCADE EMA. European Medicines Agency. 2004.
  • Robak P, Robak T. Bortezomib for the treatment of hematologic malignancies: 15 Years Later. Drugs R D. 2019;19(2):73–92. doi: 10.1007/s40268-019-0269-9
  • NIH. A phase II study of PS-341 in patients with metastatic colorectal cancer. National Library of Medicine; 2005.
  • NIH. A randomized phase II trial of PS-341 and gemcitabine in patients with metastatic pancreatic adenocarcinoma. National Library of Medicine; 2007.
  • NIH. A phase II trial of PS-341 in combination with paclitaxel and carboplatin for metastatic adenocarcinoma of the lower esophagus, gastroesophageal junction, and Gastric Cardia. National Library of Medicine; 2008.
  • Chattopadhyay N, Berger AJ, Koenig E, et al. KRAS genotype correlates with proteasome inhibitor ixazomib activity in preclinical in vivo models of colon and non-small cell lung cancer: potential role of tumor metabolism. PLoS One. 2015;10(12):e0144825. doi: 10.1371/journal.pone.0144825
  • Yue D, Sun X. Ixazomib promotes CHOP-dependent DR5 induction and apoptosis in colorectal cancer cells. Cancer Biol Ther. 2019;20(3):284–294. doi: 10.1080/15384047.2018.1529095
  • Liu W, Chen J, Tamayo AT, et al. Preclinical efficacy and biological effects of the oral proteasome inhibitor ixazomib in diffuse large B-cell lymphoma. Oncotarget. 2018;9(1):346–360. doi: 10.18632/oncotarget.20378
  • Asano T, Sato A, Okubo K. MP72-09 RITONAVIR and IXAZOMIB INHIBIT RENAL CANCER GROWTH in vitro and in vivo by INDUCING ENDOPLASMIC RETICULUM STRESS SYNERGISTICALLY. J Urol. 2018;199(4S). doi: 10.1016/j.juro.2018.02.2293
  • Suarez-Kelly LP, Kemper GM, Duggan MC, et al. The combination of MLN2238 (ixazomib) with interferon-alpha results in enhanced cell death in melanoma. Oncotarget. 2016;7(49):81172–81186. doi: 10.18632/oncotarget.12791
  • Raedler LA. Ninlaro (ixazomib): first oral proteasome inhibitor approved for the treatment of patients with relapsed or refractory multiple myeloma. Am Health Drug Benefits. 2016;9(Spec Feature):102–105.
  • NIH. A window study of ixazomib in untreated indolent B-NHL-current. National Library of Medicine.
  • NIH. Phase II trial of ixazomib combined with gemcitabine and doxorubicin in patients with renal medullary carcinoma-current. National Library of Medicine.
  • NIH. Phase I study of the combination of MLN9708 and fulvestrant in patients with advanced estrogen receptor positive breast cancer. National Library of Medicine; 2018.
  • Piva R, Ruggeri B, Williams M, et al. CEP-18770: a novel, orally active proteasome inhibitor with a tumor-selective pharmacologic profile competitive with bortezomib. Blood. 2008;111(5):2765–2775. doi: 10.1182/blood-2007-07-100651
  • Sanchez E, Li M, Li J, et al. CEP-18770 (delanzomib) in combination with dexamethasone and lenalidomide inhibits the growth of multiple myeloma. Leuk Res. 2012;36(11):1422–1427. doi: 10.1016/j.leukres.2012.07.018
  • Sanchez E, Li M, Steinberg JA, et al. The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphalan. Br J Haematol. 2010;148(4):569–581. doi: 10.1111/j.1365-2141.2009.08008.x
  • Rausch JL, Ali AA, Lee DM, et al. Differential antitumor activity of compounds targeting the ubiquitin-proteasome machinery in gastrointestinal stromal tumor (GIST) cells. Sci Rep. 2020;10(1):5178. doi: 10.1038/s41598-020-62088-7
  • Li J, Zhuo J-Y, Zhou W, et al. Endoplasmic reticulum stress triggers delanzomib-induced apoptosis in HCC cells through the PERK/eIF2α/ATF4/CHOP pathway. Am J Transl Res. 2020;12(6):2875–2889.
  • Wang M, Liang L, Lu J, et al. Delanzomib, a novel proteasome inhibitor, sensitizes breast cancer cells to doxorubicin-induced apoptosis. Thorac Cancer. 2019;10(4):918–929. doi: 10.1111/1759-7714.13030
  • Guo KY, Han L, Li X, et al. Novel proteasome inhibitor delanzomib sensitizes cervical cancer cells to doxorubicin-induced apoptosis via stabilizing tumor suppressor proteins in the p53 pathway. Oncotarget. 2017;8(69):114123–114135. doi: 10.18632/oncotarget.23166
  • Isono M, SATO A, ASANO T, et al. Delanzomib interacts with ritonavir synergistically to cause endoplasmic reticulum stress in renal cancer cells. Anticancer Res. 2018;38(6):3493–3500. doi: 10.21873/anticanres.12620
  • Vogl DT, Martin TG, Vij R, et al. Phase I/II study of the novel proteasome inhibitor delanzomib (CEP-18770) for relapsed and refractory multiple myeloma. Leuk Lymphoma. 2017;58(8):1872–1879. doi: 10.1080/10428194.2016.1263842
  • NIH. An open-label study to determine the maximum tolerated dose and evaluate the safety and efficacy of CEP-18770 in combination with lenalidomide and dexamethasone in patients with relapsed or refractory multiple myeloma. National Library of Medicine; 2013.
  • Gallerani E, Zucchetti M, Brunelli D, et al. A first in human phase I study of the proteasome inhibitor CEP-18770 in patients with advanced solid tumours and multiple myeloma. Eur J Cancer. 2013;49(2):290–296. doi: 10.1016/j.ejca.2012.09.009
  • Busonero C, Leone S, Klemm C, et al. A functional drug re-purposing screening identifies carfilzomib as a drug preventing 17β-estradiol: ERα signaling and cell proliferation in breast cancer cells. Mol Cell Endocrinol. 2018;460:229–237. doi: 10.1016/j.mce.2017.07.027
  • Shi Y, Yu Y, Wang Z, et al. Second-generation proteasome inhibitor carfilzomib enhances doxorubicin-induced cytotoxicity and apoptosis in breast cancer cells. Oncotarget. 2016;7(45):73697–73710. doi: 10.18632/oncotarget.12048
  • Terzi H, Mustafa E, Ergul M, et al. Proteasome inhibitor carfilzomib enhances the anticancer effect of paclitaxel in MDA-MB-231 breast cancer cells. Indian J Pharm Sci. 2019;81(6):81. doi: 10.36468/pharmaceutical-sciences.616
  • Baker AF, Hanke NT, Sands BJ, et al. Carfilzomib demonstrates broad anti-tumor activity in pre-clinical non-small cell and small cell lung cancer models. J Exp Clin Cancer Res. 2014;33(1):111. doi: 10.1186/s13046-014-0111-8
  • Mehta A, Zhang L, Boufraqech M, et al. Carfilzomib is an effective anticancer agent in anaplastic thyroid cancer. Endocr Relat Cancer. 2015;22(3):319–329. doi: 10.1530/ERC-14-0510
  • Guan S, Zhao Y, Lu J, et al. Second-generation proteasome inhibitor carfilzomib sensitizes neuroblastoma cells to doxorubicin-induced apoptosis. Oncotarget. 2016;7(46):75914–75925. doi: 10.18632/oncotarget.12427
  • Zang Y, Thomas SM, Chan ET, et al. The next generation proteasome inhibitors carfilzomib and oprozomib activate prosurvival autophagy via induction of the unfolded protein response and ATF4. Autophagy. 2012;8(12):1873–1874. doi: 10.4161/auto.22185
  • Zang Y, Kirk CJ, Johnson DE. Carfilzomib and oprozomib synergize with histone deacetylase inhibitors in head and neck squamous cell carcinoma models of acquired resistance to proteasome inhibitors. Cancer Biol Ther. 2014;15(9):1142–1152. doi: 10.4161/cbt.29452
  • Tang W, SU G, LI J, et al. Enhanced anti-colorectal cancer effects of carfilzomib combined with CPT-11 via downregulation of nuclear factor-κB in vitro and in vivo. Int J Oncol. 2014;45(3):995–1010. doi: 10.3892/ijo.2014.2513
  • FDA, KYPROLIS. 2012. Food and Drug Administration.
  • EMA, KYPROLIS. 2015. European Medicines Agency.
  • Burke MJ, Ziegler DS, Bautista F, et al. Phase 1b study of carfilzomib with induction chemotherapy in pediatric relapsed/refractory acute lymphoblastic leukemia. Pediatr Blood Cancer. 2022;69(12):e29999. doi: 10.1002/pbc.29999
  • Hurchla MA, Garcia-Gomez A, Hornick MC, et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia. 2013;27(2):430–440. doi: 10.1038/leu.2012.183
  • Sanchez E, Mingjie L, Abigail G, et al. Effects of oprozomib in combination with pomalidomide and/or dexamethasone on human multiple myeloma tumors growing in SCID mice. Blood. 2015;126(23):5349. doi: 10.1182/blood.V126.23.5349.5349
  • Shi Y, Bieerkehazhi S, Ma H. Next-generation proteasome inhibitor oprozomib enhances sensitivity to doxorubicin in triple-negative breast cancer cells. Int J Clin Exp Pathol. 2018;11(5):2347–2355.
  • Vandewynckel YP, Coucke C, Laukens D, et al. Next-generation proteasome inhibitor oprozomib synergizes with modulators of the unfolded protein response to suppress hepatocellular carcinoma. Oncotarget. 2016;7(23):34988–35000. doi: 10.18632/oncotarget.9222
  • Zhu H, Wang T, Xin Z, et al. An oral second-generation proteasome inhibitor oprozomib significantly inhibits lung cancer in a p53 independent manner in vitro. Acta Biochim Biophys Sin (Shanghai). 2019;51(10):1034–1040. doi: 10.1093/abbs/gmz093
  • Caputi FF, Di Cesare Mannelli L, Rullo L, et al. The active second-generation proteasome inhibitor oprozomib reverts the oxaliplatin-induced neuropathy symptoms. Biochem Pharmacol. 2020;182:114255. doi: 10.1016/j.bcp.2020.114255
  • Kazuki O, ISONO M, ASANO T, et al. Ubiquitin-proteasome system is a promising target for killing cisplatin-resistant bladder cancer cells. Anticancer Res. 2021;41(6):2901. doi: 10.21873/anticanres.15072
  • Hungria VTM, Crusoé EDQ, Bittencourt RI, et al. New proteasome inhibitors in the treatment of multiple myeloma. Hematol Transfus Cell Ther. 2019;41(1):76–83. doi: 10.1016/j.htct.2018.07.003
  • Boccellato C, Kolbe E, Peters N, et al. Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death Dis. 2021;12(7):647. doi: 10.1038/s41419-021-03927-x
  • Raninga PV, Lee A, Sinha D, et al. Marizomib suppresses triple-negative breast cancer via proteasome and oxidative phosphorylation inhibition. Theranostics. 2020;10(12):5259–5275. doi: 10.7150/thno.42705
  • Xu J, Liao M, Chen Y, et al. Novel fabrication of marizomib-loaded chitosan-coated hydroxyapatite nanocarriers as a promising system for effective treatment of ovarian cancer. Mater Res Express. 2022;9(3):9. doi: 10.1088/2053-1591/ac5077
  • Roth P, Reijneveld J, Gorlia T, et al. P14.124 EORTC 1709/CCTG CE.8: a phase III trial of marizomib in combination with standard temozolomide-based radiochemotherapy versus standard temozolomide-based radiochemotherapy alone in patients with newly diagnosed glioblastoma, in Neuro Oncol. 2019. © The Author(s). 2019;21(Supplement_3):iii98. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: [email protected]. doi: 10.1093/neuonc/noz126.359
  • NIH. Phase 2 clinical trial of NPI-0052 in patients with relapsed or relapsed/refractory multiple myeloma, in identifier: nCT00461045. National Library of Medicine; 2014.
  • Millward M, Price T, Townsend A, et al. Phase 1 clinical trial of the novel proteasome inhibitor marizomib with the histone deacetylase inhibitor vorinostat in patients with melanoma, pancreatic and lung cancer based on in vitro assessments of the combination. Invest New Drugs. 2012;30(6):2303–2317. doi: 10.1007/s10637-011-9766-6
  • NIH. NPI-0052 and vorinostat in patients with non-small cell lung cancer, pancreatic cancer, melanoma or lymphoma. National Library of Medicine; 2010.
  • Kisselev AF, van der Linden WA, Overkleeft HS, et al. Proteasome inhibitors: an expanding army attacking a unique target. Chem Biol. 2012;19(1):99–115. doi: 10.1016/j.chembiol.2012.01.003
  • Lynas JF, Harriott P, Healy A, et al. Inhibitors of the chymotrypsin-like activity of proteasome based on di- and tri-peptidyl alpha-keto aldehydes (glyoxals). Bioorg Med Chem Lett. 1998;8(4):373–378. doi: 10.1016/S0960-894X(98)00030-4
  • Vinitsky A, Michaud C, Powers JC, et al. Inhibition of the chymotrypsin-like activity of the pituitary multicatalytic proteinase complex. Biochemistry. 1992;31(39):9421–9428. doi: 10.1021/bi00154a014
  • Stein RL, MA YT, Brand S. inventor; ProScript, Inc. assignee. Inhibitors of the 26s proteolytic complex and the 20s proteasome contained therein United States patent US 5,693,617. 1997 Dec 2.
  • Beck P, Dubiella C, Groll M. Covalent and non-covalent reversible proteasome inhibition. Biol Chem. 2012;393(10):1101–1120. doi: 10.1515/hsz-2012-0212
  • Han YH, Moon HJ, You BR, et al. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep. 2009;22(1):215–221. doi: 10.3892/or_00000427
  • Kim YM, Kim HJ. Proteasome inhibitor MG132 is toxic and inhibits the proliferation of rat neural stem cells but increases BDNF expression to protect neurons. Biomolecules. 2020;10(11):1507. doi: 10.3390/biom10111507
  • Park WH, Kim SH. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion. Oncol Rep. 2012;27(4):1284–1291. doi: 10.3892/or.2012.1642
  • Goldberg AL. Development of proteasome inhibitors as research tools and cancer drugs. J Cell Bio. 2012;199(4):583–588. doi: 10.1083/jcb.201210077
  • Guo N, Peng Z. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac J Clin Oncol. 2013;9(1):6–11. doi: 10.1111/j.1743-7563.2012.01535.x
  • Kisselev AF. Site-specific proteasome inhibitors. Biomolecules. 2021;12(1):54. doi: 10.3390/biom12010054
  • Braun HA, Umbreen S, Groll M, et al. Tripeptide mimetics inhibit the 20 S proteasome by covalent bonding to the active threonines. J Biol Chem. 2005;280(31):28394–28401. doi: 10.1074/jbc.M502453200
  • Boris Schmidt B, Umbreen S, Braun H, et al. Technische Universität, Charité-Universitätsmedizin Berlin assignee. MIMETIC PEPTIDES AND THE USE THEREOF IN THE FORM OF 20S, 26S AND MMUNOPROTEASOME INHIBITORS. United States Patent US 8,835,392. inventor. 2014 Sep 16.
  • Zang M, Li Z, Liu L, et al. Anti-tumor activity of the proteasome inhibitor BSc2118 against human multiple myeloma. Cancer Lett. 2015;366(2):173–181. doi: 10.1016/j.canlet.2015.06.011
  • Sterz J, Jakob C, Kuckelkorn U, et al. BSc2118 is a novel proteasome inhibitor with activity against multiple myeloma. Eur J Haematol. 2010;85(2):99–107. doi: 10.1111/j.1600-0609.2010.01450.x
  • Mlynarczuk-Bialy I, Doeppner TR, Golab J, et al. Biodistribution and efficacy studies of the proteasome inhibitor BSc2118 in a mouse melanoma Model. Transl Oncol. 2014;7(5):570–579. doi: 10.1016/j.tranon.2014.07.002
  • Młynarczuk-Biały I, Roeckmann H, Kuckelkorn U, et al. Combined effect of proteasome and calpain inhibition on cisplatin-resistant human melanoma cells. Cancer Res. 2006;66(15):7598–7605. doi: 10.1158/0008-5472.CAN-05-2614
  • Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol. 2001;8(8):739–758. doi: 10.1016/S1074-5521(01)00056-4
  • Matteson DS, Ray R. Directed chiral synthesis with pinanediol boronic esters J. Am Chem Soc. 1980;102(25):7590. doi: 10.1021/ja00545a046
  • Appavu R, Mohan D. Bortezomib in anti-cancer activity: a potential drug. Glob J Cancer Ther. 2016;2(1):005–008. doi: 10.17352/gjct.000007
  • Cusack JC. Rationale for the treatment of solid tumors with the proteasome inhibitor bortezomib. Cancer Treat Rev. 2003;29(1):21–31. doi: 10.1016/S0305-7372(03)00079-3
  • Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective on bortezomib and second generation proteasome inhibitors versus future generation inhibitors of ubiquitin-proteasome system. Curr Cancer Drug Targets. 2014;14(6):517–536. doi: 10.2174/1568009614666140804154511
  • Lü S, Wang J. The resistance mechanisms of proteasome inhibitor bortezomib. Biomark Res. 2013;1(1):13. doi: 10.1186/2050-7771-1-13
  • Lin G, Zhan W, Zhang H, et al. Inventor; UNIV CORNELL assegnee. Artemisinin-proteasome inhibitor conjugates and their use in the treatment of disease. WO2022159581. 2022 Jul 28.
  • Demario MD, Friess T, Ruefli-Brasse AA. inventor; Hoffmann-La Roche Inc. assignee. Combination theraphy with a bet inhibitor and a proteasome inhibitor. United States US2021002309. 2021 Jan 28.
  • Kerckhove N, Collin A, Condé S, et al. Long term effects, pathophysiological mechanisms, and risk factors of chemotherapy induced peripheral neuropathies: a comprehensive literature review. Front Pharmacol. 2017;8:86. doi: 10.3389/fphar.2017.00086
  • TOURMALINE-MM1 Study Group, Moreau P, Masszi T, Grzasko N, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–1634.
  • Muz B, Ghazarian RN, Ou M, et al. Spotlight on ixazomib: potential in the treatment of multiple myeloma. Drug Des Devel Ther. 2016;10:217–226. doi: 10.2147/DDDT.S93602
  • Hideshima T, Richardson PG, Anderson KC. Mechanism of action of proteasome inhibitors and deacetylase inhibitors and the biological basis of synergy in multiple myeloma. Mol Cancer Ther. 2011;10(11):2034–2042. doi: 10.1158/1535-7163.MCT-11-0433
  • Hao F, Yi Z, Xuben H, et al. Inventor; UNIV SHANDONG assignee. Histone deacetylase, and proteasome dual-target inhibitor, preparation method therefor and application thereof. W O2021115188. 2021 Jun 17.
  • Yan G, Zhang H, Zhu W, et al. GUANGZHOU VIROTECH PHARMACEUTICAL CO assignee. Use of preteasome inhibtior and alphavirus in preparation of anti-tumor medicament. United States, US20210228660. inventor. 2021 Jul 29.
  • Lynas JF, Harriott P, Healy A, et al. Inhibitors of the chymotrypsin-like activity of proteasome based on di- and tri-peptidyl α-keto aldehydes (glyoxals). Bioorg Med Chem Lett. 1998;8(4):373–378. doi: 10.1016/S0960-894X(98)00030-4
  • Walker B, McCarthy N, Healy A, et al. Peptide glyoxals: a novel class of inhibitor for serine and cysteine proteinases. Biochem J. 1993;293(2):321. doi: 10.1042/bj2930321
  • Crawford LJ, Walker B, Ovaa H, et al. Comparative selectivity and specificity of the proteasome inhibitors BzLLLCOCHO, PS-341, and MG-132. Cancer Res. 2006;66(12):6379–6386. doi: 10.1158/0008-5472.CAN-06-0605
  • Gräwert MA, Gallastegui N, Stein M, et al. Elucidation of the α-keto-aldehyde binding mechanism: a lead structure motif for proteasome inhibition. Angew Chem Int Ed Engl. 2011;50(2):542–544. doi: 10.1002/anie.201005488
  • Meng L, Mohan R, Kwok BH, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc Natl Acad Sci U S A. 1999;96(18):10403–10408. doi: 10.1073/pnas.96.18.10403
  • Kim KB, Crews CM. From epoxomicin to carfilzomib: chemistry, biology, and medical outcomes. Nat Prod Rep. 2013;30(5):600–604. doi: 10.1039/c3np20126k
  • Meng L, Mohan R, Kwok BH, et al. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Natl Acad Sci USA. 1999;96(18):10403–10408. doi: 10.1073/pnas.96.18.10403
  • Groll M, Kim KB, Kairies N, et al. Crystal structure of epoxomicin: 20S proteasome reveals a molecular basis for selectivity of alphaP, betaP-epoxyketone proteasome inhibitors. J Am Chem Soc. 2000;122:1237–1238. doi: 10.1021/ja993588m
  • Sugumar D, Keller J, Vij R. Targeted treatments for multiple myeloma: specific role of carfilzomib. Pharm Genomics Pers Med. 2015;8:23–33. doi: 10.2147/PGPM.S39085
  • Smyth MS, Laidig GJ, Borchardt RT, et al. inventor . Proteolix Inc. Compounds For Enzyme Inhibition. United States US20050245435. 2005 Nov 3.
  • Zhou Q, Liang J, Yang T, et al. Carfilzomib modulates tumor microenvironment to potentiate immune checkpoint therapy for cancer. EMBO Mol Med. 2022;14(1):e14502. doi: 10.15252/emmm.202114502
  • Laubach JP, Mitsiades CS, Roccaro AM, et al. Clinical challenges associated with bortezomib therapy in multiple myeloma and Waldenströms Macroglobulinemia. Leuk Lymphoma. 2009;50(5):694–702. doi: 10.1080/10428190902866732
  • Zhou HJ, Laidig GJ, Shenk KD, et al. inventor. Proteolix Inc. Assignee. Compounds For Enzyme Inhibition. WO2008140782. 2008 Nov 20.
  • Inventor KK. UNIV KENTUCKY RES FOUND assegnee. Pro Inh. United States US11578101. 2023 Feb 14.
  • Feling RH, Buchanan GO, Mincer TJ, et al. Salinosporamide A: a highly cytotoxic proteasome inhibitor from a novel microbial source, a marine bacterium of the new genus salinospora. Angew Chem Int Ed Engl. 2003;42(3):355–357. doi: 10.1002/anie.200390115
  • Maldonado LA, Fenical W, Jensen PR, et al. Salinispora arenicola gen. nov., sp. nov. And Salinispora tropica sp. nov., obligate marine actinomycetes belonging to the family micromonosporaceae. Int J Syst Evol Microbiol. 2005;55(Pt 5):1759–1766. doi: 10.1099/ijs.0.63625-0
  • Chauhan D, Catley L, Li G, et al. A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell. 2005;8(5):407–419. doi: 10.1016/j.ccr.2005.10.013
  • Groll M, McArthur KA, Macherla VR, et al. Snapshots of the fluorosalinosporamide/20S complex offer mechanistic insights for fine tuning proteasome inhibition. J Med Chem. 2009;52(17):5420–5428. doi: 10.1021/jm900559x
  • Groll M, Huber R, Potts BCM. Crystal structures of Salinosporamide a (NPI-0052) and B (NPI-0047) in complex with the 20S proteasome reveal important consequences of β-lactone ring Opening and a mechanism for irreversible binding. J Am Chem Soc. 2006;128(15):5136–5141. doi: 10.1021/ja058320b
  • Trika M, Levin N, Winograd B. Celgene international II sàrl assignee. Use of a proteasome inhibitor for the treatment of central nervous system (CNS) cancers. Unites States US20200085789. inventor. 2020 Mar 19.
  • Tello-Aburto R, Rogelj S, Hallada L, et al. Inventor; NEW MEXICO TECH UNIV RESEARCH PARK CORPORATION assegnee. Proteasome Inhibitors. United State US11396497. 2022 Jul 26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.