425
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical development landscape in GIST: from novel agents that target accessory pathways to revisiting non-targeted therapies

Pages 427-443 | Received 29 Jul 2016, Accepted 02 Mar 2017, Published online: 20 Mar 2017

References

  • Nilsson B, Bumming P, Meis-Kindblom JM, et al. Gastrointestinal stromal tumors: the incidence, prevalence, clinical course, and prognostication in the preimatinib mesylate era–a population-based study in western Sweden. Cancer. 2005;103:821–829.
  • Demetri GD, Von Mehren M, Antonescu CR, et al. NCCN task force report: management of patients with gastrointestinal stromal tumors. J Natl Compr Canc Netw. 2010;8:S1–42.
  • Hirota S, Isozaki K, Moriyama Y, et al. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science. 1998;279:577–580.
  • Nakahara M, Isozaki K, Hirota S, et al. A novel gain-of-function mutation of c-KIT gene in gastrointestinal stromal tumor. Gastroenterol. 1998;115:1090–1095.
  • Heinrich MC, Corless CL, Duensing A, et al. PDGFRA activating mutations in gastrointestinal stromal tumors. Science. 2003;299:708–710.
  • ESMO/European Sarcoma Network Working Group. Gastrointestinal stromal tumours: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25:iii21–6.
  • NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Soft Tissue Sarcoma. V.2.2016. Fort Worth, PA: National Comprehensive Cancer Network Inc, 2016.  [cited 2016 Nov 30].
  • DeMatteo RP, Heinrich MC, El-Rifai WM, et al. Clinical management of gastrointestinal stromal tumors: before and after STI-571. Hum Pathol. 2002;33:466–477.
  • Blanke CD, Rankin C, Demetri GD, et al. Phase III randomized, intergroup trial assessing imatinib mesylate at two dose levels in patients with unresectable or metastatic gastrointestinal stromal tumors expressing the kit receptor tyrosine kinase: S0033. J Clin Oncol. 2008;26:626–632.
  • Von Mehren M, Heinrich MC, Joensuu H, et al. Follow-up results after 9 years of the ongoing phase II B2222 trial of imatinib mesylate in patients with metastatic or unresectable KIT+ gastrointestinal stromal tumors (GIST). J Clin Oncol. 2011;29:[abstract 10016].
  • Verweij J, Casali PG, Zalcberg J, et al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial. Lancet. 2004;364:1127–1134.
  • Blanke CD, Demetri GD, Von Mehren M, et al. Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT. J Clin Oncol. 2008;26:620–625.
  • Stivarga (regorafenib) [package insert]. Wayne, NJ: Bayer HealthCare Pharmaceuticals Inc; August 2016.
  • Sutent (sunitinib) [package insert]. New York, NY: Pfizer Pharmaceuticals; April 2015.
  • Kang YK, Ryu MH, Yoo C, et al. Resumption of imatinib to control metastatic or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib (RIGHT): a randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2013;14:1175–1182.
  • Heinrich MC, Maki RG, Corless CL, et al. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J Clin Oncol. 2008;26:5352–5359.
  • Heinrich MC, Corless CL, Demetri GD, et al. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J Clin Oncol. 2003;21:4342–4349.
  • Debiec-Rychter M, Cools J, Dumez H, et al. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology. 2005;128:270–279.
  • Heinrich MC, Corless CL, Blanke CD, et al. Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol. 2006;24:4764–4774.
  • Corless CL, Schroeder A, Griffith D, et al. PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol. 2005;23:5357–5364.
  • Sleijfer S, Wiemer E, Seynaeve C, et al. Improved insight into resistance mechanisms to imatinib in gastrointestinal stromal tumors: a basis for novel approaches and individualization of treatment. The Oncologist. 2007;12:719–726.
  • Miranda C, Nucifora M, Molinari F, et al. KRAS and BRAF mutations predict primary resistance to imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:1769–1776.
  • Debiec-Rychter M, Sciot R, Le Cesne A, et al. KIT mutations and dose selection for imatinib in patients with advanced gastrointestinal stromal tumours. Eur J Cancer. 2006;42:1093–1103.
  • Heinrich MC, Owzar K, Corless CL, et al. Correlation of kinase genotype and clinical outcome in the North American Intergroup Phase III trial of imatinib mesylate for treatment of advanced gastrointestinal stromal tumor: CALGB 150105 Study by Cancer and Leukemia Group B and Southwest Oncology Group. J Clin Oncol. 2008;26:5360–5367.
  • Janeway KA, Liegl B, Harlow A, et al. Pediatric KIT–wild-type and platelet-derived growth factor receptor a–wild-type gastrointestinal stromal tumors share KIT activation but not mechanisms of genetic progression with adult gastrointestinal stromal tumors. Cancer Res. 2007;67:9084–9088.
  • Sankhala KK, Papadopoulos KP. Future options for imatinib mesylate-resistant tumors. Expert Opin Investig Drugs. 2007;16:1549–1560.
  • Reichardt P, Reichardt A, Pink D. Molecular targeted therapy of gastrointestinal stromal tumors. Curr Cancer Drug Targets. 2011;11:688–697.
  • Demetri GD. Differential properties of current tyrosine kinase inhibitors in gastrointestinal stromal tumors. Semin Oncol. 2011;38:S10–19.
  • Serrano C, George S. Recent advances in the treatment of gastrointestinal stromal tumors. Ther Adv Med Oncol. 2014;6:115–127.
  • Mahadevan D, Cooke L, Riley C, et al. A novel tyrosine kinase switch is a mechanism of imatinib resistance in gastrointestinal stromal tumors. Oncogene. 2007;26:3909–3919.
  • Regad T. Targeting RTK signaling pathways in cancers. Cancers (Basel). 2015;7:1758–1784.
  • Mahadevan D, Theiss N, Morales C, et al. Novel receptor tyrosine kinase targeted combination therapies for imatinib-resistant gastrointestinal stromal tumors (GIST). Oncotarget. 2015;6:1954–1966.
  • Janku F, George S, Razak A, et al. DCC-2618, a pan KIT and PDGFR switch control inhibitor, achieves proof-of-concept in a first-in-human study. Eur J Cancer. 2016;68:[abstract LBA7].
  • Heinrich M, Jones R, Schoffski P, et al. Preliminary safety and activity in a first-in-human phase 1 study of BLU-285, a potent, highly-selective inhibitor of KIT and PDGFRα activation loop mutants in advanced gastrointestinal stromal tumor (GIST). Eur J Cancer. 2016;68:[abstract LBA6].
  • Matro JM, Yu JQ, Heinrich MC, et al. Correlation of PET/CT and CT RECIST response in GIST patients with PDGFRA D842V gene mutations treated with crenolanib. J Clin Oncol. 2014;32:[abstract 10546].
  • Nokihara H, Yamamoto N, Nakamichi S, et al. Phase 1 study of cabozantinib in Japanese patients with advanced solid tumors: anti-tumor activity in NSCLC and GIST. Ann Oncol. 2013;24:[abstract O2–026].
  • Zhou A, Zhang W, Chang C, et al. Phase I study of the safety, pharmacokinetics and antitumor activity of famitinib. Cancer Chemother Pharmacol. 2013;72:1043–1053.
  • LeCesne A, Blay J, Bui BN, et al. Phase II study of oral masitinib mesilate in imatinib-naive patients with locally advanced or metastatic gastrointestinal stromal tumors (GIST). Eur J Cancer. 2010;46:1344–1351.
  • Blay J, Le Cesne A, Bin Bui N, et al. Overall survival benefit with masitinib mesylate in imatinib-naive, locally advanced, or metastatic gastrointestinal stromal tumor (GIST): 4-years follow-up of the French Sarcoma Group phase II trial. J Clin Oncol. 2011;29:[abstract 85].
  • Adenis A, Blay JY, Bui-Nguyen B, et al. Masitinib in advanced gastrointestinal stromal tumor (GIST) after failure of imatinib: a randomized controlled open-label trial. Ann Oncol. 2014;25:1762–1769.
  • Yap TA, Arkenau HT, Camidge DR, et al. First-in-human phase I trial of two schedules of OSI-930, a novel multikinase inhibitor, incorporating translational proof-of-mechanism studies. Clin Cancer Res. 2013;19:909–919.
  • Ganjoo KN, Villalobos VM, Kamaya A, et al. A multicenter phase II study of pazopanib in patients with advanced gastrointestinal stromal tumors (GIST) following failure of at least imatinib and sunitinib. Ann Oncol. 2014;25:236–240.
  • Blay J, Molimard M, Cropet C, et al. Final results of the multicenter randomized phase II PAZOGIST trial evaluating the efficacy of pazopanib (P) plus best supportive care (BSC) vs BSC alone in resistant unresectable metastatic and/or locally advanced gastrointestinal stromal tumors (GIST). J Clin Oncol. 2015;33:[abstract 10506].
  • Eriksson M, Reichard P, Joensuu H, et al. Pazopanib as third line treatment in advanced GIST progressive after treatment with imatinib and sunitinib - results from a phase II trial (SSG XXI, PAGIST). GIST Cancer J. 2015;2(4) [abstract P060].
  • Heinrich CM, Von Mehren M, Demetri GD, et al. Ponatinib efficacy and safety in patients (pts) with advanced gastrointestinal stromal tumors (GIST) after tyrosine kinase inhibitor (TIK) failure: results from a phase 2 study. J Clin Oncol. 2015;33:[abstract 10535].
  • Kang Y, Yoo C, Ryoo B, et al. Phase II study of dovitinib in patients with metastatic and/or unresectable gastrointestinal stromal tumours after failure of imatinib and sunitinib. Br J Cancer. 2013;109:2309–2315.
  • Schöffski P, Reichardt P, Blay J, et al. A phase I–II study of everolimus (RAD001) in combination with imatinib in patients with imatinib-resistant gastrointestinal stromal tumors. Ann Oncol. 2010;21:1990–1998.
  • Hohenberger P, Bauer S, Gruenwald V, et al. Multicenter, single-arm, two-state phase II trial of everolimus (RAD001) with imatinib in imatinib-resistant patients (pts) with advanced GIST. J Clin Oncol. 2010;28:[abstract 10048].
  • Conley AP, Araujo D, Ludwig J, et al. A randomized phase II study of perifosine (P) plus imatinib for patients with imatinib-resistant gastrointestinal stromal tumor (GIST). J Clin Oncol. 2009;37:[abstract 10563].
  • Chi P, Qin L, D’Angelo SP, et al. A phase Ib/II study of MEK162 (binimetinib [BIN]) in combination with imatinib in patients with advanced gastrointestinal stromal tumors (GIST). J Clin Oncol. 2015;33:[abstract 10507].
  • Shapiro GI, Kwak E, Dezube BJ, et al. First-in-human phase I dose escalation study of a second-generation non-ansamycin HSP90 inhibitor, AT13387, in patients with advanced solid tumors. Clin Cancer Res. 2015;21:87–97.
  • Chiang N, Yeh K, Chiu F, et al. Results of a phase II trial of AUY922, a novel heat shock protein inhibitor in patients with metastatic gastrointestinal stromal tumor (GIST) and imatinib band sunitinib therapy. J Clin Oncol. 2016;34:[abstract 134].
  • Blanke CD, Rankin C, Corless C, et al. S0502: a SWOG phase III randomized study of imatinib, with or without bevacizumab, in patients with untreated metastatic or unresectable gastrointestinal stromal tumors. Oncologist. 2015;20:1353–1354.
  • D’Angelo SP, Shoushtari AN, Keohan ML, et al. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: phase 1b study of dasatinib plus ipilimumab (NCI #9172). GIST Cancer J. 2015;2(4) [abstract P052].
  • US National Institutes of Health. ClinicalTrials.gov. [ cited 2016 Nov 15]. Available at www.clinicaltrials.gov
  • Li J, Dang Y, Gao J, et al. PI3K/AKT/mTOR pathway is activated after imatinib secondary resistance in gastrointestinal stromal tumors (GISTs). Med Oncol. 2015;32:111.
  • Patel S. Exploring novel therapeutic targets in GIST: focus on the PI3K/Akt/mTOR pathway. Curr Oncol Rep. 2013;15:386–395.
  • Agaram NP, Wong GC, Guo T, et al. Novel V600E BRAF mutations in imatinib-naive and imatinib-resistant gastrointestinal stromal tumors. Genes Chromosomes Cancer. 2008;47:853–859.
  • Mahalingam D, Swords R, Carew JS, et al. Targeting HSP90 for cancer therapy. Br J Cancer. 2009;100:1523–1529.
  • Conforti F, Wang Y, Rodriguez JA, et al. Molecular pathways: anticancer activity by inhibition of nucleocytoplasmic shuttling. Clin Cancer Res. 2015;21:4508–4513.
  • Saponara M, Urbini M, Astolfi A, et al. Molecular characterization of metastatic exon 11 mutant gastrointestinal stromal tumors (GIST) beyond KIT/PDGFRalpha genotype evaluated by next generation sequencing (NGS). Oncotarget. 2015;6:42243–42257.
  • Xu Z, Huo X, Tang C, et al. Frequent KIT mutations in human gastrointestinal stromal tumors. Sci Rep. 2014;4:5907.
  • Schoppmann SF, Vinatzer U, Popitsch N, et al. Novel clinically relevant genes in gastrointestinal stromal tumors identified by exome sequencing. Clin Cancer Res. 2013;19:5329–5339.
  • Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12:278–287.
  • Plaat BEC, Hollema H, Molenaar WM, et al. Soft tissue leiomyosarcomas and malignant gastrointestinal stromal tumors: differences in clinical outcome and expression of multidrug resistance proteins. J Clin Oncol. 2000;18:3211–3220.
  • Blay JY, Casali PG, Dei Tos AP, et al. Management of gastrointestinal stromal tumour: current practices and visions for the future. Oncology. 2015;89:1–13.
  • Pessetto ZY, Ma Y, Hirst JJ, et al. Drug repurposing identifies a synergistic combination therapy with imatinib mesylate for gastrointestinal stromal tumor. Mol Cancer Ther. 2014;13:2276–2287.
  • Boichuk S, Lee DJ, Mehalek KR, et al. Unbiased compound screening identifies unexpected drug sensitivities and novel treatment options for gastrointestinal stromal tumors. Cancer Res. 2014;74:1200–1213.
  • DeNardo DG, Brennan DJ, Rexhepaj E, et al. Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discov. 2011;1:54–67.
  • Kim TS, Cavnar MJ, Cohen NA, et al. Increased KIT inhibition enhances therapeutic efficacy in gastrointestinal stromal tumor. Clin Cancer Res. 2014;20:2350–2362.
  • Bollag G. Optimizing kinase inhibitors to treat cancer. Cancer Res. 2016;76:[abstract IA32].
  • Smith BD, Hood MM, Wise SC, et al. DCC-2618 is a potent inhibitor of wild-type and mutant KIT, including refractory exon 17 D816 KIT mutations, and exhibits efficacy in refractory GIST and AML xenograft models. Cancer Res. 2015;75:[abstract 2690].
  • Heinrich MC, Griffith D, McKinley A, et al. Crenolanib inhibits the drug-resistant PDGFRA D842V mutation associated with imatinib-resistant gastrointestinal stromal tumors. Clin Cancer Res. 2012;18:4375–4384.
  • Evans EK, Hodous BL, Gardino AK, et al. BLU-285, the first selective inhibitor of PDGFRa D842V and KIT Exon 17 mutants. Cancer Res. 2015;75:[abstract 791].
  • Javidi-Sharifi N, Traer E, Martinez J, et al. Crosstalk between KIT and FGFR3 promotes gastrointestinal stromal tumor cell growth and drug resistance. Cancer Res. 2015;75:880–891.
  • Guagnano V, Furet P, Spanka C, et al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamin o]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J Med Chem. 2011;54:7066–7083.
  • Lee SH, Lopes De Menezes D, Vora J, et al. In vivo target modulation and biological activity of CHIR-258, a multitargeted growth factor receptor kinase inhibitor, in colon cancer models. Clin Cancer Res. 2005;11:3633–3641.
  • Sarker D, Molife R, Evans TRJ, et al. A phase I pharmacokinetic and pharmacodynamic study of TKI258, an oral, multitargeted receptor tyrosine kinase inhibitor in patients with advanced solid tumors. Clin Cancer Res. 2008;14:2075–2081.
  • Yoo C, Ryu MH, Na YS, et al. Analysis of serum protein biomarkers, circulating tumor DNA, and dovitinib activity in patients with tyrosine kinase inhibitor-refractory gastrointestinal stromal tumors. Ann Oncol. 2014;25:2272–2277.
  • Gebreyohannes YK, Van Looy T, Wozniak A, et al. Anti-tumor effects of dovitinib, a multi-target kinase inhibitor, in patient-derived gastrointestinal stromal tumor (GIST) xenograft models. Cancer Res. 2015;75:[abstract 775].
  • Smith NR, Baker D, James NH, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res. 2010;16:3548–3561.
  • Dubreuil P, Letard S, Ciufolini M, et al. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One. 2009;4:e7258.
  • Votrient (pazopanib) [package insert]. Research Triangle Park, NC: GlaxoSmithKline; August 2016.
  • Garner AP, Gozgit JM, Anjum R, et al. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin Cancer Res. 2014;20:5745–5755.
  • Caprelsa (vandetanib) [package insert]. Wilmington, DE: AstraZeneca Pharmaceutical LP; July 2016.
  • Avastin (bevacizumab) [package insert]. San Francisco, CA: Genentech Inc; December 2016.
  • Bauer S, Duensing A, Demetri GD, et al. KIT oncogenic signaling mechanisms in imatinib-resistant gastrointestinal stromal tumor: PI3-kinase/AKT is a crucial survival pathway. Oncogene. 2007;26:7560–7568.
  • Quattrone A, Wozniak A, Dewaele B, et al. Frequent mono-allelic loss associated with deficient PTEN expression in imatinib-resistant gastrointestinal stromal tumors. Mod Pathol. 2014;27:1510–1520.
  • Lai S, Wang G, Cao X, et al. KIT over-expression by p55PIK-PI3K leads to Imatinib-resistance in patients with gastrointestinal stromal tumors. Oncotarget. 2016;7:1367–1379.
  • Lasota J, Felisiak-Golabek A, Wasag B, et al. Frequency and clinicopathologic profile of PIK3CA mutant GISTs: molecular genetic study of 529 cases. Mod Pathol. 2016;29:275–282.
  • Dogan SS, Esmaeli B. Ocular side effects associated with imatinib mesylate and perifosine for gastrointestinal stromal tumor. Hematol Oncol Clin North Am. 2009;23:109–114.
  • Maira S, Pecchi S, Huang A, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11:317–328.
  • Park E, Park J, Han S, et al. NVP-BKM120, a novel PI3K inhibitor, shows synergism with a SAT3 inhibitor in human gastric cancer cells harboring KRAS mutations. Int J Oncol. 2012;40:1259–1266.
  • Van Looy T, Wozniak A, Floris G, et al. Phosphoinositide 3-kinase inhibitors combined with imatinib in patient-derived xenograft models of gastrointestinal stromal tumors: rationale and efficacy. Clin Cancer Res. 2014;20:6071–6082.
  • Fritsch C, Huang A, Chatenay-Rivauday C, et al. Characterization of the novel and specific PI3Ka inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther. 2014;13:1117–1129.
  • Burris HA, Patel MR, Lanasa MC, et al. Activity of TGR-1202, a novel once-daily PI3Kδ inhibitor, in patients with relapsed or refractory hematologic malignancies. J Clin Oncol. 2014;32:[abstract 2513].
  • O’Connor OA, Flinn IW, Patel MR, et al. TGR-1202, a novel once daily PI3K-delta inhibitor, demonstrates clinical activity with a favorable safety profile in patients with CLL and B-cell lymphoma. Blood. 2015;126:[abstract 4154].
  • Fremin C, Meloche S. From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol. 2010;3:8.
  • Hostein I, Faur N, Primois C, et al. BRAF mutation status in gastrointestinal stromal tumors. Am J Clin Pathol. 2010;133:141–148.
  • Tafinlar (dabrafenib) [package insert]. Research Triangle Park, NC: GlaxoSmithKline; June 2016.
  • Rutkowski P, Blank C. Dabrafenib for the treatment of BRAF V600-positive melanoma: a safety evaluation. Expert Opin Drug Saf. 2014;13:1249–1258.
  • King AJ, Arnone MR, Bleam MR, et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS One. 2013;8:e67583.
  • Falchook G, Trent J, Heinrich M, et al. BRAF mutant gastrointestinal stromal tumor: first report of regression with BRAF inhibitor dabrafenib (GSK2118436) and whole exomic sequencing for analysis of acquired resistance. Oncotarget. 2013;4:310–315.
  • Ran L, Sirota I, Cao Z, et al. Dual lineage inhibition of ETV1 and KIT disrupts the ETV1-KIT feed forward circuit and potentiates imatinib antitumor effect in GIST oncogenesis. Cancer Res. 2014;74:[abstract 3396].
  • Lee PA, Wallace E, Marlow A, et al. Preclinical development of ARRY-162, a potent and selective MEK 1/2 inhibitor. Cancer Res. 2010;70:[abstract 2515].
  • Demetri GD, Le Cesne A, Von Mehren M, et al. Final results from a phase III study of IPI-504 (retaspimycin hydrochloride) versus placebo in patients (pts) with gastrointestinal stromal tumors (GIST) following failure of kinase inhibitor therapies. Gastrointest Cancers Symp. 2010;[abstract 64]. Available from: http://meetinglibrary.asco.org/content/2285-72
  • Wagner AJ, Agulnik M, Heinrich MC, et al. Dose-escalation study of a second-generation non-ansamycin HSP90 inhibitor, onalespib (AT13387), in combination with imatinib in patients with metastatic gastrointestinal stromal tumour. Eur J Cancer. 2016;61:94–101.
  • Sawan C, Herceg Z. Histone modifications and cancer. Adv Genet. 2010;70:57–85.
  • West AC, Johnstone RW. New and emerging HDAC inhibitors for cancer treatment. J Clin Invest. 2014;124:30–39.
  • Bauer S, Hilger RA, Muhlenberg T, et al. Phase I study of panobinostat and imatinib in patients with treatment-refractory metastatic gastrointestinal stromal tumors. Br J Cancer. 2014;110:1155–1162.
  • Istodax (romidepsin) [package insert]. Summit, NJ: Celgene Corporation; July 2016.
  • Zolinza (vorinostat) [package insert]. Whitehouse Station, NJ: Merck & Co, Inc.; December 2015.
  • Yervoy (ipilimumab) [package insert]. Princeton, NJ: Bristol-Myers Squibb; March 2017.
  • Opdivo (nivolumab) [package insert]. Princeton, NJ: Bristol-Myers Squibb; February 2017.
  • Keytruda (pembrolizumab) [package insert]. Whitehouse Station, NJ: Merck & Co, Inc; March 2017.
  • Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61.
  • Seifert AM, Zeng S, Zhang JQ, et al. PD-1/PD-L1 blockade enhances T cell activity and antitumor efficacy of imatinib in gastrointestinal stromal tumors. Clin Cancer Res. 2017;23:454–465.
  • Balachandran VP, Cavnar MJ, Zeng S, et al. Imatinib potentiates antitumor T cell responses in gastrointestinal stromal tumor through the inhibition of Ido. Nat Med. 2011;17:1094–1100.
  • D’Angelo SP, Shoushtari AN, Keohan ML, et al. Combined KIT and CTLA-4 blockade in patients with refractory GIST and other advanced sarcomas: a phase Ib study of dasatinib plus ipilimumab. Clin Cancer Res. cited 2016 Dec;[Epub ahead of print].DOI:10.1158/1078-0432.CCR-16-2349
  • Immunicum. INTUVAX(R). cited. 2017. Mar 2013. Available at http://immunicum.se/technology/intuvax/
  • Lim S, Kaldis P. Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development. 2013;140:3079–3093.
  • Haller F, Gunawan B, Von Heydebreck A, et al. Prognostic role of E2F1 and members of the CDKN2A network in gastrointestinal stromal tumors. Clin Cancer Res. 2005;11:6589–6597.
  • Nannini M, Astolfi A, Urbini M, et al. Integrated genomic study of quadruple-WT GIST (KIT/PDGFRA/SDH/RAS pathway wild-type GIST). BMC Cancer. 2014;14:685,2407-14-685.
  • Parikh K, Cang S, Sekhri A, et al. Selective inhibitors of nuclear export (SINE)- a novel class of anti-cancer agents. J Hematol Oncol. 2014;7:78.
  • Nakayama R, Zhang Y, Anatone A, et al. Preclinical activity of selinexor, an inhibitor of XPO1/CRM1, in sarcoma. Cancer Res. 2015;75:[abstract 1759].
  • Gounder MM, Zer A, Tap WD, et al. A phase 1b study with selinexor, a first in class selective inhibitor of nuclear export (SINE) in patients with advanced sarcoma: an efficacy analysis. J Clin Oncol. 2015;33:[abstract 10569].
  • Gross MI, Demo SD, Dennison JB, et al. Antitumor activity of the glutaminase inhibitor CB-839 in triple-negative breast cancer. Mol Cancer Ther. 2014;13:890–901.
  • Miettinen M, Wang ZF, Sarlomo-Rikala M, et al. Succinate dehydrogenase-deficient GISTs: a clinicopathologic, immunohistochemical, and molecular genetic study of 66 gastric GISTs with predilection to young age. Am J Surg Pathol. 2011;35:1712–1721.
  • Edmonson JH, Marks RS, Buckner JC, et al. Contrast of response to dacarbazine, mitomycin, doxorubicin, and cisplatin (DMAP) plus GM-CSF between patients with advanced malignant gastrointestinal stromal tumors and patients with other advanced leiomyosarcomas. Cancer Invest. 2002;20:605–612.
  • Maurel J, Martins AS, Poveda A, et al. Imatinib plus low-dose doxorubicin in patients with advanced gastrointestinal stromal tumors refractory to high-dose imatinib. Cancer. 2010;116:3692–3701.
  • Feldman R, Gatalica Z, Reddy SK, et al. Molecularly-guided therapeutic options beyond tyrosine kinase inhibitors (TKIs) for gastrointestinal stromal tumors (GIST). J Clin Oncol. 2015;33:[abstract 58].
  • Feldman R, Reddy SK, Gatalica Z, et al. Identification of therapy options for rare and resistant gastrointestinal stromal tumors (GIST). J Clin Oncol. 2015;33:[abstract 10539].
  • Akasaka K, Maesawa C, Shibazaki M, et al. Loss of class III beta-tubulin induced by histone deacetylation is associated with chemosensitivity to paclitaxel in malignant melanoma cells. J Invest Dermatol. 2009;129:1516–1526.
  • Corbin KS, Kindler HL, Liauw SL. Considering the role of radiation therapy for gastrointestinal stromal tumor. Onco Targets Ther. 2014;7:713–718.
  • Joensuu H, Eriksson M, Collan J, et al. Radiotherapy for GIST progressing during or after tyrosine kinase inhibitor therapy: A prospective study. Radiother Oncol. 2015;116:233–238.
  • Dalm SU, Bakker IL, De Blois E, et al. 68Ga/177Lu-NeoBOMB1, a novel radiolabeled GRPR antagonist for theranostic use in oncol-ogy. J Nucl Med. 2017;58:293–299.
  • Shoushtari AN, Van Tine BA, Schwartz GK. Novel treatment targets in sarcoma: more than just the GIST. ASCO Educational Book. 2014. p. e488–95. DOI:10.14694/EdBook_AM.2014.34.e488.
  • Doyle LA, Hornick JL. Gastrointestinal stromal tumours: from KIT to succinate dehydrogenase. Histopathology. 2014;64:53–67.
  • Mak IWY, Evaniew N, Ghert M. Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res. 2014;6:114–118.
  • Laurie SA, Jonker DJ, Edenfield WJ, et al. A phase 1 dose-escalation study of BBI503, a first-in-class cancer stemness kinase inhibitor in adult patients with advanced solid tumors. J Clin Oncol. 2014;32:[abstract 2527].
  • Palma G, Frasci G, Chirico A, et al. Triple negative breast cancer: looking for the missing link between biology and treatments. Oncotarget. 2015;6:26560–26574.
  • Szekely B, Silber AL, Pusztai L. New therapeutic strategies for triple-negative breast cancer. Oncology (Williston Park). 2017;31:221108.
  • Le Du F, Eckhardt BL, Lim B, et al. Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? Oncotarget. 2015;6:12890–12908.
  • Poulikakos PI, Zhang C, Bollag G, et al. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature. 2010;464:427–430.
  • Hatzivassiliou G, Song K, Yen I, et al. RAF inhibitors prime wild-type RAF to activate the MAPK pathway and enhance growth. Nature. 2010;464:431–435.
  • Heidorn SJ, Milagre C, Whittaker S, et al. Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF. Cell. 2010;140:209–221.
  • Gasparotto D, Miolo G, Torrisi E, et al. Improved outcome with multimodal treatment and imatinib rechallenge in advanced GIST. Int J Colorectal Dis. 2014;29:639–640.
  • Ordog T, Zornig M, Hayashi Y. Targeting disease persistence in gastrointestinal stromal tumors. Stem Cells Transl Med. 2015;4:702–707.
  • Songdej N, Von Mehren M. GIST treatment options after tyrosine kinase inhibitors. Curr Treat Options Oncol. 2014;15:493–506.
  • DeMatteo R, Chapman S. Immunotherapy drives a paradigm shift toward a new model of treatment. GIST Cancer J. 2014;1:104–109.
  • Lamba G, Ambrale S, Lee B, et al. Recent advances and novel agents for gastrointestinal stromal tumor (GIST). J Hematol Oncol. 2012;5:21.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.