141
Views
0
CrossRef citations to date
0
Altmetric
Review

An updated patent review of GPR40/ FFAR1 modulators (2020 – present)

, , , , & ORCID Icon
Pages 565-577 | Received 08 May 2023, Accepted 04 Oct 2023, Published online: 10 Nov 2023

References

  • Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol. 2020 Jul;16(7):349–362. doi: 10.1038/s41574-020-0355-7
  • Gerich JE. Contributions of insulin-resistance and insulin-secretory defects to the pathogenesis of type 2 diabetes mellitus. Mayo Clin Proc. 2003 Apr;78(4):447–456. doi: 10.4065/78.4.447
  • Cousin E, Duncan BB, Stein C. Diabetes mortality and trends before 25 years of age: an analysis of the global burden of disease study 2019. Lancet Diabetes Endocrinol. 2022 Mar;10(3):177–192. doi: 10.1016/S2213-8587(21)00349-1
  • Samsu N. Diabetic Nephropathy: challenges in pathogenesis, diagnosis, and treatment. Biomed Res Int. 2021;2021:1497449. doi: 10.1155/2021/1497449
  • Krill AE. Vascular complications of diabetes mellitus-with special emphasis on microangiopathy of the eye. Diabetes. 1967;16(10):740–740.
  • Braffett BH, Gubitosi-Klug RA, Albers JW, et al. Risk factors for diabetic peripheral neuropathy and cardiovascular autonomic neuropathy in the diabetes control and complications trial/epidemiology of diabetes interventions and complications (DCCT/EDIC) study. Diabetes. 2020;69(5):1000–1010. doi: 10.2337/db19-1046
  • Bandyk DF. The diabetic foot: pathophysiology, evaluation, and treatment. Semin Vasc Surg. 2018 Jun;31(2–4):43–48. doi: 10.1053/j.semvascsurg.2019.02.001
  • Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019 Jun 13;5(1):42. doi: 10.1038/s41572-019-0092-1
  • Feldman EL, Nave KA, Jensen TS, et al. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain. Neuron. 2017 Mar 22;93(6):1296–1313. doi: 10.1016/j.neuron.2017.02.005
  • Jolivalt CG, Frizzi KE, Guernsey L, et al. Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol. 2016 Sep 1;6(3):223–255. doi: 10.1002/cpmo.11
  • Choi HS, Kim S, Kim MJ, et al. Efficacy and safety of panax ginseng berry extract on glycemic control: a 12-wk randomized, double-blind, and placebo-controlled clinical trial. J Ginseng Res. 2018 Jan;42(1):90–97. doi: 10.1016/j.jgr.2017.01.003
  • Briscoe CP, Tadayyon M, Andrews JL, et al. The orphan G protein-coupled receptor GPR40 is activated by medium and long chain fatty acids. J Biol Chem. 2003 Mar 28;278(13):11303–11311. doi: 10.1074/jbc.M211495200
  • Sawzdargo M, George SR, Nguyen T, et al. A cluster of four novel human G protein-coupled receptor genes occurring in close proximity to CD22 gene on chromosome 19q13.1. Biochem Biophys Res Commun. 1997 Oct 20;239(2):543–547. doi: 10.1006/bbrc.1997.7513
  • Freitas RDS, Campos MM. Understanding the appetite modulation pathways: the role of the FFA1 and FFA4 receptors. Biochem Pharmacol. 2021 Apr;186:114503. doi: 10.1016/j.bcp.2021.114503
  • Li Z, Xu X, Huang W, et al. Free fatty acid receptor 1 (FFAR1) as an emerging therapeutic target for type 2 diabetes mellitus: recent progress and prevailing challenges. Med Res Rev. 2018 Mar;38(2):381–425. doi: 10.1002/med.21441
  • Oya M, Kitaguchi T, Pais R, et al. The G protein-coupled receptor family C group 6 subtype a (GPRC6A) receptor is involved in amino acid-induced glucagon-like peptide-1 secretion from GLUTag cells. J Biol Chem. 2013 Feb 15;288(7):4513–4521. doi: 10.1074/jbc.M112.402677
  • Sona C, Kumar A, Dogra S, et al. Docosahexaenoic acid modulates brain-derived neurotrophic factor via GPR40 in the brain and alleviates diabesity-associated learning and memory deficits in mice. Neurobiol Dis. 2018 Oct;118:94–107.
  • Zhang X, Yan G, Li Y, et al. DC260126, a small-molecule antagonist of GPR40, improves insulin tolerance but not glucose tolerance in obese Zucker rats. Biomed Pharmacother. 2010 Nov;64(9):647–651. doi: 10.1016/j.biopha.2010.06.008
  • Syed I, Lee J, Moraes-Vieira PM, et al. Palmitic acid hydroxystearic acids activate gpr40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 2018 Feb 6;27(2):419–427. doi: 10.1016/j.cmet.2018.01.001
  • Kaku K, Araki T, Yoshinaka R. Randomized, double-blind, dose-ranging study of TAK-875, a novel GPR40 agonist, in Japanese patients with inadequately controlled type 2 diabetes. Diabetes Care. 2013 Feb;36(2):245–250. doi: 10.2337/dc12-0872
  • Yamada H, Yoshida M, Ito K, et al. Potentiation of glucose-stimulated insulin secretion by the GPR40–PLC–TRPC pathway in pancreatic β-cells. Sci Rep. 2016 May 16;6(1):25912. doi: 10.1038/srep25912
  • Kebede M, Alquier T, Latour MG, et al. The fatty acid receptor GPR40 plays a role in insulin secretion in vivo after high-fat feeding. Diabetes. 2008 Sep;57(9):2432–2437. doi: 10.2337/db08-0553
  • Königs V, Pierre S, Schicht M, et al. GPR40 activation abolishes diabetes-induced painful neuropathy by suppressing VEGF-A expression. Diabetes. 2022 Apr 1;71(4):774–787. doi: 10.2337/db21-0711
  • Richner M, Ferreira N, Dudele A, et al. Functional and structural changes of the blood-nerve-barrier in diabetic neuropathy. Front Neurosci. 2018;12:1038. doi: 10.3389/fnins.2018.01038
  • Singleton JR, Marcus RL, Jackson JE, et al. Exercise increases cutaneous nerve density in diabetic patients without neuropathy. Ann Clin Transl Neurol. 2014 Oct;1(10):844–849. doi: 10.1002/acn3.125
  • Park J, Lee MY, Seo YS, et al. GPR40 agonist inhibits NLRP3 inflammasome activation via modulation of nuclear factor-κB and sarco/endoplasmic reticulum Ca(2+)-ATPase. Life Sci. 2021 Dec 15;287:120127. doi: 10.1016/j.lfs.2021.120127
  • Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016-2019): a patent review. Expert Opin Ther Pat. 2020 Jan;30(1):27–38. doi: 10.1080/13543776.2020.1698546
  • Marcinak JF, Munsaka MS, Watkins PB, et al. Liver safety of fasiglifam (TAK-875) in patients with type 2 diabetes: review of the global clinical trial experience. Drug Saf. 2018 Jun;41(6):625–640. doi: 10.1007/s40264-018-0642-6
  • Liu JJ, Wang Y, Ma Z, et al. Optimization of GPR40 agonists for type 2 diabetes. ACS Med Chem Lett. 2014 May 8;5(5):517–521. doi: 10.1021/ml400501x
  • Bazydlo-Guzenda K, Gierczak-Pachulska A, Jarus-Dziedzic K, et al. 761-P: safety and pharmacokinetic study of GPR40 agonist (CPL207280) after a single dose in healthy subjects. Diabetes. 2021;70(Supplement_1). doi: 10.2337/db21-761-P
  • Yoon J, Song H, Kim JH, et al. 124-LB: development of IDG-16177, a selective and safe GPR40 agonist for the treatment of type 2 diabetes. Diabetes. 2021;70(Supplement_1). doi: 10.2337/db21-124-LB
  • Nishizaki H, Matsuoka O, Kagawa T, et al. SCO-267, a GPR40 full agonist, stimulates islet and gut hormone secretion and improves glycemic control in humans. Diabetes. 2021 Oct;70(10):2364–2376. doi: 10.2337/db21-0451
  • Kim K-H, Yang H-J, Baek M. 1089-P: a phase 1, randomized, Double-blind, placebo-controlled multiple ascending dose study of HD-6277, a potent and selective G-Protein-coupled receptor 40 (GPR40) agonist, in patients with type 2 diabetes mellitus. Diabetes. 2020;69(Supplement_1). doi: 10.2337/db20-1089-P
  • Garrido DM, Corbett DF, Dwornik KA, et al. Synthesis and activity of small molecule GPR40 agonists. Bioorg Med Chem Lett. 2006 Apr 1;16(7):1840–1845. doi: 10.1016/j.bmcl.2006.01.007
  • McKeown SC, Corbett DF, Goetz AS, et al. Solid phase synthesis and SAR of small molecule agonists for the GPR40 receptor. Bioorg Med Chem Lett. 2007 Mar 15;17(6):1584–1589. doi: 10.1016/j.bmcl.2006.12.084
  • Smithkline Beecham Corporation. Preparation of aminophenylcyclopropylcarboxylates as G protein coupled receptor 40 (GPR40) agonists WO2005051890; 2005.
  • Negoro N, Sasaki S, Ito M, et al. Identification of fused-ring alkanoic acids with improved pharmacokinetic profiles that act as G protein-coupled receptor 40/free fatty acid receptor 1 agonists. J Med Chem. 2012 Feb 23;55(4):1538–1552. doi: 10.1021/jm2012968
  • Hedrington MS, Davis SN. Discontinued in 2013: diabetic drugs. Expert Opin Investig Drugs. 2014 Dec;23(12):1703–7311. doi: 10.1517/13543784.2014.964859
  • Tomita T, Hosoda K, Fujikura J, et al. The G-protein-coupled long-chain fatty acid receptor GPR40 and glucose metabolism. Front Endocrinol. 2014;5:152. doi: 10.3389/fendo.2014.00152
  • Milligan G, Shimpukade B, Ulven T, et al. Complex pharmacology of free fatty acid receptors. Chem Rev. 2017 Jan 11;117(1):67–110. doi: 10.1021/acs.chemrev.6b00056
  • Li X, Zhong K, Guo Z, et al. Fasiglifam (TAK-875) inhibits hepatobiliary transporters: a possible factor contributing to fasiglifam-induced liver injury. Drug Metab Dispos. 2015 Nov;43(11):1751–1759. doi: 10.1124/dmd.115.064121
  • Industry Foundation of Chonnam National University. Composition of preventing or improving bone disease comprising Vitex rotundifolia extract KR2022089042; 2020.
  • Wauquier F, Philippe C, Léotoing L, et al. The free fatty acid receptor G protein-coupled receptor 40 (GPR40) protects from bone loss through inhibition of osteoclast differentiation. J Biol Chem. 2013 Mar 1;288(9):6542–6551. doi: 10.1074/jbc.M112.429084
  • Houze JB, Zhu L, Sun Y, et al. AMG 837: a potent, orally bioavailable GPR40 agonist. Bioorg Med Chem Lett. 2012 Jan 15;22(2):1267–1270. doi: 10.1016/j.bmcl.2011.10.118
  • Ildong Pharmaceutical Co., Ltd. Preparation of novel phenyl propionic acid derivatives and uses thereof US20220112185; 2020.
  • Ildong Pharmaceutical Co., Ltd. Pharmaceutical composition useful for treating e.g. type 2 diabetes mellitus and hyperinsulinemia, comprises (S)-3-(4-((R)-7-fluoro-4-(6-((R)-(tetrahydro-furan-3-yl)oxy)-pyridin-3-yl)-indan-1-yloxy)-phenyl)-hex-4-ynoic acid, and sodium-glucose cotransporter 2 inhibitor WO2022231357; 2022.
  • Ildong Pharmaceutical Co., Ltd. Novel crystalline form of GPR40 agonist US20230022803; 2023.
  • Hyundai Pharm. 3-(4-(Benzyloxy)phenyl)hex-4-ynoic acid derivative as GPR40 activator and method for the preparation thereof WO2014171762; 2014.
  • Hyundai Pharm. Novel use of 3-(4-(benzyloxy)phenyl)hex-4-inoic acid derivative for treating muscle disease WO2022211303; 2022.
  • Celon Pharma S.A. 3-phenyl-4-hexynoic acid derivatives as GPR40 agonists WO2019134984; 2019.
  • Bazydlo-Guzenda K, Buda P, Matloka M, et al. CPL207280, a novel G protein-coupled receptor 40/free fatty acid receptor 1-specific agonist, shows a favorable safety profile and exerts antidiabetic effects in type 2 diabetic animals. Mol Pharmacol. 2021 Oct;100(4):335–347. doi: 10.1124/molpharm.121.000260
  • AB Pharma Ltd. Preparation of benzo oxygen-containing heterocyclic compound and medical application thereof WO2022053013; 2022.
  • The Second Peoples Hospital Of Yunnan Province. A compound with hypoglycemic and lipid-lowering effects and its preparation and application CN202011380761.6; 2020.
  • Zhou Z, Ren Q, Jiao S, et al. Discovery of new and highly effective quadruple FFA1 and PPARα/γ/δ agonists as potential anti-fatty liver agents. Eur J Med Chem 2022 Feb 5;229:114061. doi: 10.1016/j.ejmech.2021.114061
  • Zhou Z, Cai Z, Zhang C, et al. Design, synthesis, and biological evaluation of novel dual FFA1 and PPARδ agonists possessing phenoxyacetic acid scaffold. Bioorg Med Chem. 2022 Feb 15;56:116615. doi: 10.1016/j.bmc.2022.116615
  • Guangdong Pharmaceutical University. Novel FFA1 and PPAR α/γ/δ quadruple agonists and preparation thereof CN202011595384.8; 2020.
  • Chen C, Guo SM, Sun Y, et al. Discovery of orally effective and safe GPR40 agonists by incorporating a chiral, rigid and polar sulfoxide into β-position to the carboxylic acid. Eur J Med Chem. 2023 May 5;251:115267. doi: 10.1016/j.ejmech.2023.115267
  • Chen C, Li H, Long YQ. GPR40 agonists for the treatment of type 2 diabetes mellitus: the biological characteristics and the chemical space. Bioorg Med Chem Lett. [2016 Dec 1];26(23):5603–5612. doi: 10.1016/j.bmcl.2016.10.074
  • Luo J, Swaminath G, Brown SP, et al. A potent class of GPR40 full agonists engages the enteroinsular axis to promote glucose control in rodents. PLoS One. 2012;7(10):e46300. doi: 10.1371/journal.pone.0046300
  • Inorbit Therapeutics AB. Sulfinic acid compounds as free fatty acid receptor agonists and their preparation WO2021028810; 2021.
  • University of Copenhagen. Modulators of free fatty acid receptor 1 and their use for treatment of diseases WO2020104578; 2020.
  • Wang Y, Liu JJ, Dransfield PJ, et al. Discovery and optimization of potent GPR40 full agonists containing tricyclic spirocycles. ACS Med Chem Lett. 2013 Jun 13;4(6):551–555. doi: 10.1021/ml300427u
  • Du X, Dransfield PJ, Lin DC, et al. Improving the pharmacokinetics of GPR40/FFA1 full agonists. ACS Med Chem Lett. 2014 Apr 10;5(4):384–389. doi: 10.1021/ml4005123
  • Kallyope, Inc. Preparation of 3-cyclopropyl-3-(3-acyloxyphenyl)propanoic acid derivatives as Gpr40 agonists WO2020242943; 2020.
  • Kallyope, Inc. GPR40 agonists WO2021174048; 2021.
  • Rezubio Pharmaceuticals Co., Ltd. Preparation of substituted (2S,3R)-3-cyclopropyl-2-methylchroman-7-yl)propanoic acids and related derivatives as GPR40 agonists useful antidiabetic compounds and their pharmaceutical compositions WO2022028317; 2022.
  • The Fourth Military Medical University. Application of 3,4,6,7,9,10-hexahydroacridine-1,8(2H,5H)-dione compound in preparation of antidiabetic drug WO2021204197; 2020.
  • GBiotech S.A.R.L. Agonists of free fatty acid receptor 1 and their use in diseases associated with said receptor WO2022083853; 2022.
  • Dalian institute of chemical physics, Chinese Academy of Sciences. Application and pharmaceutical composition of atractylon or atractydin as FFA1 agonist CN202010919683.6; 2020.
  • National University Corporation Tokai National Higher Education and Research System. Peptides with activating intestinal FFAR1 for promoting insulin secretion to improve type II diabetes JP2022110247; 2022.
  • Kim K-H, Yang H-J, Baek M. 1089-P: a phase 1, randomized, Double-blind, placebo-controlled multiple ascending dose study of HD-6277, a potent and selective G-protein-coupled receptor 40 (GPR40) agonist, in patients with type 2 diabetes mellitus. Diabetes. 2020;69(Supplement_1). doi: 10.2337/db20-1089-P
  • Glaxo Group Limited. Method of screening for GPR40 ligands WO2002057783; 2002.
  • Nguyen TT, QTH T, Nguyen TKO, et al. Type 3 diabetes and its role implications in Alzheimer’s disease. Int J Mol Sci. 2020 Apr 30;21(9):3165. doi: 10.3390/ijms21093165
  • Chen JJ, Gong YH, He L. Role of GPR40 in pathogenesis and treatment of Alzheimer’s disease and type 2 diabetic dementia. J Drug Target. 2019 Apr;27(4):347–354. doi: 10.1080/1061186X.2018.1491979
  • Gagnon L, Leduc M, Thibodeau JF, et al. A newly discovered antifibrotic pathway regulated by two fatty acid receptors: GPR40 and GPR84. Am J Pathol. 2018 May;188(5):1132–1148. doi: 10.1016/j.ajpath.2018.01.009
  • Shavadia JS, Sharma A, Gu X, et al. Determination of fasiglifam-induced liver toxicity: insights from the data monitoring committee of the fasiglifam clinical trials program. Clin Trials. 2019 Jun;16(3):253–262. doi: 10.1177/1740774519836766
  • Otieno MA, Snoeys J, Lam W, et al. Fasiglifam (TAK-875): mechanistic investigation and retrospective identification of hazards for drug induced liver injury. Toxicol Sci. 2018 Jun 1;163(2):374–384. doi: 10.1093/toxsci/kfx040
  • Doerfler H, Botesteanu DA, Blech S, et al. Untargeted metabolomic analysis combined with multivariate statistics reveal distinct metabolic changes in GPR40 agonist-treated animals related to bile acid metabolism. Front Mol Biosci. 2020;7:598369. doi: 10.3389/fmolb.2020.598369
  • Chen M, Borlak J, Tong W. High lipophilicity and high daily dose of oral medications are associated with significant risk for drug-induced liver injury. Hepatology. 2013 Jul;58(1):388–396. doi: 10.1002/hep.26208
  • Leeson PD, Bento AP, Gaulton A, et al. Target-based evaluation of “drug-like” properties and ligand efficiencies. J Med Chem. 2021 Jun 10;64(11):7210–7230. doi: 10.1021/acs.jmedchem.1c00416
  • Van Vleet TR, Liu H, Lee A, et al. Acyl glucuronide metabolites: implications for drug safety assessment. Toxicol Lett. 2017 Apr 15;272:1–7. doi: 10.1016/j.toxlet.2017.03.003
  • Kalgutkar AS. Designing around structural alerts in drug Discovery. J Med Chem. [2020 Jun 25];63(12):6276–6302. doi: 10.1021/acs.jmedchem.9b00917
  • Kogame A, Lee R, Pan L, et al. Disposition and metabolism of the G protein-coupled receptor 40 agonist TAK-875 (fasiglifam) in rats, dogs, and humans. Xenobiotica. 2019 Apr;49(4):433–445. doi: 10.1080/00498254.2018.1453100
  • Edfalk S, Steneberg P, Edlund H. Gpr40 is expressed in enteroendocrine cells and mediates free fatty acid stimulation of incretin secretion. Diabetes. 2008 Sep;57(9):2280–2287. doi: 10.2337/db08-0307
  • Fang S, Suh JM, Reilly SM, et al. Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nat Med. 2015 Feb;21(2):159–165. doi: 10.1038/nm.3760
  • Darwish KM, Salama I, Mostafa S, et al. Synthesis, biological evaluation, and molecular docking investigation of benzhydrol- and indole-based dual PPAR-γ/FFAR1 agonists. Bioorg Med Chem Lett. 2018 May 15;28(9):1595–1602. doi: 10.1016/j.bmcl.2018.03.051
  • Hidalgo-Figueroa S, Navarrete-Vázquez G, Estrada-Soto S, et al. Discovery of new dual PPARγ-GPR40 agonists with robust antidiabetic activity: design, synthesis and in combo drug evaluation. Biomed Pharmacother. 2017 Jun;90:53–61.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.