254
Views
2
CrossRef citations to date
0
Altmetric
Review

Metastatic melanoma: therapeutic agents in preclinical and early clinical development

, &
Pages 739-753 | Received 07 Jan 2020, Accepted 11 May 2020, Published online: 01 Jun 2020

References

  • Eggermont AM, Spatz A, Robert C. Cutaneous melanoma. Lancet. 2014 Mar 1;383(9919):816–827.
  • Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002 Jun 27;417(6892):949–954.
  • Paluncic J, Kovacevic Z, Jansson PJ, et al. Roads to melanoma: key pathways and emerging players in melanoma progression and onco-genic signaling. Biochim Biophys Acta. 2016;1863(4):770–784.
  • Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011 Jun 30;364(26):2507–2516.
  • Hauschild A, Grob JJ, Demidov LV, et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet. 2012 Jul 28;380(9839):358–365.
  • Zhang C, Spevak W, Zhang Y, et al. RAF inhibitors that evade paradoxical MAPK pathway activation. Nature. 2015 Oct 22;526(7574):583–586.
  • Grob JJ, Amonkar MM, Karaszewska B, et al. Comparison of dabrafenib and trametinib combination therapy with vemurafenib monotherapy on health-related quality of life in patients with unresectable or metastatic cutaneous BRAF Val600-mutation-positive melanoma (COMBI-v): results of a phase 3, open-label, randomised trial. Lancet Oncol. 2015 Oct;16(13):1389–1398.
  • Ascierto PA, McArthur GA, Dréno B, et al. Cobimetinib combined with vemurafenib in advanced BRAFV600-mutant melanoma (coBRIM): updated efficacy results from a randomised, double-blind, phase 3 trial. Lancet Oncol. 2016 Sep;17(9):1248–1260.
  • Dummer R, Ascierto PA, Gogas HJ, et al. Encorafenib plus binimetinib versus vemurafenib or encorafenib in patients with BRAF -mutant melanoma (COLUMBUS): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2018 May;19(5):603–615.
  • Dummer R, Ascierto PA, Gogas HJ, et al. Overall survival in patients with BRAF-mutant melanoma receiving encorafenib plus binimetinib versus vemurafenib or encorafenib (COLUMBUS): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2018 Oct;19(10):1315–1327.
  • Robert C, Grob JJ, Stroyakovskiy D, et al. Five-year outcomes with dabrafenib plus trametinib in metastatic melanoma. N Engl J Med. 2019 Aug 15;381(7):626–636.
  • Diem S, Kasenda B, Spain L, et al. Serum lactate dehydrogenase as an early marker for outcome in patients treated with anti-PD-1 therapy in metastatic melanoma. Br J Cancer. 2016 Feb 2;114(3):256–261.
  • Koelblinger P, Thuerigen O, Dummer R. Development of encorafenib for BRAF-mutated advanced melanoma. Curr Opin Oncol. 2018 Mar;30(2):125–133.
  • Vinay DS, Ryan EP, Pawelec G, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol. 2015 Dec;35(Suppl):S185–198.
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012 Mar 22;12(4):252–264.
  • Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011 Dec 21;480(7378):480–489.
  • Tivol EA, Borriello F, Schweitzer AN, et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity. 1995 Nov;3(5):541–547.
  • Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science. 1995 Nov 10;270(5238):985–988.
  • Khair DO, Bax HJ, Mele S, et al. Combining immune checkpoint inhibitors: established and emerging targets and strategies to improve outcomes in melanoma. Front Immunol. 2019 Mar;19(10):453.
  • Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010 Aug 23;363(8):711–723.
  • Schadendorf D, Hodi FS, Robert C, et al. Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresectable or metastatic melanoma. J Clin Oncol. 2015 Jun 10;33(17):1889–1894.
  • Dong H, Zhu G, Tamada K, et al. B7-H1, a third member oft he B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999 Dec;5(12):1365–1369.
  • Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the Pd-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000 Oct 2;192(7):1027–1034.
  • Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity. 1999 Aug;11(2):141–151.
  • Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science. 2001 Jan 12;291(5502):319–322.
  • Barber DL, Wherry EJ, Masopust D, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature. 2006 Feb 9;439(7077):682–687.
  • Rotte A. Combination of CTLA-4 and PD-1 blockade for treatment of cancer. J Exp Clin Cancer Res. 2019 Jun 13;38(1):255.
  • Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2019 Oct 17;381(16):1535–1546.
  • Robert C, Thomas L, Bondarenko I, et al. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011 Jun 30;364(26):2517–2526.
  • Ascierto PA, Del Vecchio M, Robert C, et al. Ipilimumab 10mg/kg versus ipilimumab 3mg/kg in patients with unresectable or metastatic melanoma: a randomised, double blind, multicentre, phase 3 trial. Lancet Oncol. 2017 May;18(5):611–622.
  • Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015 Jan 22;372(4):320–330.
  • Larkin J, Minor D, D’Angelo S, et al. Overall survival in patients with advanced melanoma who received nivolumab versus investigators chose chemotherapy in checkmate 037: A randomized, controlled, open label phase III trial. J Clin Oncol. 2018 Feb 1;36(4):383–390.
  • Hamid O, Puzanov I, Dummer R, et al. Final analysis of a randomised trial comparing pembrolizumab versus investigator-choice chemotherapy for ipilimumab-refractory advanced melanoma. Eur J Cancer. 2017 Nov;86:37–45.
  • Robert C, Ribas A, Schachter J, et al. Pembrolizumab versus ipilimumab in advanced melanoma (KEYNOTE-006): post-hoc5-year results from an open-label, multicentre, randomised, controlled, phase 3 study. Lancet Oncol. 2019 Sep;20(9):1239–1251.
  • Hodi FS, Chesney J, Pavlick AC, et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016 Sep 8;17(11):1558–1568.
  • Postow MA, Chesney J, Pavlick AC, et al. Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. N Engl J Med. 2015 May 21;372(21):2006–2017.
  • Andtbacka RH, Kaufman HL, Collichio F, et al. Talimogene Laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol. 2015 Sep 1;33(25):2780–2788.
  • Kaufman HL, Andtbacka RHI, Collichio FA, et al. Durable response rate as an endpoint in cancer immunotherapy: insights from oncolytic virus clinical trials. J Immunother Cancer. 2017 Sep 19;5(1):72.
  • Assessment report Imlygic. European Medicines Agency. 2015 Oct. Available from: https://www.ema.europe.eu/en/documents/assessment-report/imlygic-epar-public
  • Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J Immunother Cancer. 2019 Jun 6;7(1):145.
  • Luke JJ, Schwartz GK. Chemotherapy in the management of advanced cutaneous malignant melanoma. Clin Dermatol. 2013 May-Jun;31(3):290–297.
  • Rosenberg SA, Yang JC, Topalian SL, et al. Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus Interleukin 2. JAMA. 1994 Mar 23-30;271(12):907–913.
  • Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol. 1999 Jul;17(7):2105–2116.
  • Passarelli A, Mannavola F, Stucci LS, et al. Immune system and melanoma biology: A balance between immunosurveillance and immune escape. Oncotarget. 2017 Oct 31;8(62):106132–106142.
  • Manzano JL, Layos L, Bugés C, et al. Resistant mechanisms to BRAF inhibitors in melanoma. Ann Transl Med. 2016 Jun;4(12):237.
  • Van Allen EM, Wagle N, Sucker A, et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014 Jan;4(1):94–109.
  • Maik-Rachline G, Seger R. The ERK cascade inhibitors: towards overcoming resistance. Drug Resist Updat. 2016 Mar;25:1–12.
  • Arafeh R, Flores K, Keren-Paz A, et al. Combined inhibition of MEK and nuclear ERK translocation has synergistic antitumor activity in melanoma cells. Sci Rep. 2017 Nov 27;7(1):16345.
  • Sullivan RJ, Infante JR, Janku F, et al. First-in-class ERK1/2 Inhibitor Ulixertinib (BVD-523) in patients with MAPK mutant advanced solid tumors: results of a phase i dose-escalation and expansion study. Cancer Discov. 2018 Feb;8(2):184–195.
  • Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (Ulixertinib). Mol Cancer Ther. 2017 Nov;16(11):2351–2363.
  • Pant S, Bendell JC, Sullivan RJ, et al. A phase I dose escalation (DE) study of ERK inhibitor, LY3214996, in advanced (adv) cancer (CA) patients (pts). J Clin Oncol. 2019 37(15_suppl):3001.
  • Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006 Aug;7(8):606–619.
  • Martini M, De Santis MC, Braccini L, et al. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014 Sep;46(6):372–383.
  • Aasen SN, Parajuli H, Hoang T, et al. Effective treatment of metastatic melanoma by combining MAPK and PI3K signaling pathway inhibitors. Int J Mol Sci. 2019 Aug 29;20(17):4235.
  • Yam C, Xu X, Davies MA, et al. A multicenter Phase I study evaluating dual PI3K and BRAF inhibition with PX-866 and vemurafenib in patients with advanced BRAF V600–mutant solid tumors. Clin Cancer Res. 2018 Jan 1;24(1):22–32.
  • Yang J, Nie J, Ma X, et al. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019 Feb 19;18(1):26.
  • Wang L, Leite de Oliveira R, Huijberts S, et al. An acquired vulnerability of drug-resistant melanoma with therapeutic potential. Cell. 2018 May 31;173(6):1413–1425.e14.
  • Cesi G, Walbrecq G, Zimmer A, et al. ROS production induced by BRAF inhibitor treatment rewires metabolic processes affecting cell growth of melanoma cells. Mol Cancer. 2017 Jun 8;16(1):102.
  • Booth L, Roberts JL, Poklepovic A, et al. HDAC inhibitors enhance the immunotherapy response of melanoma cells. Oncotarget. 2017 Oct 9;8(47):83155–83170.
  • Entinostat helps Thwart immunotherapy resistance. Cancer Discov. 2019 Jun;9(6):685.2–686.
  • AACR. Entinostat plus pembrolizumab in patients with melanoma previously treated with anti–PD-1 therapy. The ASCO Post. 2019 Feb. [cited 2019 Dec 28]. Available from: https://www.ascopost.com/News/59894
  • Ugurel S, Hildenbrand R, Zimpfer A, et al. Lack of clinical efficacy of imatinib in metastatic melanoma. Br J Cancer. 2005 Apr 25;92(8):1398–1405.
  • Wyman K, Atkins MB, Prieto V, et al. Multicenter Phase II trial of high-dose imatinib mesylate in metastatic melanoma. Cancer. 2006 May 1;106(9):2005–2011.
  • Carvajal RD, Antonescu CR, Wolchok JD, et al. KIT as a therapeutic target in metastatic melanoma. JAMA. 2011 Jun 8;305(22):2327.
  • Turnis ME, Andrews LP, Vignali DA. Inhibitory receptors as targets for cancer immunotherapy. Eur J Immunol. 2015 Jul;45(7):1892–1905.
  • Tundo GR, Sbardella D, Lacal PM, et al. the horizon: targeting next-generation immune checkpoints for cancer treatment. Chemotherapy. 2019;64(2):62–80.
  • Shi T, Ma Y, Yu L, et al. Cancer immunotherapy: A focus on the regulation of immune checkpoints. Int J Mol Sci. 2018 May 7;19(5). DOI:10.3390/ijms19051389
  • Triebel F, Jitsukawa S, Baixeras E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990 May;171(5):1393–1405.
  • Huard B, Tournier M, Hercend T, et al. Lymphocyte‐activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994 Dec;24(12):3216–3221.
  • Grosso JF, Kelleher CC, Harris TJ, et al. LAG-3 regulates CD8 + T cell accumulation and effector function in murine self- and tumor-tolerance systems. J Clin Invest. 2007 Nov;117(11):3383–3392.
  • Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004 Oct;21(4):503–513.
  • Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3-potential mechanisms of action. Nat Rev Immunol. 2015 Jan;15(1):45–56.
  • Okazaki T, Okazaki IM, Wang J, et al. PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. J Exp Med. 2011 Feb 14;208(2):395–407.
  • Ascierto PA, Melero I, Bhatia S, et al. Initial efficacy of anti-lymphocyte activation gene-3 (anti–LAG-3; BMS-986016) in combination with nivolumab (nivo) in pts with melanoma (MEL) previously treated with anti–PD-1/PD-L1 therapy. J Clin Onc. 2017;35(15_suppl):9520.
  • Monney L, Sabatos CA, Gaglia JL, et al. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature. 2002 Jan 31;415(6871):536–541.
  • Sánchez-Fueyo A, Tian J, Picarella D, et al. Tim-3 inhibits T helper type 1–mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003 Nov;4(11):1093–1101.
  • Gao X, Zhu Y, Li G, et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE. 2012;7(2):e30676.
  • Anderson AC. Tim-3: an emerging target in the cancer immunotherapy landscape. Cancer Immunol Res. 2014 May;2(5):393–398.
  • Tang R, Rangachari M, Kuchroo VK. Tim-3: A co-receptor with diverse roles in T cell exhaustion and tolerance. Semin Immunol. 2019 Apr;42:101302.
  • Fourcade J, Sun Z, Benallaoua M, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010 Sep 27;207(10):2175–2186.
  • Sakuishi K, Apetoh L, Sullivan JM, et al. Targeting Tim-3 and PD-1 pathways to reverse T cell exhaustion and restore anti-tumor immunity. J Exp Med. 2010;207(10):2187–2194.
  • Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim-3 and PD-1 identifies a CD8+ T-cell exhaustion phenotype in mice with disseminated acute myelogenous leukemia. Blood. 2011 Apr 28;117(17):4501.
  • Chapoval AI, Ni J, Lau JS, et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production. Nat Immunol. 2001 Mar;2(3):269–274.
  • Lee YH, Martin-Orozco N, Zheng P, et al. Inhibition of the B7-H3 immune checkpoint limits tumor growth by enhancing cytotoxic lymphocyte function. Cell Res. 2017 Aug;27(8):1034–1045.
  • Ma J, Shang T, Ma P, et al. Bispecific anti-CD3 x anti-B7-H3 antibody mediates T cell cytotoxic ability to human melanoma in vitro and in vivo. Invest New Drugs. 2019 Oct;37(5):1036–1043.
  • Yu X, Harden K, Gonzalez LC, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009 Jan;10(1):48–57.
  • Johnston RJ, Comps-Agrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector function. Cancer Cell. 2014 Dec 8;26(6):923–937.
  • Chauvin JM, Pagliano O, Fourcade J, et al. TIGIT and PD-1 impair tumor antigen-specific CD8+ T cells in melanoma patients. J Clin Invest. 2015 May;125(5):2046–2058.
  • Stålhammar G, Seregard S, Grossniklaus HE. Expression of immune checkpoint receptors Indoleamine 2,3-dioxygenase and T cell Ig and ITIM domain in metastatic versus nonmetastatic choroidal melanoma. Cancer Med. 2019 Jun;8(6):2784–2792.
  • Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol, Immunother. 2016 Oct;65(10):1243–1248.
  • Yonezawa A, Dutt S, Chester C, et al. Boosting cancer immunotherapy with anti-CD137 antibody therapy. Clin Cancer Res. 2015 Jul 15;21(14):3113–3120.
  • Chacon JA, Wu RC, Sukhumalchandra P, et al. Co-stimulation through 4-1BB/CD137 improves the expansion and function of CD8+ melanoma tumor-infiltrating lymphocytes for adoptive T-cell therapy. PLoS ONE. 2013;8(4):e60031.
  • Segal NH, He AR, Doi T, et al. Phase I study of single-agent Utomilumab (PF-05082566), a 4-1BB/CD137 agonist, in patients with advanced cancer. Clin Cancer Res. 2018 Apr 15;24(8):1816–1823.
  • Sugamura K, Ishii N, Weinberg AD. Therapeutic targeting of the effector T-cell co-stimulatory molecule OX40. Nat Rev Immunol. 2004 Jun;4(6):420–431.
  • Curti BD, Kovacsovics-Bankowski M, Morris N, et al. OX40 is a potent immune-stimulating target in late-stage cancer patients. Cancer Res. 2013 Dec 15;;73(24):7189–7198.
  • Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene. 2008 Jan 7;27(2):161–167.
  • Kirkwood J, Milhem M, Zakharia Y et al. (2019). Durable responses in anti–PD-1 refractory melanoma following intratumoral injection of Toll-like receptor 9 (TLR9) agonist CMP-001, in combination with pembrolizumab. Presented at: 34th Annual Meeting of the Society for Immunotherapy of Cancer; 2019 Nov 6–10; National Harbor, MD.
  • Charych D, Khalili S, Dixit V, et al. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS ONE. 2017 Jul 5;12(7):e0179431.
  • Bentebibel SE, Hurwitz ME, Bernatchez C, et al. A first-in-human study and biomarker analysis of NKTR-214, a novel IL2Rβγ-biased cytokine, in patients with advanced or metastatic solid tumors. Cancer Discov. 2019 Jun;9(6):711–721.
  • Diab A, Puzanov I, Maio M et al. Clinical activity of BEMPEG plus NIVO in previously untreated patients with metastatic melanoma. Updated results from the phase 1/2 PIVOT – 02 study. SITC, 34th annual meeting; Nov 2019; National Harbour Maryland. Available from: https://www.nektar.com/application/files/3515/7333/2286/Diab_et_al_PIVOT-02_Melanoma_SITC_2019_Oral_09Nov19Final.pdf
  • Yan Y, Leontovich A, Gerdes M, et al. Understanding heterogenous tumor microenvironment in metastatic melanoma. PLoS ONE. 2019 Jun 5;14(6):e0216485.
  • Ribas A, Hersey P, Middleton MR, et al. New challenges in endpoints for drug development in advanced melanoma. Clin Cancer Res. 2012 Jan 15;18(2):336–341.
  • Cooper ZA, Reuben A, Spencer CN, et al. Distinct clinical patterns and immune infiltrates are observed at time of progression on targeted therapy versus immune checkpoint blockade for melanoma. Oncoimmunology. 2016 Feb 2;5(3):e1136044.
  • Boni A, Cogdill AP, Dang P, et al. Selective BRAF V600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010 Jul 1;70(13):5213–5219.
  • Liu C, Peng W, Xu C, et al. BRAF inhibition increases tumor infiltration by T cells and enhances the antitumor activity of adoptive immunotherapy in mice. Clin Cancer Res. 2013 Jan 15;19(2):393–403.
  • Ascierto PA, Dummer R. (Immunological effects of BRAF+MEK inhibition. Oncoimmunology. 2018 Jul 23;7(9):e1468955.
  • Hu-Lieskovan S, Mok S, Homet Moreno B, et al. Improved antitumor activity of immunotherapy with BRAF and MEK inhibitors in BRAFV600E melanoma. Sci Transl Med. 2015 Mar 18;7(279):279ra41-279ra41.
  • Ribas A, Hodi FS, Callahan M, et al. Hepatotoxicity with combination of vemurafenib and ipilimumab. N Engl J Med. 2013 Apr 4;368(14):1365–1366.
  • Minor DR, Puzanov I, Callahan MK, et al. Severe gastrointestinal toxicity with administration of trametinib in combination with dabrafenib and ipilimumab. Pigment Cell Melanoma Res. 2015 Sep;28(5):611–612.
  • Ascierto PA, Ferrucci PF, Stephens R, et al. KEYNOTE-022 Part 3: phase II randomized study of 1L dabrafenib (D) and trametinib (T) plus pembrolizumab (Pembro) or placebo (PBO) for BRAF-mutant advanced melanoma. Ann Oncol. 2018;29(suppl_8):viii442–viii466.
  • Ascierto PA, Ferrucci PF, Fisher R, et al. Dabrafenib, trametinib and pembrolizumab or placebo in BRAF-mutant melanoma. Nat Med. 2019 Jun;25(6):941–946.
  • Rozeman EA, Sikorska K, Grijpink-Ongering L, et al. LBA46Phase II study comparing pembrolizumab (PEM) with intermittent/short‐term dual MAPK pathway inhibition plus PEM in patients harboring the BRAFV600 mutation (IMPemBra). Ann Oncol. 2018 Oct;29(suppl_8). DOI:10.1093/annonc/mdy424.056
  • Tawbi HA, Amaria RN, Glitza IC, et al. Safety and preliminary activity data from a single center phase II study of triplet combination of nivolumab (N) with dabrafenib (D) and trametinib (T) [trident] in patients (Pts) with BRAF-mutated metastatic melanoma (MM). J Clin Oncol. 2018;36(15_suppl):9560.
  • Dummer R, Schadendorf D, Nathan P, et al. Abstract CT182: the anti-PD-1 antibody spartalizumab (PDR001) in combination with dabrafenib and trametinib in previously untreated patients with advanced BRAF V600-mutant melanoma: first efficacy, safety, and biomarker findings from the part 2 biomarker cohort of COMBi-i. Cancer Res. 2018 Jul;78(13 Supplement):CT182.
  • Roche - Roche announces positive Phase III study results for Tecentriq plus Cotellic and Zelboraf in people with previously untreated BRAF V600 mutation-positive advanced melanoma. [cited 2020 Jan 4]. Available from: https://www.roche.com/media/releases/med-cor-2019-12-13.htm
  • Chesney J, Puzanov I, Collichio F, et al. Randomized, open-label Phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol. 2018 Jun 10;36(17):1658–1667.
  • Puzanov I, Milhem MM, Minor D, et al. Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol. 2016 Aug 1;34(22):2619–2626.
  • Chesney J, Puzanov I, Collichio F, et al. Patterns of response with talimogene laherparepvec in combination with ipilimumab or ipilimumab alone in metastatic unresectable melanoma. Br J Cancer. 2019 Aug;121(5):417–420.
  • Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2017 Sep 7;170(6):1109–1119.
  • Long GV, Dummer R, Ribas A, et al. A Phase I/III, multicenter, open-label trial of talimogene laherparepvec (T-VEC) in combination with pembrolizumab for the treatment of unresected, stage IIIb-IV melanoma (MASTERKEY-265). J Immunother Cancer. 2015 Nov;3(S2):181.
  • Lee N, Zakka LR, Mihm MC, et al. Tumour-infiltrating lymphocytes in melanoma prognosis and cancer immunotherapy. Pathology. 2016 Feb;48(2):177–187.
  • Oble DA, Loewe R, Yu P, et al. Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human melanoma. Cancer Immun. 2009 Apr 2;9:3.
  • Clemente CG, Mihm MC, Bufalino R, et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996 Apr 1;77(7):1303–1310.
  • Rosenberg SA, Yang JC, Sherry RM, et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011 Jul 1;17(13):4550–4557.
  • Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and Interleukin 2. J Natl Cancer Inst. 1994 Aug 3;86(15):1159–1166.
  • Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008 Nov 10;26(32):5233–5239.
  • Baruch EN, Berg AL, Besser MJ, et al. Adoptive T cell therapy: an overview of obstacles and opportunities. Cancer. 2017 Jun 1;123(S11):2154–2162.
  • Kelderman S, Heemskerk B, Fanchi L, et al. Antigen-specific TIL therapy for melanoma: A flexible platform for personalized cancer immunotherapy. Eur J Immunol. 2016 Jun;46(6):1351–1360.
  • Inozume T, Hanada K, Wang QJ, et al. Selection of CD8+PD-1+ lymphocytes in fresh human melanomas enriches for tumor-reactive T cells. J Immunother. 2010 Nov-Dec;33(9):956–964.
  • Seliktar-Ofir S, Merhavi-Shoham E, Itzhaki O, et al. Selection of shared and neoantigen-reactive T cells for adoptive cell therapy based on CD137 separation. Front Immunol. 2017 Oct 10;(8):1211. DOI:10.3389/fimmu.2017.01211
  • Radvanyi LG, Bernatchez C, Zhang M, et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin Cancer Res. 2012 Dec 15;18(24):6758–6770.
  • Gattinoni L, Finkelstein SE, Klebanoff CA, et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med. 2005 Oct 3;202(7):907–912.
  • Andersen R, Donia M, Ellebaek E, et al. Long-lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin Cancer Res. 2016 Aug 1;22(15):3734–3745.
  • Klein C, Waldhauer I, Nicolini VG, et al. Cergutuzumab amunaleukin (CEA-IL2v), a CEA-targeted IL-2 variant-based immunocytokine for combination cancer immunotherapy: overcoming limitations of aldesleukin and conventional IL-2-based immunocytokines. Oncoimmunology. 2017 Jan 11;6(3):e1277306.
  • Testori A, Richards J, Whitman E, et al. Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine with physician’s choice of treatment for stage IV melanoma: the C-100-21 study group. J Clin Oncol. 2008 Feb 20;26(6):955–962.
  • Sondak VK, Liu PY, Tuthill RJ, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogeneic tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol. 2002 Apr 15;20(8):2058–2066.
  • Morton DL, Hsueh EC, Essner R, et al. Prolonged survival of patients receiving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg. 2002 Oct;236(4):438–448; discussion 448–9.
  • Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011 Jun 2;364(22):2119–2127.
  • Peng M, Mo Y, Wang Y, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019 Aug 23;18(1):128.
  • Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature. 2014 Nov 27;515(7528):572–576.
  • McGranahan N, Favero F, de Bruin EC, et al. Clonal status of actionable driver events and the timing of mutational processes in cancer evolution. Sci Transl Med. 2015 Apr 15;7(283):283ra54-283ra54.
  • Hu-Lieskovan S, Ott PA, Naing A, et al. Abstract 942: the personalized vaccine, NEO-PV-01 with anti-PD1, induces neoantigen-specific de novo immune responses in patients with advanced metastatic melanoma: association with clinical outcomes. Clin Res. 2019;79(13 Supplement):942.
  • Weber J, Mandala M, Del Vecchio M, et al. Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. N Engl J Med. 2017 Nov 9;377(19):1824–1835.
  • Weber JS, Del Vecchio M, Mandala M, et al. 1310OAdjuvant nivolumab (NIVO) versus ipilimumab (IPI) in resected stage III/IV melanoma: 3-year efficacy and biomarker results from the phase III CheckMate 238 trial. Ann Oncol. 2019;30(suppl_5):v533–v563.
  • Eggermont AMM, Blank CU, Mandala M, et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018 May 10;378(19):1789–1801.
  • Maio M, Lewis K, Demidov L, et al. Adjuvant vemurafenib in resected, BRAF V600 mutation-positive melanoma (BRIM8): a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2018 Apr;19(4):510–520.
  • Long GV, Hauschild A, Santinami M, et al. Adjuvant dabrafenib plus trametinib in stage III BRAF -mutated melanoma. N Eng J Med. 2017 Nov 9;377(19):1813–1823.
  • Hauschild A, Dummer R, Schadendorf D, et al. Longer follow-up confirms relapse-free survival benefit with adjuvant dabrafenib plus trametinib in patients with resected BRAF V600–mutant stage III melanoma. J Clin Oncol. 2018 Oct 22;36(35):3441–3449.
  • Cohen JV, Buchbinder EI. The evolution of adjuvant therapy for melanoma. Curr Oncol Rep. 2019 Nov 25;21(12):106.
  • Liu J, Blake SJ, Yong MCR, et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 2016 Dec;6(12):1382–1399.
  • Blank CU, Rozeman EA, Fanchi LF, et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat Med. 2018 Nov;24(11):1655–1661.
  • Robert C, Ribas A, Hamid O, et al. Durable complete response after discontinuation of pembrolizumab in patients with metastatic melanoma. J Clin Oncol. 2018 Jun 10;36(17):1668–1674.
  • Broos K, Lecocq Q, Raes G, et al. Noninvasive imaging of the PD-1: PD-L1 immune checkpoint: embracing nuclear medicine for the benefit of personalized immunotherapy. Theranostics. 2018 Jun 7;8(13):3559–3570.
  • Lee RJ, Gremel G, Marshall A, et al. Circulating tumor DNA predicts survival in patients with resected high-risk stage II/III melanoma. Ann Oncol. 2018 Feb 1;29(2):490–496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.