136
Views
0
CrossRef citations to date
0
Altmetric
Review

Peroxisome Proliferator-Activated Receptor agonists and antagonists: an updated patent review (2020–2023)

, & ORCID Icon
Pages 83-98 | Received 09 Dec 2023, Accepted 12 Mar 2024, Published online: 20 Mar 2024

References

  • Christofides A, Konstantinidou E, Jani C, et al. The role of peroxisome proliferator-activated receptors (PPAR) in immune responses. Metabolism. 2021;114:154338. doi: 10.1016/j.metabol.2020.154338
  • Hong F, Pan S, Guo Y, et al. Ppars as nuclear receptors for nutrient and energy metabolism. Molecules. 2019;24(14):2545. doi: 10.3390/molecules24142545
  • Wang S, Dougherty EJ, Danner RL. PPARγ signaling and emerging opportunities for improved therapeutics. Pharmacol Res. 2016;111:76–85. doi: 10.1016/j.phrs.2016.02.028
  • Tyagi S, Gupta P, Saini AS, et al. The peroxisome proliferator-activated receptor: a family of nuclear receptors role in various diseases. J Adv Pharm Technol Res. 2011;2(4):236–240. doi: 10.4103/2231-4040.90879
  • Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–513.
  • Tan CK, Zhuang Y, Wahli W. Synthetic and natural peroxisome proliferator-activated receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome. Expert Opin Ther Targets. 2017;21(3):333–348. doi: 10.1080/14728222.2017.1280467
  • Giampietro L, Laghezza A, Cerchia C, et al. Novel phenyldiazenyl fibrate analogues as PPAR α/γ/δ pan-agonists for the amelioration of metabolic syndrome. ACS Med Chem Lett. 2019;10(4):545–551. doi: 10.1021/acsmedchemlett.8b00574
  • Jiang Z, Liu X, Yuan Z, et al. Discovery of a novel selective dual peroxisome proliferator-activated receptor α/δ agonist for the treatment of primary biliary cirrhosis. ACS Med Chem Lett. 2019;10(7):1068–1073. doi: 10.1021/acsmedchemlett.9b00189
  • Rubenstrunk A, Hanf R, Hum DW, et al. Safety issues and prospects for future generations of PPAR modulators. Biochim Biophys Acta. 2007;1771(8):1065–81. doi: 10.1016/j.bbalip.2007.02.003
  • Younossi ZM. Non-alcoholic fatty liver disease - a global public health perspective. J Hepatol. 2019;70(3):531–544. doi: 10.1016/j.jhep.2018.10.033
  • Raza S, Rajak S, Upadhyay A, et al. Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci (Landmark Ed). 2021;26(2):206–237. doi: 10.2741/4892
  • Kamata S, Honda A, Ishii I. Current clinical trial status and future prospects of PPAR-targeted drugs for treating nonalcoholic fatty liver disease. Biomolecules. 2023;13(8):1264. doi: 10.3390/biom13081264
  • Silva AKS, Peixoto CA. Role of peroxisome proliferator-activated receptors in non-alcoholic fatty liver disease inflammation. Cell Mol Life Sci. 2018;75(16):2951–2961. doi: 10.1007/s00018-018-2838-4
  • Cheng HS, Tan WR, Low ZS, et al. Exploration and development of PPAR modulators in health and disease: an update of clinical evidence. Int J Mol Sci. 2019;20(20):5055. doi: 10.3390/ijms20205055
  • Kamata S, Honda A, Ishikawa R, et al. Functional and structural insights into the human PPARα/δ/γ targeting preferences of anti-NASH investigational drugs, Lanifibranor, seladelpar, and Elafibranor. Antioxidants (Basel). 2023;12(8):1523. doi: 10.3390/antiox12081523
  • Goyal NP, Mencin A, Newton KP, et al. An open label, randomized, multicenter study of elafibranor in children with nonalcoholic steatohepatitis. J Pediatr Gastroenterol Nutr. 2023;77(2):160–165. doi: 10.1097/MPG.0000000000003796
  • Schattenberg JM, Pares A, Kowdley KV, et al. A randomized placebo-controlled trial of elafibranor in patients with primary biliary cholangitis and incomplete response to UDCA. J Hepatol. 2021;74(6):1344–1354. doi: 10.1016/j.jhep.2021.01.013
  • Kowdley KV, Bowlus CL, Levy C, et al. ELATIVE study investigators’ group. Efficacy and safety of elafibranor in primary biliary cholangitis. N Engl J Med. 2023 Nov 13. doi: 10.1056/NEJMoa2306185
  • Boubia B, Poupardin O, Barth M, et al. Design, synthesis, and evaluation of a novel series of indole sulfonamide peroxisome proliferator activated receptor (PPAR) α/γ/δ triple activators: discovery of lanifibranor, a new antifibrotic clinical candidate. J Med Chem. 2018;61(6):2246–2265. doi: 10.1021/acs.jmedchem.7b01285
  • Wettstein G, Luccarini JM, Poekes L, et al. The new-generation pan-peroxisome proliferator-activated receptor agonist IVA337 protects the liver from metabolic disorders and fibrosis. Hepatol Commun. 2017;1(6):524–537. doi: 10.1002/hep4.1057
  • Deeks ED. Chiglitazar: First Approval. Drugs. 2022;82(1):87–92. doi: 10.1007/s40265-021-01648-1
  • Wetten A, Jones DEJ, Dyson JK. Seladelpar: an investigational drug for the treatment of early-stage primary biliary cholangitis (PBC). Expert Opin Investig Drugs. 2022;31(10):1101–1107. doi: 10.1080/13543784.2022.2130750
  • Bowlus CL, Galambos MR, Aspinall RJ, et al. A phase II, randomized, open-label, 52-week study of seladelpar in patients with primary biliary cholangitis. J Hepatol. 2022;77(2):353–364. doi: 10.1016/j.jhep.2022.02.033
  • Hirschfield GM, Shiffman ML, Gulamhusein A, et al. Seladelpar efficacy and safety at 3 months in patients with primary biliary cholangitis: ENHANCE, a phase 3, randomized, placebo-controlled study. Hepatology. 2023;78(2):397–415. doi: 10.1097/HEP.0000000000000395
  • Univ Zhejiang Technology. PPAR-gamma ligand-4,5-diazafluorene-rhodanine conjugate, preparation method and anti-tumor application thereof. CN113461684A. 2021.
  • Hernandez-Quiles M, Broekema MF, Kalkhoven E. Ppargamma in metabolism, immunity, and cancer: unified and diverse mechanisms of action. Front Endocrinol. 2021;12:624112. doi: 10.3389/fendo.2021.624112
  • Laganà AS, Vitale SG, Nigro A, et al. Pleiotropic actions of peroxisome proliferator-activated receptors (PPARs) in dysregulated metabolic homeostasis, inflammation and cancer: current evidence and future perspectives. Int J Mol Sci. 2016;17(7):999. doi: 10.3390/ijms17070999
  • Zaytseva YY, Wallis NK, Southard RC, et al. The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma-dependent and -independent mechanisms. Anticancer Res. 2011;31(3):813–23.
  • An Z, Muthusami S, Yu JR, et al. T0070907, a PPAR γ inhibitor, induced G2/M arrest enhances the effect of radiation in human cervical cancer cells through mitotic catastrophe. Reprod Sci. 2014;21(11):1352–61. doi: 10.1177/1933719114525265
  • Burton JD, Goldenberg DM, Blumenthal RD. Potential of peroxisome proliferator-activated receptor gamma antagonist compounds as therapeutic agents for a wide range of cancer types. PPAR Res. 2008;2008:494161. doi: 10.1155/2008/494161
  • Univ Zhejiang Technology. Aminopyrimidine butenone derivative as PPAR-gamma modulator. CN111018834A. 2020.
  • Univ Zhejiang Sience & Technology. PPAR gamma targeted glycyrrhetinic acid derivative and preparation method and application thereof. CN114014905A. 2021.
  • Ming LJ, Yin AC. Therapeutic effects of glycyrrhizic acid. Nat Prod Commun. 2013;8(3):415–418. doi: 10.1177/1934578X1300800335
  • Sun J, Liu HY, Lv CZ, et al. Modification, antitumor activity, and targeted PPARγ study of 18β-glycyrrhetinic acid, an important active ingredient of licorice. J Agric Food Chem. 2019;67(34):9643–9651. doi: 10.1021/acs.jafc.9b03442
  • Yissum Res Dev Co of Hebrew Univ Jerusalem Ltd. Agonists of PPAR-δ. WO2020110126A1. 2020.
  • Stern N, Goldblum A. Iterative stochastic elimination for solving complex combinatorial problems in drug discovery. ISR J Chem. 2014;54(8–9):1338–1357. doi: 10.1002/ijch.201400072
  • Univ China Pharma. Compound with PPAR delta agonistic activity, pharmaceutical composition and medical application. CN112479921A. 2021.
  • Reneo Pharmaceuticals Inc. Methods of making a PPAR-delta agonist. WO2022115326A1. 2022.
  • Reneo Pharmaceuticals Inc. Use of PPAR-delta agonists in the treatment of disease. WO2023147309A1. 2023.
  • Kyungpook Nat Univ Ind Academic Coop Found. Novel PPAR antagonist and pharmaceutical composition for enhancing anti-cancer effect comprising the same. KR102431651B1. 2022.
  • Michalik L, Wahli W. Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochim Biophys Acta. 2007;1771(8):991–8. doi: 10.1016/j.bbalip.2007.02.004
  • Sertznig P, Seifert M, Tilgen W, et al. Peroxisome proliferator-activated receptors (PPARs) and the human skin: importance of PPARs in skin physiology and dermatologic diseases. Am J Clin Dermatol. 2008;9(1):15–31. doi: 10.2165/00128071-200809010-00002
  • Medipure Pharmaceuticals Inc. Compounds for treating proliferator-activated receptors (PPAR) mediated diseases or conditions. WO2022221960A1. 2022.
  • Li Z, Xu Y, Cai Z, et al. Discovery of novel dual PPARα/δ agonists based on benzimidazole scaffold for the treatment of non-alcoholic fatty liver disease. Bioorg Chem. 2020;99:103803. doi: 10.1016/j.bioorg.2020.103803
  • Feng Z, Xiang J, Sun G, et al. Discovery of the first subnanomolar PPARα/δ dual agonist for the treatment of cholestatic liver diseases. J Med Chem. 2023;66(11):7331–7354. doi: 10.1021/acs.jmedchem.2c02123
  • Feng Z, Xiang J, Liu H, et al. Design, synthesis, and biological evaluation of triazolone derivatives as potent PPARα/δ dual agonists for the treatment of nonalcoholic steatohepatitis. J Med Chem. 2022;65(3):2571–2592. doi: 10.1021/acs.jmedchem.1c02002
  • Sichuan Kelun Biotech Biopharmaceutical Co Ltd. Aromatic compound, pharmaceutical composition and use thereof. US11261170B2. 2022.
  • Li Z, Ren Q, Zhou Z, et al. Discovery of the first-in-class dual PPARδ/γ partial agonist for the treatment of metabolic syndrome. Eur J Med Chem. 2021;225:113807. doi: 10.1016/j.ejmech.2021.113807
  • Govindarajulu M, Pinky PD, Bloemer J, et al. Signaling mechanisms of selective PPARγ modulators in Alzheimer’s disease. PPAR Res. 2018;2018:2010675. doi: 10.1155/2018/2010675
  • Steinke I, Govindarajulu M, Pinky PD, et al. Selective PPAR-delta/PPAR-gamma activation improves cognition in a model of Alzheimer’s disease. Cells. 2023;12(8):1116. doi: 10.3390/cells12081116
  • Chamberlain S, Gabriel H, Strittmatter W, et al. An exploratory phase IIa study of the PPAR delta/gamma agonist T3D-959 assessing metabolic and cognitive function in subjects with mild to moderate Alzheimer’s disease. J Alzheimers Dis. 2020;73(3):1085–1103. doi: 10.3233/JAD-190864
  • Univ Auburn, Ferris State Univ. Dual PPAR-δ and PPAR-γ agonists for treating disease. US10844003B1. 2020.
  • Ammazzalorso A, Maccallini C, Amoia P, et al. Multitarget PPARγ agonists as innovative modulators of the metabolic syndrome. Eur J Med Chem. 2019;173:261–273.
  • Schierle S, Neumann S, Heitel P, et al. Design and structural optimization of dual FXR/PPARδ activators. J Med Chem. 2020;63(15):8369–8379. doi: 10.1021/acs.jmedchem.0c00618
  • Blöcher R, Lamers C, Wittmann SK, et al. N-benzylbenzamides: a novel merged scaffold for orally available dual soluble epoxide hydrolase/peroxisome proliferator-activated receptor γ modulators. J Med Chem. 2016;59(1):61–81. doi: 10.1021/acs.jmedchem.5b01239
  • Governa P, Caroleo MC, Carullo G, et al. FFAR1/GPR40: one target, different binding sites, many agonists, no drugs, but a continuous and unprofitable tug-of-war between ligand lipophilicity, activity, and toxicity. Bioorg Med Chem Lett. 2021;41:127969. doi: 10.1016/j.bmcl.2021.127969
  • Rani L, Grewal AS, Sharma N, et al. Recent updates on free fatty acid receptor 1 (GPR-40) agonists for the treatment of type 2 diabetes mellitus. Mini Rev Med Chem. 2021;21(4):426–470. doi: 10.2174/1389557520666201023141326
  • Rady B, Liu J, Huang H, et al. A FFAR1 full agonist restores islet function in models of impaired glucose-stimulated insulin secretion and diabetic non-human primates. Front Endocrinol. 2022;13:1061688. doi: 10.3389/fendo.2022.1061688
  • Tsuda N, Kawaji A, Sato T, et al. A novel free fatty acid receptor 1 (GPR40/FFAR1) agonist, MR1704, enhances glucose-dependent insulin secretion and improves glucose homeostasis in rats. Pharmacol Res Perspect. 2017;5(4):e00340. doi: 10.1002/prp2.340
  • Darwish KM, Salama I, Mostafa S, et al. Design, synthesis, and biological evaluation of novel thiazolidinediones as PPARγ/FFAR1 dual agonists. Eur J Med Chem. 2016;109:157–72. doi: 10.1016/j.ejmech.2015.12.049
  • Hidalgo-Figueroa S, Navarrete-Vázquez G, Estrada-Soto S, et al. Discovery of new dual PPARγ-GPR40 agonists with robust antidiabetic activity: design, synthesis and in combo drug evaluation. Biomed Pharmacother. 2017;90:53–61. doi: 10.1016/j.biopha.2017.03.033
  • Li Z, Zhou Z, Deng F, et al. Design, synthesis, and biological evaluation of novel pan agonists of FFA1, PPARγ and PPARδ. Eur J Med Chem. 2018;159:267–276. doi: 10.1016/j.ejmech.2018.09.071
  • Zhou Z, Ren Q, Jiao S, et al. Discovery of new and highly effective quadruple FFA1 and PPARα/γ/δ agonists as potential anti-fatty liver agents. Eur J Med Chem. 2022;229:114061. doi: 10.1016/j.ejmech.2021.114061
  • Hu L, Zhou Z, Deng L, et al. HWL-088, a new and highly effective FFA1/PPARδ dual agonist, attenuates nonalcoholic steatohepatitis by regulating lipid metabolism, inflammation and fibrosis. J Pharm Pharmacol. 2020;72(11):1564–1573. doi: 10.1111/jphp.13342
  • Li MH, Chen W, Wang LL, et al. RLA8-a new and highly effective quadruple PPAR-α/γ/δ and GPR40 agonist to reverse nonalcoholic steatohepatitis and fibrosis. J Pharmacol Exp Ther. 2019;369(1):67–77. doi: 10.1124/jpet.118.255216.
  • Univ Guangdong Pharm. Novel FFA1 and PPAR alpha/gamma/delta quadruple agonist, preparation method thereof and application of quadruple agonist as medicament. CN112759515A. 2021.
  • The Second Peoples Hospital of Yunnan Province; Univ Guangdong Pharm. Application of FFA1 and PPAR delta dual agonist. CN113398123A. 2021.
  • Skerrett R, Pellegrino MP, Casali BT, et al. Combined liver X receptor/Peroxisome proliferator-activated receptor γ agonist treatment reduces amyloid β levels and improves behavior in amyloid precursor Protein/Presenilin 1 mice. J Biol Chem. 2015;290(35):21591–602. doi: 10.1074/jbc.M115.652008
  • Roth JD, Veidal SS, Fensholdt LKD, et al. Combined obeticholic acid and elafibranor treatment promotes additive liver histological improvements in a diet-induced ob/ob mouse model of biopsy-confirmed NASH. Sci Rep. 2019;9(1):9046. doi: 10.1038/s41598-019-45178-z
  • Leung DTH, Nguyen T, Oliver EM, et al. Combined PPARγ activation and XIAP inhibition as a potential therapeutic strategy for ovarian granulosa cell tumors. Mol Cancer Ther. 2019;18(2):364–375. doi: 10.1158/1535-7163.MCT-18-0078
  • Zhang Y, Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell Mol Immunol. 2020;17(8):807–821. doi: 10.1038/s41423-020-0488-6
  • Yi M, Zheng X, Niu M, et al. Combination strategies with PD-1/PD-L1 blockade: current advances and future directions. Mol Cancer. 2022;21(1):28. doi: 10.1186/s12943-021-01489-2
  • Bahrambeigi S, Molaparast M, Sohrabi F, et al. Targeting PPAR ligands as possible approaches for metabolic reprogramming of T cells in cancer immunotherapy. Immunol Lett. 2020;220:32–37. doi: 10.1016/j.imlet.2020.01.006
  • Chowdhury PS, Chamoto K, Kumar A, et al. PPAR-induced fatty acid oxidation in T cells increases the number of tumor-reactive CD8+ T cells and facilitates anti-PD-1 therapy. Cancer Immunol Res. 2018;6(11):1375–1387.
  • Univ Jiangsu. Application of combination of PPAR-alpha (peroxisome proliferator-activated receptor activator-alpha) and PD-1 antibody in preparation of tumor immunotherapy drugs. CN111035765A. 2020.
  • Univ Jiangsu. Application of PPAR-delta antagonist combined with PD-1 antibody in preparation of tumor immune drug. CN110917347A. 2020.
  • First Hospital Jilin Univ. Use of PPAR-delta inhibitor in combination with immunotherapeutic drug for preparing anti-tumor drug. WO2022166909A1. 2022.
  • Univ Jiangsu. Application of PPARG activator and SIRP alpha antibody in preparation of tumor immune drugs. CN112138163A. 2020.
  • Hayat SMG, Bianconi V, Pirro M, et al. CD47: role in the immune system and application to cancer therapy. Cell Oncol. 2020;43(1):19–30. doi: 10.1007/s13402-019-00469-5
  • Jia X, Yan B, Tian X, et al. CD47/SIRPα pathway mediates cancer immune escape and immunotherapy. Int J Biol Sci. 2021;17(13):3281–3287. doi: 10.7150/ijbs.60782
  • Son J, Hsieh RC, Lin HY, et al. Inhibition of the CD47-SIRPα axis for cancer therapy: a systematic review and meta-analysis of emerging clinical data. Front Immunol. 2022;13:1027235. doi: 10.3389/fimmu.2022.1027235
  • Jiang Z, Sun H, Yu J, et al. Targeting CD47 for cancer immunotherapy. J Hematol Oncol. 2021;14(1):180. doi: 10.1186/s13045-021-01197-w
  • Ishay-Ronen D, Diepenbruck M, Kalathur RKR, et al. Gain fat-lose metastasis: converting invasive breast cancer cells into adipocytes inhibits cancer metastasis. Cancer Cell. 2019;35(1):17–32.e6. doi: 10.1016/j.ccell.2018.12.002
  • Rousselot P, Prost S, Guilhot J, et al. French CML Group. Pioglitazone together with imatinib in chronic myeloid leukemia: a proof of concept study. Cancer. 2017;123(10):1791–1799. doi: 10.1002/cncr.30490
  • Binzhou Medical College; Zhang Ning. PPAR gamma receptor agonist/anticancer drug co-loaded tannic acid and phospholipid iron nanocomposite and preparation thereof. CN113952458A. 2022.
  • Laviolette SR, De Felice M, Rusiniak R, et al. Combination of cannabidiol and a PPAR agonist. WO2021203206A1. 2021.
  • Mankind Pharma Ltd. Pharmaceutical combination of PPAR agonist(s) and sterol absorption inhibitor(s) and use thereof. WO2023026130A1. 2023.
  • Bordeaux U. Centre Hospitalier Univ Bordeaux, Inst Nat Sante Rech Med. Composition comprising PPAR-modulator and an urolithin derivative and uses thereof. EP4085906A1. 2022.
  • Ventura-Clapier R, Garnier A, Veksler V, et al. Bioenergetics of the failing heart. Biochim Biophys Acta. 2011;1813(7):1360–72. doi: 10.1016/j.bbamcr.2010.09.006
  • Roehlen N, Crouchet E, Baumert TF. Liver fibrosis: mechanistic concepts and therapeutic perspectives. Cells. 2020;9(4):875. doi: 10.3390/cells9040875
  • Sumida Y, Yoneda M. Current and future pharmacological therapies for NAFLD/NASH. J Gastroenterol. 2018;53(3):362–376. doi: 10.1007/s00535-017-1415-1
  • Kinarus Ag. Combinations of PPAR agonists and p38 kinase inhibitors for preventing or treating fibrotic diseases. EP3820526A1. 2021.
  • Antakly T PPAR-gamma activators, HDAC inhibitors and their therapeutical usages. US11497723B1. 2022.
  • Tyra Biosciences Inc. Therapies with PPAR agonists and FGFR4 inhibitors. WO2023225334A1. 2023.
  • Laboratorios Silanes, S.A. de C.V. Pharmaceutical combinations of statins and fibrates for the treatment and prevention of hyperlipidaemia and cardiovascular diseases. EP4180036A1. 2023.
  • First Affiliated Hospital of Xiamen Univ, Shenzhen Chipscreen Biosciences Co Ltd, Chengdu Chipscreen Pharmaceutical Ltd. Use of PPAR agonist in preparation of drug for treating acute myeloid leukemia. WO2023072010A1. 2023.
  • Genfit. PPAR-agonists for use in the treatment of liver failure. WO2022238445A1. 2022.
  • Zhongshan Hospital Fudan Univ. Application of PPAR-gamma agonist rosiglitazone in sleep apnea related hypertension. CN115944633A. 2023.
  • Yuan F, Zhang S, Liu X, et al. Correlation between obstructive sleep apnea hypopnea syndrome and hypertension: a systematic review and meta-analysis. Ann Palliat Med. 2021;10(12):12251–12261. doi: 10.21037/apm-21-3302
  • Sullivan SS, Guilleminault C. Emerging drugs for common conditions of sleepiness: obstructive sleep apnea and narcolepsy. Expert Opin Emerg Drugs. 2015;20(4):571–82. doi: 10.1517/14728214.2015.1115480
  • Potenza MA, Gagliardi S, De Benedictis L, et al. Treatment of spontaneously hypertensive rats with rosiglitazone ameliorates cardiovascular pathophysiology via antioxidant mechanisms in the vasculature. Am J Physiol Endocrinol Metab. 2009;297(3):E685–94. doi: 10.1152/ajpendo.00291.2009
  • Univ Zhongshan. Application of peroxisome proliferator-activated receptor agonist in preparation of anti-aging drugs. CN116999550A. 2023)
  • Merk D, Lamers C, Weber J, et al. Anthranilic acid derivatives as nuclear receptor modulators–development of novel PPAR selective and dual PPAR/FXR ligands. Bioorg Med Chem. 2015;23(3):499–514. doi: 10.1016/j.bmc.2014.12.013
  • Lillich FF, Willems S, Ni X, et al. Structure-based design of dual partial peroxisome proliferator-activated receptor γ agonists/soluble epoxide hydrolase inhibitors. J Med Chem. 2021;64(23):17259–17276. doi: 10.1021/acs.jmedchem.1c01331
  • Tilekar K, Hess JD, Upadhyay N, et al. Thiazolidinedione “magic bullets” simultaneously targeting PPARγ and HDACs: design, synthesis, and investigations of their in vitro and in vivo antitumor effects. J Med Chem. 2021;64(10):6949–6971. doi: 10.1021/acs.jmedchem.1c00491
  • De Lellis L, Cimini A, Veschi S, et al. The anticancer potential of peroxisome proliferator-activated receptor antagonists. ChemMedchem. 2018;13(3):209–219. doi: 10.1002/cmdc.201700703
  • Stebbins KJ, Broadhead AR, Cabrera G, et al. In vitro and in vivo pharmacology of NXT629, a novel and selective PPARα antagonist. Eur J Pharmacol. 2017;809:130–140. doi: 10.1016/j.ejphar.2017.05.008
  • Ammazzalorso A, Bruno I, Florio R, et al. Sulfonimide and amide derivatives as novel PPARα antagonists: synthesis, antiproliferative activity, and docking studies. ACS Med Chem Lett. 2020;11(5):624–632. doi: 10.1021/acsmedchemlett.9b00666

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.