735
Views
20
CrossRef citations to date
0
Altmetric
Review

Investigational prostaglandin D2 receptor antagonists for airway inflammation

, , , , &
Pages 639-652 | Received 19 Jan 2016, Accepted 04 Apr 2016, Published online: 25 Apr 2016

References

  • Skloot GS. Asthma phenotypes and endotypes: a personalized approach to treatment. Curr Opin Pulm Med. 2016;22(1):3–9.
  • Global Initiative for Asthma (GINA). Global Strategy for Asthma Management and Prevention updated [Internet]. 2015 [cited March 1 2016]. Available from: www.ginasthma.org.
  • Montuschi P, Barnes PJ. New perspectives in pharmacological treatment of mild persistent asthma. Drug Discov Today. 2011;16(23–24):1084–1091.
  • Nguyen TH, Casale TB. Immune modulation for treatment of allergic disease. Immunol Rev. 2011;242(1):258–271.
  • Oguma T, Asano K, Ishizaka A. Role of prostaglandin D2 and its receptors in the pathophysiology of asthma. Allergol Int. 2008;57(4):307–312.
  • Arima M, Fukuda T. Prostaglandin D2 receptors DP and CRTH2 in the pathogenesis of asthma. Curr Mol Med. 2008;8(5):365–375.
  • Tait Wojno ED, Monticelli LA, Tran SV, et al. The prostaglandin D₂ receptor CRTH2 regulates accumulation of group 2 innate lymphoid cells in the inflamed lung. Mucosal Immunol. 2015;8(6):1313–1323.
  • Norman P. Update on the status of DP2 receptor antagonists; from proof of concept through clinical failures to promising new drugs. Expert Opin Investig Drugs. 2014;23(1):55–66.
  • Townley RG, Agrawal S. CRTH2 antagonists in the treatment of allergic responses involving TH2 cells, basophils, and eosinophils. Ann Allergy Asthma Immunol. 2012;109(6):365–374.
  • Pettipher R, Whittaker M. Update on the development of antagonists of chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). From lead optimization to clinical proof-of-concept in asthma and allergic rhinitis. J Med Chem. 2012;55(7):2915–2931.
  • Shiraishi Y, Asano K, Niimi K, et al. Cyclooxygenase-2/prostaglandin D2/CRTH2 pathway mediates double-stranded RNA-induced enhancement of allergic airway inflammation. J Immunol. 2008;180(1):541–549.
  • Carey MA, Germolec DR, Langenbach R, et al. Cyclooxygenase enzymes in allergic inflammation and asthma. Prostaglandins Leukot Essent Fatty Acids. 2003;69(2–3):157–162.
  • Schuligoi R, Sturm E, Luschnig P, et al. CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases. Pharmacology. 2010;85:372–382.
  • Oguma T, Asano K, Ishizaka A. Role of prostaglandin D2 and its receptors in the pathophysiology of asthma. Allergol Int. 2008;57:307–312.
  • Dichlberger A, Schlager S, Kovanen PT, et al. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol. 2015 Jul 9. pii: S0014-2999(15)30149-7.
  • Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D2 pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131:1504–1512.
  • Pettipher R, Hansel TT, Armer R. Antagonism of the prostaglandin D2 receptors DP1 and CRTH2 as an approach to treat allergic diseases. Nat Rev Drug Discov. 2007;6(4):313–325.
  • Bochenek G, Nizankowska E, Gielicz A, et al. Plasma 9alpha,11beta-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax. 2004;59(6):459–464.
  • Chen JJ, Budelsky AL. Prostaglandin D2 receptor CRTH2 antagonists for the treatment of inflammatory diseases. Prog Med Chem. 2011;50:49–107.
  • Kiriyama M, Ushikubi F, Kobayashi T, et al. Ligand binding specificities of the eight types and subtypes of the mouse prostanoid receptors expressed in Chinese hamster ovary cells. Br J Pharmacol. 1997;122(2):217–224.
  • Lilly CM, Palmer LJ. The role of prostaglandin D receptor gene in asthma pathogenesis. Am J Respir Cell Mol Biol. 2005;33(3):224–226.
  • García-Solaesa V, Sanz-Lozano C, Padrón-Morales J, et al. The prostaglandin D2 receptor (PTGDR) gene in asthma and allergic diseases. Allergol Immunopathol (Madr). 2014;42(1):64–68.
  • Hirano Y, Shichijo M, Ikeda M, et al. Prostanoid DP receptor antagonists suppress symptomatic asthma-like manifestation by distinct actions from a glucocorticoid in rats. Eur J Pharmacol. 2011;666(1–3):233–241.
  • Boie Y, Sawyer N, Slipetz DM, et al. Molecular cloning and characterization of the human prostanoid DP receptor. J Biol Chem. 1995;270(32):18910–18916.
  • Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001;193(2):255–261.
  • Moon TC, Campos-Alberto E, Yoshimura T, et al. Expression of DP2 (CRTh2), a prostaglandin D2 receptor, in human mast cells. PLoS One. 2014;9:e108595.
  • Jones RL, Giembycz MA, Woodward DF. Prostanoid receptor antagonists: development strategies and therapeutic applications. Br J Pharmacol. 2009;158(1):104–145.
  • Nagata K, Hirai H. The second PGD(2) receptor CRTH2: structure, properties, and functions in leukocytes. Prostaglandins Leukot Essent Fatty Acids. 2003;69(2–3):169–177.
  • Nagata K, Tanaka K, Ogawa K, et al. Selective expression of a novel surface molecule by human Th2 cells in vivo. J Immunol. 1999;162(3):1278–1286.
  • Sandig H, Andrew D, Barnes AA, et al. 9α,11β-PGF2 and its stereoisomer PGF2α are novel agonists of the chemoattractant receptor, CRTH2. FEBS Lett. 2006;580(2):373–379.
  • Xue L, Barrow A, Pettipher R. Novel function of CRTH2 in preventing apoptosis of human Th2 cells through activation of the phosphatidylinositol 3-kinase pathway. J Immunol. 2009;182(12):7580–7586.
  • Pettipher R. The roles of the prostaglandin D2 receptors DP1 and CRTH2 in promoting allergic responses. Br J Pharmacol. 2008;153(Suppl 1):191–199.
  • Van Hecken A, Depré M, De Lepeleire I, et al. The effect of MK-0524, a prostaglandin D2 receptor antagonist, on prostaglandin D2-induced nasal airway obstruction in healthy volunteers. Eur J Clin Pharmacol. 2007;63(2):135–141.
  • Nantel F, Fong C, Lamontagne S, et al. Expression of prostaglandin D synthase and the prostaglandin D2 receptors DP and CRTH2 in human nasal mucosa. Prostaglandins Other Lipid Mediat. 2004;73(1–2):87–101.
  • Choi YH, Lee S-N, Aoyagi H, et al. The extracellular signal-regulated kinase mitogen-activated protein kinase/ribosomal S6 protein kinase 1 cascade phosphorylates cAMP response element-binding protein to induce MUC5B gene expression via D-prostanoid receptor signaling. J Biol Chem. 2011;286(39):34199–34214.
  • Maher SA, Birrell MA, Adcock JJ, et al. Prostaglandin D2 and the role of the DP1, DP2 and TP receptors in the control of airway reflex events. Eur Respir J. 2015;45(4):1108–1118.
  • Takahashi G, Asanuma F, Suzuki N, et al. Effect of the potent and selective DP1 receptor antagonist, asapiprant (S-555739), in animal models of allergic rhinitis and allergic asthma. Eur J Pharmacol. 2015;765:15–23.
  • Arimura A, Yasui K, Kishino J, et al. Prevention of allergic inflammation by a novel prostaglandin receptor antagonist, S-5751. J Pharmacol Exp Ther. 2001;298(2):411–419.
  • Mitsumori S, Tsuri T, Honma T, et al. Synthesis and biological activity of various derivatives of a novel class of potent, selective, and orally active prostaglandin D2 receptor antagonists. 2. 6,6-Dimethylbicyclo[3.1.1]heptane derivatives. J Med Chem. 2003;46(12):2446–2455.
  • Shionogi discontinues development of S-5751, a prostaglandin D2 receptor antagonist; [cited 2016 March 1]. Available from: http://www.shionogi.co.jp/en/company/news/2006/pmrltj0000001d4d.html..
  • Hirano Y, Shichijo M, Deguchi M, et al. Synergistic effect of PGD2 via prostanoid DP receptor on TNF-α-induced production of MCP-1 and IL-8 in human monocytic THP-1 cells. Eur J Pharmacol. 2007;560(1):81–88.
  • Clinicaltrial.gov: home; [cited 2016 Mar 1]. Available from: www.clinicaltrials.gov.
  • Sturino CF, O’Neill G, Lachance N, et al. Discovery of a potent and selective prostaglandin D2 receptor antagonist, [(3R)-4-(4-chloro-benzyl)-7-fluoro-5-(methylsulfonyl)-1,2,3,4-tetrahydrocyclopenta[b]indol-3-yl]-acetic acid (MK-0524). J Med Chem. 2007;50(4):794–806.
  • Philip G, Van Adelsberg J, Loeys T, et al. Clinical studies of the DP1 antagonist laropiprant in asthma and allergic rhinitis. J Allergy Clin Immunol. 2009;124(5):942–948.
  • Krug N, Gupta A, Badorrek P, et al. Efficacy of the oral chemoattractant receptor homologous molecule on TH2 cells antagonist BI 671800 in patients with seasonal allergic rhinitis. J Allergy Clin Immunol. 2014;133(2):414–419.
  • Hall IP, Fowler AV, Gupta A, et al. Efficacy of BI 671800, an oral CRTH2 antagonist, in poorly controlled asthma as sole controller and in the presence of inhaled corticosteroid treatment. Pulm Pharmacol Ther. 2015;32:37–44.
  • Miller D, LaForce C, Finn A, et al. Efficacy and safety of BI 671800, an oral CRTH2 antagonist, as add on therapy in poorly controlled asthma patients prescribed an inhaled corticosteroid. Eur Respir J. 2012;40(Suppl 56):P3085.
  • Bain G, Lorrain DS, Stebbins KJ, et al. Pharmacology of AM211, a potent and selective prostaglandin D2 receptor type 2 antagonist that is active in animal models of allergic inflammation. J Pharmacol Exp Ther. 2011;338(1):290–301.
  • Bain G, King CD, Brittain J, et al. Pharmacodynamics, pharmacokinetics, and safety of AM211: a novel and potent antagonist of the prostaglandin D2 receptor type 2. J Clin Pharmacol. 2012;52(10):1482–1493.
  • Norman P. A novel DP2 receptor antagonist (AM-461): a patent evaluation of WO2011085033. Expert Opin Ther Pat. 2011;21(12):1931–1936.
  • Burgess L, Eberhardt C, Wright D, et al. Potent, selective, and orally active CRTh2 antagonists for allergic disease. Inflamm Res. 2011;60(Suppl 1):S284.
  • Arry-502. Target CRTh2. Indication: asthma; [cited 2016 Mar 1]. Available from: http://www.arraybiopharma.com/product-pipeline/other-compounds/arry-502/.
  • Bell S, Neitzel A, Nugent C, et al. ARRY-502: safety, PK and PD of the CRTH2 antagonist in healthy subjects following repeat dose administration. Am J Respir Crit Care Med. 2012;185:A2756.
  • Wenzel SE, Hopkins R, Saunders M, et al. Safety and efficacy of ARRY-502, a potent, selective, oral CRTh2 antagonist, in patients with mild to moderate Th2-driven asthma. J Allergy Clin Immunol. 2014;133(2):AB4.
  • Wenzel S, Chantry D, Eberhardt C, et al. ARRY-502, a potent, selective, oral CRTh2 antagonist reduces Th2 mediators in patients with mild to moderate Th2-driven asthma. Eur Respir J. 2014;44(Suppl 58):P4836.
  • Pettipher R, Vinall SL, Xue L, et al. Pharmacologic profile of OC000459, a potent, selective, and orally active D prostanoid receptor 2 antagonist that inhibits mast cell-dependent activation of T helper 2 lymphocytes and eosinophils. J Pharmacol Exp Ther. 2012;340(2):473–482.
  • Singh D, Cadden P, Hunter M, et al. Inhibition of the asthmatic allergen challenge response by the CRTH2 antagonist OC000459. Eur Respir J. 2013;41(1):46–52.
  • Barnes N, Pavord I, Chuchalin A, et al. A randomized, double-blind, placebo-controlled study of the CRTH2 antagonist OC000459 in moderate persistent asthma. Clin Exp Allergy. 2012;42(1):38–48.
  • Pettipher R, Hunter MG, Perkins CM, et al. Heightened response of eosinophilic asthmatic patients to the CRTH2 antagonist OC000459. Allergy. 2014;69(9):1223–1232.
  • Horak F, Zieglmayer P, Zieglmayer R, et al. The CRTH2 antagonist OC000459 reduces nasal and ocular symptoms in allergic subjects exposed to grass pollen, a randomised, placebo-controlled, double-blind trial. Allergy. 2012;67(12):1572–1579.
  • Sandham DA, Arnold N, Aschauer H, et al. Discovery and characterization of NVP-QAV680, a potent and selective CRTh2 receptor antagonist suitable for clinical testing in allergic diseases. Bioorg Med Chem. 2013;21(21):6582–6591.
  • Willard L, Brown Z, Owen C, et al. Characterization of QAW039 and QAV680, two novel, potent and selective CRTh2 antagonists. Eur Respir J. 2014;44(Suppl_58):P4072.
  • Sykes D, Bradley M, Riddy D, et al. QAW039, a slowly dissociating CRTh2 antagonist with the potential for improved clinical efficacy. Mol Pharmacol. 2016;89(5):593–605.
  • Sandham DA, Charlton SJ, Dubois G, et al. Discovery and characterisation of CRTh2 receptor antagonists suitable for clinical testing in allergic diseases. American Chemical Society Division of Medicinal Chemistry 248th ACS National Meeting, San Francisco (USA), 2014 Aug 10–14, abstract MEDI 349.
  • Luu VT, Goujon J-Y, Meisterhans C, et al. Synthesis of a high specific activity methyl sulfone tritium isotopologue of fevipiprant (NVP-QAW039). J Labelled Comp Radiopharm. 2015;58(5):188–195.
  • Sykes DA, Dowling MR, Charlton SJ. Exploring the mechanism of agonist efficacy: a relationship between efficacy and agonist dissociation rate at the muscarinic M3 receptor. Mol Pharmacol. 2009;76(3):543–551.
  • Erpenbeck VJ, Vets E, Gheyle L, et al. Safety, tolerability, and pharmacokinetics of an oral competitive reversibile CRTh2 antagonist, QAW039, in healthy subjects. Eur Respir J. 2014;44(Suppl_58):P4073.
  • Erpenbeck VJ, Popov TA, Miller SD, et al. QAW039/fevipiprant improves lung function and control of asthma symptoms in patients with more severe air flow limitation: a proof-of-concept study. Eur Respir J. 2015;46(Suppl_59):PA2125.
  • Berair R, Gonem S, Singapuri A, et al. Effect of QAW039, an oral prostaglandin D2 receptor (DP2/CRTh2) antagonist, upon sputum and bronchial eosinophilic inflammation and clinical outcomes in treatment-resistant asthma: a phase 2a randomized placebo-controlled trial. Am J Respir Crit Care Med. 2015;191:A6361.
  • Berair R, Gonem S, Singapuri A, et al. Effect of QAW039, an oral prostaglandin D2 receptor (DP2/CRTh2) antagonist, upon bronchial epithelial integrity in treatment-resistant asthma in a randomized, placebo controlled study. Eur Respir J. 2015;46(Suppl 59):OA290.
  • Astrazeneca: pipeline; [cited 2016 Mar 1]. Available from: https://www.astrazeneca.com/our-science/pipeline.html.
  • Luker T, Bonnert R, Brough S, et al. Substituted indole-1-acetic acids as potent and selective CRTh2 antagonists-discovery of AZD1981. Bioorg Med Chem Lett. 2011;21(21):6288–6292.
  • Schmidt JA, Bell FM, Akam E, et al. Biochemical and pharmacological characterization of AZD1981, an orally available selective DP2 antagonist in clinical development for asthma. Br J Pharmacol. 2013;168(7):1626–1638.
  • Cook D, Brown D, Alexander R, et al. Lessons learned from the fate of AstraZeneca’s drug pipeline: a five-dimensional framework. Nat Rev Drug Discov. 2014;13(6):419–431.
  • Fretz H, Valdenaire A, Pothier J, et al. Identification of 2-(2-(1-naphthoyl)-8-fluoro-3,4-dihydro-1H-pyrido[4,3-b]indol-5(2H)-yl)acetic acid (setipiprant/ACT-129968), a potent, selective, and orally bioavailable chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) antagonist. J Med Chem. 2013;56(12):4899–4911.
  • Actelion provides update on CRTh2 program; [cited 2016 Mar 1]. Available from: http://www1.actelion.com/en/our-company/news-and-events.page?newsId=1598979.
  • Diamant Z, Sidharta PN, Singh D, et al. Setipiprant, a selective CRTH2 antagonist, reduces allergen-induced airway responses in allergic asthmatics. Clin Exp Allergy. 2014;44(8):1044–1052.
  • Géhin M, Strasser DS, Zisowsky J, et al. A novel CRTH2 antagonist: single- and multiple-dose tolerability, pharmacokinetics, and pharmacodynamics of ACT-453859 in healthy subjects. J Clin Pharmacol. 2015;55(7):787–797.
  • Ito S, Terasaka T, Zenkoh T, et al. Discovery of novel and potent CRTH2 antagonists. Bioorg Med Chem Lett. 2012;22(2):1194–1197.
  • Tasaki M, Kobayashi M, Tenda Y, et al. Inhibition of antigen-induced airway inflammation and hyperresponsiveness in guinea pigs by a selective antagonist of “chemoattractant receptor homologous molecule expressed on Th2 cells” (CRTH2). Eur J Pharm Sci. 2013;49(3):434–440.
  • Fitzgerald MF, Whitmarsh M, Prosser J, et al. The in vitro profile of ADC3680, a potent and selective CRTH2 antagonist for the treatment of inadequately controlled asthma. Am J Respir Crit Care Med. 2013;187:A2617.
  • Fitzgerald MF, Snape S, Febbraro S, et al. The safety, PK, and PD profile of ADC3680, a potent and selective CRTH2 antagonist, in healthy volunteers and partly controlled atopic asthmatic subjects. Am J Respir Crit Care Med. 2013;187:A3874.
  • Low dose, once-daily oral CRTh2 antagonist; [cited 2016 Mar 1]. Available from: http://www.pulmagen.com/adc3680.html
  • Simard D, Leblanc Y, Berthelette C, et al. Azaindoles as potent CRTH2 receptor antagonists. Bioorg Med Chem Lett. 2011;21(2):841–845.
  • Gallant M, Beaulieu C, Berthelette C, et al. Discovery of MK-7246, a selective CRTH2 antagonist for the treatment of respiratory diseases. Bioorg Med Chem Lett. 2011;21(1):288–293.
  • Molinaro C, Bulger PG, Lee EE, et al. CRTH2 antagonist MK-7246: a synthetic evolution from discovery through development. J Org Chem. 2012;77(5):2299–2309.
  • Gervais FG, Sawyer N, Stocco R, et al. Pharmacological characterization of MK-7246, a potent and selective CRTH2 (chemoattractant receptor-homologous molecule expressed on T-helper type 2 cells) antagonist. Mol Pharmacol. 2011;79(1):69–76.
  • Mauser PJ, House A, Jones H, et al. Pharmacological characterization of the late phase reduction in lung functions and correlations with microvascular leakage and lung edema in allergen-challenged Brown Norway rats. Pulm Pharmacol Ther. 2013;26(6):677–684.
  • Gil MA, Caniga M, Woodhouse JD, et al. Anti-inflammatory actions of chemoattractant receptor-homologous molecule expressed on Th2 by the antagonist MK-7246 in a novel rat model of Alternaria alternata elicited pulmonary inflammation. Eur J Pharmacol. 2014;743:106–116.
  • Wang Y-H, Trucksis M, McElwee JJ, et al. UGT2B17 genetic polymorphisms dramatically affect the pharmacokinetics of MK-7246 in healthy subjects in a first-in-human study. Clin Pharmacol Ther. 2012;92(1):96–102.
  • Ishizuka T, Matsui T, Okamoto Y, et al. Ramatroban (BAY u 3405): a novel dual antagonist of TXA2 receptor and CRTh2, a newly identified prostaglandin D2 receptor. Cardiovasc Drug Rev. 2004;22(2):71–90.
  • Ulven T, Kostenis E. Minor structural modifications convert the dual TP/CRTH2 antagonist ramatroban into a highly selective and potent CRTH2 antagonist. J Med Chem. 2005;48(4):897–900.
  • Liu J, Li A-R, Wang Y, et al. Discovery of AMG 853, a CRTH2 and DP dual antagonist. ACS Med Chem Lett. 2011;2(5):326–330.
  • Busse WW, Wenzel SE, Meltzer EO, et al. Safety and efficacy of the prostaglandin D2 receptor antagonist AMG 853 in asthmatic patients. J Allergy Clin Immunol. 2013;131(2):339–345.
  • Wang Y, Fu Z, Schmitt M, et al. Optimization of phenylacetic acid derivatives for CRTH2 and DP selective antagonism. Bioorg Med Chem Lett. 2012;22(1):367–370.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.