348
Views
0
CrossRef citations to date
0
Altmetric
Review

An updated patent review of AKT inhibitors (2020 – present)

, , , , , , ORCID Icon & show all
Pages 549-564 | Received 20 Apr 2023, Accepted 18 Oct 2023, Published online: 27 Oct 2023

References

  • Sun P, LH M. Emerging roles of class I PI3K inhibitors in modulating tumor microenvironment and immunity. Acta Pharmacol Sin. 2020;41(11):1395–1402. doi: 10.1038/s41401-020-00500-8
  • Hoxhaj G, Manning BD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nat Rev Cancer. 2020;20(2):74–88. doi: 10.1038/s41568-019-0216-7
  • Hua H, Zhang H, Chen J, et al. Targeting Akt in cancer for precision therapy. J Hematol Oncol. 2021;14(1):128. doi: 10.1186/s13045-021-01137-8
  • Mattmann ME, Stoops SL, Lindsley CW. Inhibition of Akt with small molecules and biologics: historical perspective and current status of the patent landscape. Expert Opin Ther Pat. 2011;21(9):1309–1338. doi: 10.1517/13543776.2011.587959
  • Uko NE, Guner OF, Matesic DF, et al. Akt pathway inhibitors. Curr Top Med Chem. 2020;20(10):883–900. doi: 10.2174/1568026620666200224101808
  • Hers I, Vincent EE, Tavare JM. Akt signalling in health and disease. Cell Signal. 2011;23(10):1515–1527. doi: 10.1016/j.cellsig.2011.05.004
  • Hinz N, Jucker M. Distinct functions of AKT isoforms in breast cancer: a comprehensive review. Cell Commun Signal. 2019;17(1):154. doi: 10.1186/s12964-019-0450-3
  • Che J, Dai X, Gao J, et al. Discovery of N-((3S,4S)-4-(3,4-Difluorophenyl)piperidin-3-yl)-2-fluoro-4-(1-methyl-1H-pyrazol-5-yl)benzamide (Hu7691), a potent and selective Akt inhibitor that enables decrease of cutaneous toxicity. J Med Chem. 2021;64(16):12163–12180. doi: 10.1021/acs.jmedchem.1c00815
  • Quambusch L, Landel I, Depta L, et al. Covalent-allosteric inhibitors to achieve Akt isoform-selectivity. Angew Chem Int Ed Engl. 2019;58(52):18823–18829. doi: 10.1002/anie.201909857
  • Yimon AYE, Liu X, LONG MJC. Akt isozyme-specific covalent inhibitors derived from redox-signaling lipids. 2020. US20200148682A1.
  • Xu F, Zhang X, Chen Z, et al. Discovery of isoform-selective Akt3 degraders overcoming osimertinib-induced resistance in non-small cell lung cancer cells. J Med Chem. 2022;65(20):14032–14048. doi: 10.1021/acs.jmedchem.2c01246
  • Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc Natl Acad Sci U S A. 1996;93(8):3636–3641. doi: 10.1073/pnas.93.8.3636
  • Yamazoe S, Tom J, Fu Y, et al. Heterobifunctional molecules induce dephosphorylation of kinases-A proof of concept study. J Med Chem. 2020;63(6):2807–2813. doi: 10.1021/acs.jmedchem.9b01167
  • Crompton JG, Sukumar M, Restifo NP. Targeting Akt in cell transfer immunotherapy for cancer. Oncoimmunology. 2016;5(9):e1014776. doi: 10.1080/2162402X.2015.1014776
  • Guo Y, Jin Y, Qu B, et al. An updated patent review of Akt inhibitors (2016-present). Expert Opin Ther Pat. 2021;31(9):837–849. doi: 10.1080/13543776.2021.1915291
  • Sweeney C, Bracarda S, Sternberg CN, et al. Ipatasertib plus abiraterone and prednisolone in metastatic castration-resistant prostate cancer (IPATential150): a multicentre, randomised, double-blind, phase 3 trial. Lancet. 2021;398(10295):131–142. doi: 10.1016/S0140-6736(21)00580-8
  • Capivasertib in combination with faslodex granted priority review in the US for patients with advanced HR-positive breast cancer [internet]. Cambridge, AstraZeneca, [cited 2023 Jul 2]. https://www.astrazeneca.com/media-centre/press-releases/2023/capivasertib-in-combination-with-faslodex-granted-priority-review-in-the-us.html.
  • Turner N, Oliveira M, Howell SJ, et al. Abstract GS3-04: GS3-04 capivasertib and fulvestrant for patients with aromatase inhibitor-resistant hormone receptor-positive/human epidermal growth factor receptor 2-negative advanced breast cancer: results from the phase III CAPItello-291 trial. Cancer Res. 2023;83(5_Supplement):GS3-04-GS3–04. doi: 10.1158/1538-7445.SABCS22-GS3-04
  • Capivasertib doubles PFS in some breast cancers. Cancer Discov. 2023;13(2):250. doi: 10.1158/2159-8290.CD-NB2022-0078
  • Modi S, Park H, Murthy RK, et al. Antitumor activity and safety of Trastuzumab deruxtecan in patients with HER2-low-expressing advanced breast cancer: results from a phase ib study. J Clin Oncol. 2020;38(17):1887–1896. doi: 10.1200/JCO.19.02318
  • Rugo HS, Schiavon G, Grinsted LM, et al. Abstract OT2-14-01: CAPItello-292: a phase Ib/III study of capivasertib, palbociclib and fulvestrant, versus placebo, palbociclib and fulvestrant, for endocrine therapy-resistant HR+/HER2− advanced breast cancer. Cancer Res. 2022;82(4_Supplement):OT2-14-01-OT2-14–01. doi: 10.1158/1538-7445.SABCS21-OT2-14-01
  • Schmid P, Cortes J, Robson M, et al. Abstract OT2-08-02: capivasertib and paclitaxel in first-line treatment of patients with metastatic triple-negative breast cancer: a phase III trial (CAPItello-290). Cancer Res. 2020;80(4_Supplement):OT2-08-02-OT2-08–02. doi: 10.1158/1538-7445.SABCS19-OT2-08-02
  • Crabb SJ, Ye D-W, Uemura H, et al. Capitello-280: a phase III study of capivasertib and docetaxel versus placebo and docetaxel in metastatic castration-resistant prostate cancer. J Clin Oncol. 2023;41(6_suppl):TPS287–TPS287. doi: 10.1200/jco.2023.41.6_suppl.tps287
  • Fizazi K, George DJ, De Santis M, et al. A phase III trial of capivasertib and abiraterone versus placebo and abiraterone in patients with de novo metastatic hormone-sensitive prostate cancer characterized by PTEN deficiency (CAPItello-281). J Clin Oncol. 2021;39(6_suppl):TPS178–TPS178. doi: 10.1200/jco.2021.39.6_suppl.tps178
  • Spencer A, Yoon SS, Harrison SJ, et al. Novel AKT inhibitor GSK2110183 Shows Favorable safety, pharmacokinetics, and clinical activity in multiple myeloma. Preliminary results from a phase I first-time-in-human study. Blood. 2011;118(21):1856–1856. doi: 10.1182/blood.v118.21.1856.1856
  • Aghajanian C, Bell-McGuinn KM, Burris HA,et al. A phase I, open-label, two-stage study to investigate the safety, tolerability, pharmacokinetics, and pharmacodynamics of the oral AKT inhibitor GSK2141795 in patients with solid tumors. Invest New Drugs. 2018;36(6):1016–1025. doi: 10.1007/s10637-018-0591-z
  • Burris HA, Siu LL, Infante JR, et al. Safety, pharmacokinetics (PK), pharmacodynamics (PD), and clinical activity of the oral AKT inhibitor GSK2141795 (GSK795) in a phase I first-in-human study. J Clin Oncol. 2011;29(15_suppl):3003–3003. doi: 10.1200/jco.2011.29.15_suppl.3003
  • Ma C, Wu J, Wang L, et al. Discovery of clinical Candidate NTQ1062 as a potent and bioavailable Akt inhibitor for the treatment of human tumors. J Med Chem. 2022;65(12):8144–8168. doi: 10.1021/acs.jmedchem.2c00527
  • Xing Y, Lin NU, Maurer MA, et al. Phase II trial of AKT inhibitor MK-2206 in patients with advanced breast cancer who have tumors with PIK3CA or AKT mutations, and/or PTEN loss/PTEN mutation. Breast Cancer Res. 2019;21(1):78. doi: 10.1186/s13058-019-1154-8
  • Ramanathan RK, McDonough SL, Kennecke HF, et al. Phase 2 study of MK-2206, an allosteric inhibitor of AKT, as second-line therapy for advanced gastric and gastroesophageal junction cancer: a SWOG cooperative group trial (S1005). Cancer. 2015;121(13):2193–2197. doi: 10.1002/cncr.29363
  • Lee JB, Jung M, Beom SH, et al. Phase 2 study of TAS-117, an allosteric akt inhibitor in advanced solid tumors harboring phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene homolog gene mutations. Invest New Drugs. 2021;39(5):1366–1374. doi: 10.1007/s10637-021-01085-7
  • Rodon J, Funchain P, Laetsch TW, et al. A phase II study of TAS-117 in patients with advanced solid tumors harboring germline PTEN-inactivating mutations. Future Oncol. 2022;18(30):3377–3387. doi: 10.2217/fon-2022-0305
  • Xie F, Wei J, Deng L, et al. Abstract 701: evaluation of an AKT-1 antisense oligonucleotide in combination with lenvatinib and everolimus in Renca-luciferase syngeneic orthotopic murine tumor model. Cancer Res. 2023;83(7_Supplement):701–701. doi: 10.1158/1538-7445.AM2023-701
  • Xie F, Wei J, Deng L, et al. Abstract 5123: the anti-tumor and anti-angiogenic effects of a lipid nanoparticle suspension of an AKT-1 anti-sense oligonucleotide. Cancer Res. 2023;83(7_Supplement):5123–5123. doi: 10.1158/1538-7445.AM2023-5123
  • Definition of AKT/RSK/S6K inhibitor TAS0612 - NCI drug dictionary - NCI [internet]. (MD), National Cancer Institute, [cited 2023 Jul 2]. Available from: https://www.cancer.gov/publications/dictionaries/cancer-drug/def/akt-rsk-s6k-inhibitor-tas0612.
  • DermBiont announces positive phase 2 clinical trial data treating seborrheic keratosis with SM-020 — DermBiont [internet]. Boston, DermBiont, [cited 2023 Jul 2]. Available from: https://www.dermbiont.com/in-the-news/2022/06/23/dermbiont-announces-positive-phase-2-clinical-trial-data-treating-seborrheic-keratosis-with-sm-020-the-first-and-only-targeted-topical-treatment-for-these-common-benign-tumors.
  • Ma CY, Tian H, An J, et al. Akt inhibitor. 2020. WO2020156437A1.
  • Ma CY, Tian H, Zhao JL, et al. Deuterated Akt kinase inhibitor. 2021. WO2021228223A1.
  • Prakash G, Paul N, Oliver GA, et al. C-H deuteration of organic compounds and potential drug candidates. Chem Soc Rev. 2022;51(8):3123–3163. doi: 10.1039/d0cs01496f
  • Belete TM. Recent updates on the development of deuterium-containing drugs for the treatment of cancer. Drug Des Devel Ther. 2022;16:3465–3472. doi: 10.2147/DDDT.S379496
  • Purushottamachar P, Thomas E, Thankan RS, et al. Novel deuterated Mnk1/2 protein degrader VNLG-152R analogs: synthesis, in vitro anti-TNBC activities and pharmacokinetics in mice. Eur J Med Chem. 2022;238:114441. doi: 10.1016/j.ejmech.2022.114441
  • Mitchell IS, Blake JF, Rui X, et al. Hydroxylated and methoxylated pyrimidyl cyclopentanes as Akt protein kinase inhibitors. 2022. US20220226326A1.
  • Ma CY, Chen DH, Tian H. Pyrazoloazepine Akt inhibitor. 2022. WO2022121788A1.
  • Li X, Dong P, Fu JQ, et al. Disclosed are a fused tetracyclic derivative as shown in general formula (I), a preparation method therefor, a pharmaceutical composition containing the derivative, and the use thereof as an AKT1/2/3 ( AKT pan) nhibitor and in the preparation of drugs for treating and/or preventing tumors. WO2021121276A1. 2021.
  • Liu Q, Dong H, Zhao W, et al. Design, synthesis, and biological evaluation of APN and AKT dual-target inhibitors. ACS Med Chem Lett. 2021;12(12):1932–1941. doi: 10.1021/acsmedchemlett.1c00504
  • Zhang YJ, Dong H. The invention relates to a dual target inhibitor of APN and AKT and a preparation method thereof. 2022. CN115232130A.
  • Zhang YS, Gao Y, Shi W, et al. Compound as Akt kinase inhibitor. 2022. WO2022068917A1.
  • Long MJ, Parvez S, Zhao Y, et al. Akt3 is a privileged first responder in isozyme-specific electrophile response. Nat Chem Biol. 2017;13(3):333–338. doi: 10.1038/nchembio.2284
  • Liu X, Long MJC, Hopkins BD, et al. Precision targeting of pten-null Triple-Negative breast tumors Guided by electrophilic metabolite sensing. ACS Cent Sci. 2020;6(6):892–902. doi: 10.1021/acscentsci.9b00893
  • Damien P, Pierre S-M. Allosteric Akt inhibitors for use in the treatment of hereditary hemorrhagic telangiectasia. 2022. WO2022069552A1.
  • Deng XM. Inhibitors of MCL-1 and Akt binding, pharmaceutical compositions, and uses in treating cancer. 2021. US20210137953A1.
  • Chen L, Fletcher S. Mcl-1 inhibitors: a patent review. Expert Opin Ther Pat. 2017;27(2):163–178. doi: 10.1080/13543776.2017.1249848
  • Chen G, Park D, Magis AT, et al. Mcl-1 interacts with Akt to promote lung cancer progression. Cancer Res. 2019;79(24):6126–6138. doi: 10.1158/0008-5472.CAN-19-0950
  • Fan G, Wang F, Chen Y, et al. The deubiquitinase OTUD1 noncanonically suppresses Akt activation through its N-terminal intrinsically disordered region. Cell Rep. 2023;42(1):111916. doi: 10.1016/j.celrep.2022.111916
  • Li F, Zhang W, Fan GL, et al. Peptides that target the PH functional domain of Akt. 2022. CN114933637A.
  • Thompson SK, Smith RA, Reddy S, et al. Quinazolines and azaquinazolines as dual inhibitors of RAS/RAF/MEK/ERK and PI3K/Akt/PTEN/mTOR pathways. 2021. US20210113578A1.
  • Nalan Y, Mehlika Dilek A, Gulsen AC, et al. New triazole and triazolothiadiazine derivatives exerting cytotoxic and apoptotic effects on A549 cells through Akt inhibition. 2022. WO2022005414A1.
  • You I, Erickson EC, Donovan KA, et al. Discovery of an AKT degrader with prolonged inhibition of downstream signaling. Cell Chem Biol. 2020;27(1):66–73 e7. doi: 10.1016/j.chembiol.2019.11.014
  • Nathanael G, Inchul Y, Zhang TH, et al. Degradation of Akt by conjugation of ATP-competitive Akt inhibitor GDC-0068 with E3 LI-GASE ligands and methods of use. 2020. WO2020210337A1.
  • Yu X, Xu J, Xie L, et al. Design, synthesis, and evaluation of potent, selective, and bioavailable AKT kinase degraders. J Med Chem. 2021;64(24):18054–18081. doi: 10.1021/acs.jmedchem.1c01476
  • Yu X, Xu J, Shen Y, et al. Discovery of potent, selective, and in vivo efficacious AKT kinase protein degraders via structure-activity relationship studies. J Med Chem. 2022;65(4):3644–3666. doi: 10.1021/acs.jmedchem.1c02165
  • Xu J, Yu X, Martin TC, et al. AKT degradation selectively inhibits the growth of PI3K/PTEN pathway-mutant cancers with wild-type KRAS and BRAF by destabilizing aurora kinase B. Cancer Discov. 2021;11(12):3064–3089. doi: 10.1158/2159-8290.CD-20-0815
  • Yu X, Xu J, Cahuzac KM, et al. Novel allosteric inhibitor-derived AKT proteolysis targeting chimeras (PROTACs) enable potent and selective AKT degradation in KRAS/BRAF mutant cells. J Med Chem. 2022;65(20):14237–14260. doi: 10.1021/acs.jmedchem.2c01454
  • Zhu CL, Luo X, Tian T, et al. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader. Eur J Med Chem. 2022;238:114459. doi: 10.1016/j.ejmech.2022.114459
  • Ding K, Zhang X, Xu F, et al. Pyridopyrimidine-based compound and application thereof. 2022. WO2022188755A1.
  • Shapiro GI, LoRusso P, Cho DC, et al. A phase ib open-label dose escalation study of the safety, pharmacokinetics, and pharmacodynamics of cobimetinib (GDC-0973) and ipatasertib (GDC-0068) in patients with locally advanced or metastatic solid tumors. Invest New Drugs. 2021;39(1):163–174. doi: 10.1007/s10637-020-00975-6
  • Savill KMZ, Lee BB, Oeh J, et al. Distinct resistance mechanisms arise to allosteric vs. ATP-competitive AKT inhibitors. Nat Commun. 2022;13(1):2057. doi: 10.1038/s41467-022-29655-0
  • Urak R, Walter M, Lim L, et al. Ex vivo Akt inhibition promotes the generation of potent CD19CAR T cells for adoptive immunotherapy. J Immunother Cancer. 2017;5:26. doi: 10.1186/s40425-017-0227-4
  • Kui L. Treatment of breast cancer using combination therapies comprising an ATP-competitive Akt inhibitor, a CDK 4/6 inhibitor and fulvestrant. 2021. WO2021030248A1.
  • Kalinsky K, Layman RM, Kaufman PA, et al. postMONARCH: a phase 3 study of abemaciclib plus fulvestrant versus placebo plus fulves985 trant in patients with HR+, HER2-, metastatic breast cancer following progression on a CDK4 & 6 inhibitor and endocrine therapy. J Clin Oncol. 2022;40(16_suppl):TPS1117–TPS1117. doi: 10.1200/jco.2022.40.16_suppl.tps1117
  • Iwata H. Clinical development of CDK4/6 inhibitor for breast cancer. Breast Cancer. 2018;25(4):402–406. doi: 10.1007/s12282-017-0827-3
  • Davila Marco L, Sebti Said M. Akt inhibitors for enhancing chimeric T cell persistence. 2021. WO2021102038A1.
  • Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomark Res. 2017;5:22. doi: 10.1186/s40364-017-0102-y
  • Liu Y, An L, Huang R, et al. Strategies to enhance CAR-T persistence. Biomark Res. 2022;10(1):86. doi: 10.1186/s40364-022-00434-9
  • Chan JD, Lai J, Slaney CY, et al. Cellular networks controlling T cell persistence in adoptive cell therapy. Nat Rev Immunol. 2021;21(12):769–784. doi: 10.1038/s41577-021-00539-6
  • Zhang Q, Ding J, Sun S, et al. Akt inhibition at the initial stage of CAR-T preparation enhances the CAR-positive expression rate, memory phenotype and in vivo efficacy. Am J Cancer Res. 2019;9(11):2379–2396. PMID: 31815041.
  • Tang D, Kroemer GF, Biol C. Ferroptosis. Curr Biol. 2020;30(21):R1292–R1297. doi: 10.1016/j.cub.2020.09.068
  • Yi J, Zhu J, Wu J, et al. Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A. 2020;117(49):31189–31197. doi: 10.1073/pnas.2017152117
  • Jiang XJ. Combination therapy with PI3K-AKT-mTOR inhibitors and ferroptosis inducing agents to treat cancer. 2022. WO2022093770A1.
  • Djudjaj S, Kavvadas P, Prakoura N, et al. Activation of Notch3 in renal tubular cells leads to progressive cystic kidney disease. Int J Mol Sci. 2022;23(2). doi: 10.3390/ijms23020884
  • Denny C, Ian S, Ming Shen T. Treatment of renal cystic disease. 2021. WO2021081580A1.
  • Wang Q, Shen ZN, Zhang SJ, et al. Protective effects and mechanism of puerarin targeting PI3K/Akt signal pathway on neurological diseases. Front Pharmacol. 2022;13:1022053. doi: 10.3389/fphar.2022.1022053
  • Bhatti MT. Retinitis pigmentosa, pigmentary retinopathies, and neurologic diseases. Curr Neurol Neurosci Rep. 2006;6(5):403–413. doi: 10.1007/s11910-996-0021-z
  • Jean B, Devin M, Junwei S. Neuroprotective gene therapy targeting the Akt pathway. 2020. WO2020180886A1.
  • McDougald DS, Papp TE, Zezulin AU, et al. AKT3 gene transfer promotes anabolic reprogramming and photoreceptor neuroprotection in a pre-clinical model of Retinitis Pigmentosa. Mol Ther. 2019;27(7):1313–1326. doi: 10.1016/j.ymthe.2019.04.009
  • Tang D, Liang Q, Zhang M, et al. Anti-depression effectiveness of essential oil from the fruits of Zanthoxylum bungeanum maxim. On chronic unpredictable mild stress-induced depression behavior in mice. Front Pharmacol. 2022;13:999962. doi: 10.3389/fphar.2022.999962
  • Goyal A, Agrawal A, Verma A, et al. The PI3K-AKT pathway: a plausible therapeutic target in Parkinson’s disease. Exp Mol Pathol. 2023;129:104846. doi: 10.1016/j.yexmp.2022.104846

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.