1,335
Views
7
CrossRef citations to date
0
Altmetric
Review

Cystic fibrosis – Ten promising therapeutic approaches in the current era of care

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1107-1124 | Received 01 Jul 2020, Accepted 02 Aug 2020, Published online: 10 Oct 2020

References

  • Bell S, Mall MA, Gutierrez H, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med. 2020;8(1):65–124.
  • Burgel P, Bellis G, Olesen HV, et al. Future trends in cystic fibrosis demography in 34 European countries. Eur Respir J. 2015;46(1):133–141.
  • Elborn J. Cystic Fibrosis. Lancet. 2016;388(10059):2519–2531.
  • McCormick J, Mehta G, Olesen HV, et al. Comparative demographics of the European cystic fibrosis population: a cross-sectional database analysis. Lancet. 2010;375(9719):1007–1013.
  • Boyle M, De Boeck K. A new era in the treatment of cystic fibrosis: correction of the underlying CFTR defect. Lancet Respir Med. 2013;1(2):158–163.
  • VanDevanter D, Kahle JS, O’Sullivan AK, et al. Cystic fibrosis in young children: a review of disease manifestation, progression, and response to early treatment. J Cyst Fibros. 2016;15(2):147–157.
  • Madge S, Bell SC, Burgel PR, et al. Limitations to providing adult cystic fibrosis care in Europe: results of a care centre survey. J Cyst Fibros. 2017;16(1):85–88.
  • Plant B, Goss CH, Plant WD, et al. Management of comorbidities in older patients with cystic fibrosis. Lancet Respir Med. 2013;1(2):164–174.
  • Fuchs H, Borowitz DS, Christiansen DH, et al. Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The pulmozyme study group. N Engl J Med. 1994;331:637–642.
  • Ramsey BW, Pepe MS, Quan JM, et al. Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. Cystic fibrosis inhaled tobramycin study group. N Engl J Med. 1999;340(1):23–30.
  • Saiman L, Marshall BC, Mayer-Hamblett N, et al. Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial. JAMA. 2003;290(13):1749–1756.
  • Ramsey B, Dorkin HL, Eisenberg JD, et al. Efficacy of aerosolized tobramycin in patients with cystic fibrosis. N Engl J Med. 1993;328(24):1740–1746.
  • Konstan MW, Byard PJ, Hoppel CL, et al. Effect of high-dose ibuprofen in patients with cystic fibrosis. N Engl J Med. 1995;332(13):844–848.
  • Conway S, Balfour-Lynn IM, De Ricke K, et al. European cystic fibrosis society standards of care: framework for the cystic fibrosis center. J Cyst Fibros. 2014;13:S3–22.
  • Castellani C, Duff AJA, Bell SC, et al. ECFS best practice guidelines: the 2018 revision. J Cyst Fibros. 2019;17(2):153–178.
  • Kerem B, Rommens JM, Buchanan JA, et al. Identification of the cystic fibrosis gene: genetic analysis. Science. 1989;245(4922):1073–1080.
  • Davies J. Gene and cell therapy for cystic fibrosis. Pediatr Respir Rev. 2006;7:S163–S165.
  • Ramsey B, Davies J, McElvaney NG, et al. A CFTR potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med. 2011;365(18):1663–1672.
  • Davies JC, Wainwright CE, Canny GJ, et al. Efficacy and safety of ivacaftor in patients aged 6 to 11 years with cystic fibrosis with a G551D mutation. Am J Respir Crit Care Med. 2013;187(11):1219–1225.
  • McKone E, Borowitz D, Drevinek P, et al. Long-term safety and efficacy of ivacaftor in patients with cystic fibrosis who have the Gly551Asp-CFTR mutation: a phase 3, open-label extension study (PERSIST). Lancet Respir Med. 2014;2(11):902–910.
  • Moss RB, Flume PA, Elborn JS, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis who have an Arg117His-CFTR mutation: a double-blind, randomised controlled trial. Lancet Respir Med. 2015;3(7):524–533.
  • De Boeck K, Munck A, Walker S, et al. Efficacy and safety of ivacaftor in patients with cystic fibrosis and a non-G551D gating mutation. J Cyst Fibros. 2014;13(6):674–680.
  • Van Goor F, Yu H, Burton B, et al. Effect of ivacaftor on CFTR forms with missense mutations associated with defects in protein processing or function. J Cyst Fibros. 2014;13(1):29–36.
  • Van Goor F, Hadida S, Grootenhuis PDJ, et al. Rescue of CF airway epithelial cell function in vitro by a CFTR potentiator, VX-770. PNAS. 2009;106(44):18825–18830.
  • Flume P, Wainwright CE, Tullis ED, et al. Recovery of lung function following a pulmonary exacerbation in patients with cystic fibrosis and the G551D-CFTR mutation treated with ivacaftor. J Cyst Fibros. 2018;17(1):83–88.
  • Wainwright CE, Elborn JS, Ramsey BW, et al. Lumacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del CFTR. N Engl J Med. 2015;373(3):220–231.
  • Taylor-Cousar JL, Munck A, McKone EF, et al. Tezacaftor-ivacaftor in patients with cystic fibrosis homozygous for Phe508del. N Engl J Med. 2017;377(21):2013–2023.
  • Heijerman H, McKone EE, Downey DG, et al. Efficacy and safety of the elexacaftor plus tezacaftor plus ivacaftor combination regimen in people with cystic fibrosis homozygous for the F508del mutation: a double-blind, randomized, phase 3 trial. Lancet. 2019;394(10212):1940–1948.
  • Middleton P, Mall MA, Drevinek P, et al. Elexacaftor-tezacaftor-ivacaftor for cystic fibrosis with a single Phe508del allele. N Engl J Med. 2019;381(19):1809–1819.
  • Clancy J. Rapid therapeutic advances in CFTR modulator science. Pediatr Pulmonol. 2018;53(S3):S4–S11.
  • Joshi D, Ehrhardt A, Hong S, et al. Cystic fibrosis precision therapeutics: emerging considerations. Pediatr Pulmonol. 2019;45:S13–S17.
  • Rosenfeld M, Cunningham S, Harris WT, et al. An open-label extension study of ivacaftor in children with CF and a CFTR gating mutation initiating treatment at age 2-5years (KLIMB). J Cyst Fibros. 2019;18(6):838–843.
  • Rosenfeld M, Wainwright CE, Higgins M, et al. Ivacaftor treatment of cystic fibrosis in children aged 12 to <24 months and with a CFTR gating mutation (ARRIVAL): a phase 3 single-arm study. Lancet Respir Med. 2018;6(7):545–553.
  • Davies JC, Cunningham S, Harris WT, et al. Safety, pharmacokinetics, and pharmacodynamics of ivacaftor in patients aged 2-5 years with cystic fibrosis and a CFTR gating mutation (KIWI): an open-label, single-arm study. Lancet Respir Med. 2016;4(2):107–115.
  • Sun X, Yi Y, Yan Z, et al. In utero and postnatal VX-770 administration rescues multiorgan disease in a ferret model of cystic fibrosis. Sci Transl Med. 2019;11(485):485.
  • Dilokthornsakul P, Hansen RN, Campbell JD. Forecasting US ivacaftor outcomes and cost in cystic fibrosis patients with the G551D mutation. Eur Respir J. 2016;47(6):1697–1705.
  • Sawicki G, McKone EF, Pasta DJ, et al. Sustained benefit from ivacaftor demonstrated by combining clinical trial and cystic fibrosis patient registry data. Am J Respir Crit Care Med. 2015;192(7):836–842.
  • Flume P, Liou TG, Borowitz DS, et al. Ivacaftor in subjects with cystic fibrosis who are homozygous for the F508del-CFTR mutation. Chest. 2012;142(3):718–724.
  • Rowe S, McColley SA, Rietschel E, et al. Lumacaftor/ivacaftor treatment of patients with cystic fibrosis heterozygous for F508del-CFTR. Ann Am Thorac Soc. 2017;14(2):213–219.
  • Fidler MC, Beusmans J, Panorchan P, et al. Correlation of sweat chloride and percent predicted FEV1 in cystic fibrosis patients treated with ivacaftor. J Cyst Fibros. 2017;16(1):41–44.
  • Durmowicz AG, Witzmann KA, Rosebraugh CJ, et al. Change in sweat chloride as a clinical end point in cystic fibrosis clinical trials: the ivacaftor experience. Chest. 2013;143(1):14–18.
  • Habib AKM, Desai S, Yang CL, et al. A systematic review of the clinical efficacy and safety of CFTR modulators in cystic fibrosis. Sci Rep. 2019;9(1):7234.
  • Habib A, Manji J, Wilcox PG, et al. A systematic review of factors associated with health-care quality of life in adolescents and adults with cystic fibrosis. Ann Am Thorac Soc. 2015;12(3):420–428.
  • Institute for Clinical and Economic review. Modulator treatments for cystic fibrosis: effectiveness and value. Available from: https://icer-review.org/wp-content/uploads/2019/09/ICER_CF_Draft_Report_022020.pdf 2020.
  • VandeVanter D, Mayer-Hamblett N. Innovating cystic fibrosis clinical trial designs in an era of successful standard of care therapies. Curr Opin Pulm Med. 2017;23(6):530–535.
  • Rowe SM, Heltshe SL, Gonska T, et al. Clinical mechanism of the cystic fibrosis transmembrane conductance regulator potentiator ivacaftor in G551D-mediated cystic fibrosis. Am J Respir Crit Care Med. 2014;190(2):175–184.
  • Heltshe S, Mayer-Hamblett N, Burns JL, et al. Pseudomonas aeruginosa in cystic fibrosis patients with G551D-CFTR treated with ivacaftor. Clin Infect Dis. 2015;60(5):703–712.
  • Barry P, Plant BJ, Nair A, et al. Effects of ivacaftor in patients with cystic fibrosis who carry the G551D mutation and have severe lung disease. Chest. 2014;146(1):152–158.
  • Taylor-Cousar J, Niknian M, Gilmartin G, et al. VX11-770-901 investigators. Effect of ivacaftor in patients with advanced cystic fibrosis and a G551D-CFTR mutation: safety and efficacy in an expanded access program in the United States. J Cyst Fibros. 2016;15(1):116–122.
  • Salvatore D, Carnovale V, Iacotucci P, et al. Effectiveness of ivacaftor in severe cystic fibrosis patients and non-G551D gating mutations. Pediatr Pulmonol. 2019;54(9):1398–1403.
  • Konstan M, McKone EE, Moss RB, et al. Assessment of safety and efficacy of long-term treatment with combination lumacaftor and ivacaftor therapy in patients with cystic fibrosis homozygous for the F508del-CFTR mutation (PROGRESS): a phase 3, extension study. Lancet Respir Med. 2017;5(2):107–118.
  • Popowicz N, Wood J, Tai A, et al. Immediate effects of lumacaftor/ivacaftor administration on lung function in patients with severe cystic fibrosis lung disease. J Cyst Fibros. 2017;16(3):392–394.
  • Hubert D, Dehilotte C, Munck A, et al. Retrospective observational study of French patients with cystic fibrosis and a Gly551Asp-CFTR mutation after 1 and 2 years of treatment with ivacaftor in a real-world setting. J Cyst Fibros. 2018;17(1):89–95.
  • Taylor-Cousar J, Jain M, Barto TL, et al. Lumacaftor/ivacaftor in patients with cystic fibrosis and advanced lung disease homozygous for F508del-CFTR. J Cyst Fibros. 2018;17(2):228–235.
  • Bessonova L, Volkova N, Higgins M, et al. Data from the US and UK cystic fibrosis registries support disease modification by CFTR modulation with ivacaftor. Thorax. 2018;73(8):731–740.
  • Ramos K, Smith PJ, McKone EF, et al. Lung transplant referral for individuals with cystic fibrosis: cystic Fibrosis Foundation consensus guidelines. J Cyst Fibros. 2019;18(3):321–333.
  • Bobadilla JL, Macek M Jr., Fine JP, et al. Cystic fibrosis: a worldwide analysis of CFTR mutations–correlation with incidence data and application to screening. Hum Mutat. 2002;19(6):575–606.
  • De Boeck K, Lee T, Amaral M, et al. Cystic fibrosis drug trial design in the era of CFTR modulators associated with substantial clinical benefits: stakeholders’ consensus view. J Cyst Fibros. 2020. DOI:10.1016/j.jcf.2020.05.012.
  • Mayer-Hamblett N, van Koningsbruggen-rietschel S, Nichols DP, et al. Building global development strategies for CF therapeutics during a transitional CFTR modulator era. J Cyst Fibros. 2020. DOI:10.1016/j.jcf.2020.05.011.
  • Berkers G, van Mourik P, Vonk AM, et al. Rectal organoids enable personalized treatment of cystic fibrosis. Cell Rep. 2019;26(7):1701–1708 e1703.
  • Brewington JJ, Filbrandt ET, LaRosa FJ 3rd, et al. Detection of CFTR function and modulation in primary human nasal cell spheroids. J Cyst Fibros. 2018;17(1):26–33.
  • Dekkers JF, Wiegerinck CL, de Jonge HR, et al. A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med. 2013;19(7):939–945.
  • Harutyunyan M, Huang Y, Mun KS, et al. Personalized medicine in CF: from modulator development to therapy for cystic fibrosis patients with rare CFTR mutations. Am J Physiol Lung Cell Mol Physiol. 2018;314(4):L529–L543.
  • Brodlie M, Haq IJ, Roberts K, et al. Targeted therapies to improve CFTR function in cystic fibrosis. Genome Med. 2015;7(1):101.
  • Ghelani D, Schneider-Futschik EK. Emerging cystic fibrosis transmembrane conductance regulator modulators as new drugs for cystic fibrosis: a portrait of in vitro pharmacology and clinical translation. ACS Pharmacol Translational Sci. 2020;3(1):4–10.
  • Santis G, Osborne L, Knight RA, et al. Linked marker haplotypes and F508del mutation in adults with mild pulmonary disease and cystic fibrosis. Lancet. 1990;335(8703):1426–1429.
  • Kerem E, Corey M, Gold R, et al. Pulmonary function and clinical course in patients with cystic fibrosis after pulmonary colonization with Pseudomonas aeruginosa.. J Pediatr. 1990;116(5):714–719.
  • Barr H, Britton J, Smyth AR, et al. Association between socioeconomic status, sex, and age at death from cystic fibrosis in England and Wales (1959 to 2008): cross sectional study. BMJ. 2011;343(1):d4662.
  • Arkwright P, Laurie S, Super M, et al. TGF-B1 genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax. 2000;55(6):459–462.
  • Balfour-Lynn I. Personalised medicine in cystic fibrosis is unaffordable. Pediatr Respir Rev. 2014;15:2–5.
  • Pranke I, Golec a hinzpeter A, Edelman A, et al. Emerging therapeutic approaches for cystic fibrosis. From gene editing to personalized medicine. Frontiers Pharmacol. 2019;10. DOI:10.3389/fphar.2019.00121
  • Dhand R. Inhaled drug therapy 2016: the year in review. Respir Care. 2017;62(7):978–996.
  • Pringle I, Hyde SC, Gill DR. Non-viral vectors in cystic fibrosis gene therapy: recent developments and future prospects. Expert Opin Biol Ther. 2009;9(8):991–1003.
  • Osman G, Rodriguez J, Chan SY, et al. PEGylated enhanced cell penetrating peptide nanoparticles for lung gene therapy. J Control Release. 2018;285:35–45.
  • Caplen N, Alton EW, Middleton PG, et al. Liposome-mediated CFTR gene transfer to the nasal epithelium of patients with cystic fibrosis. Nat Med. 1995;1(1):39–46.
  • Crystal R, McElvaney N, Rosenfeld MA, et al. Administration of an adenovirus containing the human CFTR cDNA to the respiratory tract of individuals with cystic fibrosis. Nat Genet. 1994;8(1):42–51.
  • Zabner J, Couture LA, Gregory RJ, et al. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis. Cell. 1993;75(2):207–216.
  • Alton E, Armstrong DK, Ashby D, et al. UK cystic fibrosis gene therapy consortium. Repeated nebulization of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomized double-blind, placebo-controlled, Phase 2b trial. Lancet Respir Med. 2015;3(9):684–691.
  • Alapati D, Morrisey EE. Gene editing and genetic lung disease. basic research meets therapeutic application. Am J Respir Cell Mol Biol. 2017;56(3):283–290.
  • Schwank G, Koo BK, Sasselli V, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. 2013;13(6):653–658.
  • Zamecnik P, Raychowdhury MK, Tabatadze DR, et al. Reversal of cystic fibrosis phenotype in a cultured D508del cystic fibrosis transmembrane conductance regulator cell line by oligonucleotide insertion. Proc Natl Acad Sci of the U S A. 2004;101(21):8150–8155.
  • Robinson E, Macdonald KD, Slaughter K, et al. Lipid nanoparticle-delivered chemically modified mRNA restores chloride secretion in cystic fibrosis. Mol Ther. 2018;26(8):2034–2046.
  • Bangel-Ruland N, Tomczak K, Fernandez FE, et al. Cystic fibrosis transmembrane conductance regulator-mRNA delivery: a novel alternative for cystic fibrosis gene therapy. J Gene Med. 2013;15(11–12):415–426.
  • Guo L, Karoubi G, Duchesneau P, et al. Generation of induced progenitor-like cells from mature epithelial cells using interrupted reprogramming. Stem Cell Rep. 2017;9(6):1780–1795.
  • WAgner D, Cardoso WB, Gilpin SE, et al. An official American thoracic society workshop report 2015. Stem cells and cell therapies in lung biology and diseases. Ann Am Thorac Soc. 2016;13(8):S259–278.
  • Martin U. Therapeutic application of pluripotent stem cells: challenges and risks. Front Med. 2017;4:229.
  • Conese M, Beccia E, Castellani S, et al. The long and winding road: stem cells for cystic fibrosis. Expert Opin Biol Ther. 2018;18(3):281–292.
  • 2017 Annual Data Report; Cystic fibrosis foundation patient registry. 2018.
  • 2017 Annual Report - The Candian Cystic Fibrosis Registry. Cystic fibrosis Canada. Available at: http://www.cysticfibrosis.ca/cf-care/cf-registry/.. 2017.
  • 2013 Annual Report - The ECFS Patient Registry. European cystic fibrosis society. cited 2016 Feb 15. Available at: https://www.ecfs.eu/sites/default/files/images/ECFSPR_Report2013_02.2016.pdf
  • Waters V, Smyth A. Cystic fibrosis microbiology: advances in antimicrobial therapy. J Cyst Fibros. 2015;14(5):551–560.
  • Millar F, Simmonds NJ, Hodson ME. Trends in pathogens colonising the respiratory tract of adult patients with cystic fibrosis, 1985-2005. J Cyst Fibros. 2009;8(6):386–391.
  • Parkins M, Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros. 2015;14(3):293–304.
  • Lipuma J. The changing microbial epidemiology in cystic fibrosis. CMR. 2010;23(2):299–323.
  • Sherrard L, Tunney MM, Elborn SJ. Infections in chronic lung diseases 2 - Antimicrobial resistance in the respiratory microbiota of people with cystic fibrosis. Lancet. 2014;384(9944):703–713.
  • Parnham M, Erakovic HV, Giamarellos-Bourboulis EJ, et al. Azithromycin: mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014;143(2):225–245.
  • Mogayzel P, Naureckas ET, Robinson KA, et al. Cystic fibrosis pulmonary guidelines. chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2013;187(7):680–689.
  • Principi N, Blasi F, Esposito S. Azithromycin use in patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis. 2015;34(6):1071–1079.
  • Imperi F, Leoni L, Visca P. Antivirulence activity of azithromycin in Pseudomonas aeruginosa.. Front Microbiol. 2014;5:178.
  • Imamura Y, Higashiyama Y, Tomono K, et al. Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane. Antimicro Agents Chemother. 2005;49(4):1377–1380.
  • Ciofu O, Tolker-Nielsen T, Jensen PØ, et al. Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. 2015;85:7–23.
  • Lutz L, Pereira DC, Paiva RM, et al. Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm. BMC Microbiol. 2012;12(1):196.
  • Tateda K, Ishii Y, Hirakata Y, et al. Profiles of outer membrane proteins and lipopolysaccharide of Pseudomonas aeruginosa grown in the presence of sub-MICs of macrolide antibiotics and their relation to enhanced serum sensitivity. J Antimicrob Chemother. 1994;34(6):931–942.
  • Gillis RJ, White KG, Choi KH, et al. Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2005;49(9):3858–3867.
  • Sugimura M, Maseda H, Hanaki H, et al. Macrolide antibiotic-mediated downregulation of MexAB-OprM efflux pump expression in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2008;52(11):4141–4144.
  • Halldorsson S, Gudjonsson T, Gottfredsson M, et al. Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection. Am J Respir Cell Mol Biol. 2010;42(1):62–68.
  • Culic O, Erakovic V, Cepelak I, et al. Azithromycin modulates neutrophil function and circulating inflammatory mediators in healthy human subjects. Eur J Pharmacol. 2002;450(3):277–289.
  • Montenez JP, Van Bambeke F, Piret J, et al. Interactions of macrolide antibiotics (Erythromycin A, roxithromycin, erythromycylamine [Dirithromycin], and azithromycin) with phospholipids: computer-aided conformational analysis and studies on acellular and cell culture models. Toxicol Appl Pharmacol. 1999;156(2):129–140.
  • Parnham M. Immunomodulatory effects of antimicrobials in the therapy of respiratory tract infections. Curr Opin Infect Dis. 2005;18(2):125–131.
  • Southern KW, Barker PM, Solis-Moya A, et al. Macrolide antibiotics for cystic fibrosis. Cochrane Database Syst Rev. 2012;11:CD002203.
  • Tramper-Stranders GA, Wolfs TF, Fleer A, et al. Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr Infect Dis J. 2007;26(1):8–12.
  • Nichols DP, Odem-Davis K, Cogen JD, et al. Pulmonary outcomes associated with long-term azithromycin therapy in cystic fibrosis. Am J Respir Crit Care Med. 2020 Feb 15;201(4):430–437.
  • Mayer-Hamblett N, Retsch-Bogart G, Kloster M, et al. Azithromycin for Early Pseudomonas infection in cystic fibrosis. The OPTIMIZE randomized trial. Am J Respir Crit Care Med. 2018;198(9):1177–1187.
  • Levy I, Grisaru-Soen G, Lerner-Geva L, et al. Multicenter cross-sectional study of nontuberculous mycobacterial infections among cystic fibrosis patients, Israel. Emerg Infec Dis. 2008;14(3):378–384.
  • Coolen N, Morand P, Martin C, et al. Reduced risk of nontuberculous mycobacteria in cystic fibrosis adults receiving long-term azithromycin. J Cyst Fibros. 2015;14(5):594–599.
  • Renna M, Schaffner C, Brown K, et al. Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection. J Clin Invest. 2011;121(9):3554–3563.
  • Giron R, Maiz L, Barrio I, et al. Non-tuberculous mycobacterial infection in patients with cystic fibrosis: a multicenter prevalence study. Arch Bronchoneumol. 2008;44(12):679–684.
  • Catherinot E, Roux AL, Vibet MA, et al. Inhaled therapies, azithromycin and Mycobacterium abscessus in cystic fibrosis patients. Eur Respir J. 2013;41(5):1101–1106.
  • Radhakrishnan D, Yau Y, Corey M, et al. Non-tuberculous mycobacteria in children with cystic fibrosis: isolation, prevalence, and predictors. Pediatr Pulmonol. 2009;44(11):1100–1106.
  • Verreghen M, Heijerman HG, Rejjers M, et al. Risk factors for Mycobacterium abscessus infection in cystic fibrosis patients: a case-control study. J Cyst Fibros. 2012;11(4):340–343.
  • Binder A, Adjemian J, Olivier KN, et al. Epidemiology of nontuberculous mycobacterial infections and associated chronic macrolide use among persons with cystic fibrosis. Am J Respir Crit Care Med. 2013;188(7):807–812.
  • Floto RA, Olivier KN, Saiman L, et al. US cystic fibrosis foundation and european cystic fibrosis society consensus recommendations for the management of non-tuberculous mycobacteria in individuals with cystic fibrosis. Thorax. 2016;71(Suppl 1):i1–22.
  • Yu C, Azuma A, Li Y, et al. EM703, a new derivative of erythromycin, inhibits transforming growth factor - beta signaling in human lung fibroblasts. Exp Lung Res. 2008;34(6):343–354.
  • Kasetty G, Bhongir RKV, Papareddy P, et al. The nonantibiotic macrolide EM703 improves survival in a model of quinolone-treated Pseudomonas aeruginosa airway infection. Antimicro Agents Chemother. 2017;61(9):e02761–16.
  • Grasemann H, Gonska T, Avolio J, et al. Effect of ivacaftor therapy on exhaled nitric oxide in patients with cystic fibrosis. J Cyst Fibros. 2015;14(6):727–732.
  • Grasemann H, Michler E, Wallot M, et al. Decreased concentration of exhaled nitric oxide (NO) in patients with cystic fibrosis. Pediatr Pulmonol. 1997;24(3):173–177.
  • Kotha K, Szczesniak RD, Naren AP, et al. Concentration of fractional excretion of nitric oxide (FENO): a potential airway biomarker of restored CFTR function. J Cyst Fibros. 2015;14(6):733–740.
  • Korten I, Liechti M, Singer F, et al. Lower exhaled nitric oxide in infants with cystic fibrosis compared to healthy controls. J Cyst Fibros. 2018;17(1):105–108.
  • Deppisch C, Herrmann G, Graepler-Mainka U, et al. Gaseous nitric oxide to treat antibiotic resistant bacterial and fungal lung infections in patients with cystic fibrosis: a phase I clinical study. Infection. 2016;44(4):513–520.
  • Howlin RP, Cathie K, Hall-Stoodley L, et al. Low-Dose Nitric Oxide as Targeted Anti-biofilm Adjunctive Therapy to Treat Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis. Mol Ther. 2017;25(9):2104–2116.
  • Bentur L, Gur M, Ashkenazi M, et al. Pilot study to test inhaled nitric oxide in cystic fibrosis patients with refractory Mycobacterium abscessus lung infection. J Cyst Fibros. 2020;19(2):225–231.
  • Ofir G, Sorek R. Contemporary Phage Biology: from Classic Models to New Insights. Cell. 2018;172(6):1260–1270.
  • Rossitto M, Fiscarelli EV, Rosati P. Challenges and promises for planning future clinical research into bacteriophage therapy against Pseudomonas aeruginosa in cystic fibrosis. An argumentative review. Front Microbiol. 2018;9:775.
  • Chan BK, Sistrom M, Wertz JE, et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa.. Sci Rep. 2016;6(1):26717.
  • Kortright KE, Chan BK, Koff JL, et al. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria. Cell Host Microbe. 2019;25(2):219–232.
  • Roesch EA, Nichols DP, Chmiel JF. Inflammation in cystic fibrosis: an update. Pediatr Pulmonol. 2018;53(S3):S30–S50.
  • Lands LC, Stanojevic S. Oral non-steroidal anti-inflammatory drug therapy for lung disease in cystic fibrosis. Cochrane Database Syst Rev. 2019;9:CD001505.
  • Balfour-Lynn IM, Welch K, Smith S. Inhaled corticosteroids for cystic fibrosis. Cochrane Database Syst Rev. 2019;7:CD001915.
  • Jain R, Beckett VV, Konstan MW, et al. KB001-A, a novel anti-inflammatory, found to be safe and well-tolerated in cystic fibrosis patients infected with. Pseudomonas Aeruginosa J Cyst Fibros. 2018;17(4):484–491.
  • Konstan MW, Doring G, Heltshe SL, et al. A randomized double blind, placebo controlled phase 2 trial of BIIL 284 BS (an LTB4 receptor antagonist) for the treatment of lung disease in children and adults with cystic fibrosis. J Cyst Fibros. 2014;13(2):148–155.
  • Tarique A, Evron T, Zhang G, et al. Anti-inflammatory effects of lenabasum, a cannabinoid receptor type 2 agonist, on macrophages from cystic fibrosis. J Cystic Fibrosis. 2020;S1569(20):30094.
  • Elborn J, Horsely A, MacGregor G, et al. Phase I studies of Acebilustat: biomarker response and safety in patients with cystic fibrosis. Clin Transl Sci. 2016;10(1):28–34.
  • Elborn J, Ahuja S, Springman E, et al. EMPIRE-CF: A phase II randomized placebo-controlled trial of once-daily oral acebilustat in adult patients with cystic fibrosis - Study design and patient demographics. Contemp Clin Trials. 2018;72:86–94.
  • Chmiel J, Elborn JS, Constantine S, et al., for the JBT-101-CF-001 investigators. A double-blind, placebo-controlled phase II study in adults with cystic fibrosis of anabasum, a selective cannabinoid receptor type 2 agonist [poster]. 2020. cited 2020 Jun 15. Available at: https://d1io3yog0oux5.cloudfront.net/_7ee4fdcbfcff935ed16b872e166e9cb1/corbuspharma/db/228/2112/pdf/272_A+Double-Blind%2C+Placebo+Controlled+Phase+2+Study+in+Adults+with+Cystic+Fibrosis+of+Anabasum%2C+A+Selective+Cannabinoid+Receptor+Type+2+Agonist.pdf
  • CF Foundation Drug Development Pipeline. cited 2020 Jun 1. Available at: https://www.cff.org/Trials/Pipeline Published 2020. Accessed.
  • Hisert KB, Heltshe SL, Pope C, et al. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflammation in people with cystic fibrosis and chronic lung infections. Am J Respir Crit Care Med. 2017;195(12):1617–1628.
  • Liou T, Adler FR, Fitzsimmons SC, et al. Predictive 5-year survivorship model of cystic fibrosis. Am J Epidemiol. 2001;153(4):345–352.
  • Simmonds N, Macneill SJ, Cullinan P, et al. Cystic fibrosis and survival to 40 years: a case–control study. Eur Respir J. 2010;36(6):1277–1283.
  • Britto M, Kotagal UR, Hornung RW, et al. Impact of recent pulmonary exacerbations on quality of life in patients with cystic fibrosis. Chest. 2002;121(1):64–72.
  • Dobbin C, Bartlett D, Melehan K, et al. The effect of infective exacerbations on sleep and neurobehavioral function in cystic fibrosis. Am J Respir Crit Care Med. 2005;172(1):99–104.
  • Ouyang L, Grosse SD, Amendah DD, et al. Healthcare expenditures for privately insured people with cystic fibrosis. Pediatr Pulmonol. 2009;44(10):989–996.
  • Lieu T, Ray GT, Farmer G, et al. The cost of medical care for patients with cystic fibrosis in a health maintenance organization. Paediatrics. 1999;103(6):e72.
  • Robson M, Abbott J, Webb K, et al. A cost description of an adult cystic fibrosis unit and cost analyses of different categories of patient. Thorax. 1992;47(9):684–689.
  • Elkins M, Robinson M, Rose BR, et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med. 2006;354(3):224–229.
  • Brody A, Sucharew H, Campbell JD, et al. Computed tomography correlates with pulmonary exacerbations in children with cystic fibrosis. Am J Respir Crit Care Med. 2005;172(9):1128–1132.
  • Goss C, Newsom SA, Schildcrout JS, et al. Effect of ambient air pollution on pulmonary exacerbations and lung function in cystic fibrosis. Am J Respir Crit Care Med. 2004;169(7):816–821.
  • Schechter M, McColley SA, Silva S, et al. Association of socioeconomic status with the use of chronic therapies and healthcare utilization in children with cystic fibrosis. J Pediatr. 2009;155(5):634–639.
  • Somayaji R, Goss CH, Khan U, et al. Cystic fibrosis pulmonary exacerbations attributable to respiratory syncytial virus and influenza: a population-based study. Clin Infect Dis. 2017;64(12):1760–1767.
  • Rubin J, Thayer S, Watkins A, et al. Frequency and costs of pulmonary exacerbations in patients with cystic fibrosis in the United States. Curr Med Res Opin. 2017;33(4):667–674.
  • Wagener JS, Rasouliyan L, Vandevanter DR, et al. Oral, inhaled, and intravenous antibiotic choice for treating pulmonary exacerbations in cystic fibrosis. Pediatr Pulmonol. 2013;48(7):666–673.
  • Flume P. Pulmonary complications of cystic fibrosis. Respir Care. 2009;54(5):618–627.
  • Kraynack N, Gothard MD, Falletta LM, et al. Approach to treating cystic fibrosis pulmonary exacerbations varies widely across US CF care centers. Pediatr Pulmonol. 2011;46(9):870–881.
  • Vandevanter D, Heltshe SL, Spahr J, et al. on behalf of the STOP study group. Rationalizing endpoints for prospective studies of pulmonary exacerbation treatment response in cystic fibrosis. J Cyst Fibros. 2017;16(5):607–615.
  • *West NE, Beckett VV, Jain R, et al. Standardized treatment of pulmonary exacerbations (STOP) study: physician treatment practices and outcomes for individuals with cystic fibrosis with pulmonary exacerbations. J Cyst Fibros. 2017;16(5):600–606.
  • VanDevanter D, O’Riordan MA, Blumer JL, et al. Assessing time to pulmonary function benefit following antibiotic treatment of acute cystic fibrosis exacerbations. Respir Res. 2010;6(11):137.
  • VanDevanter D, Flume PA, Morris N, et al. Probability of IV antibiotic retreatment within thirty days is associated with duration and location of IV antibiotic treatment for pulmonary exacerbations in cystic fibrosis. J Cyst Fibros. 2016;15(6):783–790.
  • Flume P, Mogayzel PJ Jr, Robinson KA, et al. Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med. 2009;180(9):802–808.
  • Sanders D, Solomon GM, Beckett VV, et al. on behalf of the STOP study group. Standardized treatment of pulmonary exacerbations (STOP) study: observations at the initiation of intravenous antibiotics for cystic fibrosis pulmonary exacerbations. J Cyst Fibros. 2017;16(5):592–599.
  • Somayaji R, Parkins MD, Shah A, et al. Antimicrobial resistance in cystic fibrosis international working group. Antimicrobial susceptibility testing (AST) and associated clinical outcomes in individuals with cystic fibrosis: a systematic review. J Cyst Fibros. 2019;18(2):236–243.
  • Collaco J, Green DM, Cutting GR, et al. Location an duration of treatment of cystic fibrosis respiratory exacerbations do not affect outcomes. Am J Respir Crit Care Med. 2010;182(9):1137–1143.
  • Brown S, Balfour-Lynn IM. Duration of intravenous antibiotic treatment for respiratory exacerbations in children with cystic fibrosis. Arch Dis Child. 2010;95(7):568.
  • Abbott L, Plummer A, Hoo ZH, et al. Duration of intravenous antibiotic therapy in people with cystic fibrosis. Cochrane Database Syst Rev. 2019. DOI:10.1002/14651858.CD006682.pub6
  • Plummer A, Wildman M. Duration of intravenous antibiotic therapy in people with cystic fibrosis. Cochrane Database Syst Rev. 2011;1:CD006682.
  • SAnders D, Bittner RC, Rosenfeld M, et al. Failure to recover to baseline pulmonary function after cystic fibrosis pulmonary exacerbation. Am J Respir Crit Care Med. 2010;82(5):627–632.
  • SAnders D, Bittner RC, Rosenfeld M, et al. Pulmonary exacerbations are associated with subsequent FEV1 decline in both adults and children with cystic fibrosis. Pediatr Pulmonol. 2011;46(4):393–400.
  • Parkins M, Rendall JC, Elborn JS. Incidence and risk factors for pulmonary exacerbation treatment failures in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa. Chest. 2012;66(8):680–685.
  • Wagener J, VanDevanter DR, Konstan MW, et al. Lung function changes before and after pulmonary exacerbation antimicrobial treatment in cystic fibrosis. Pediatr Pulmonol. 2020;55(3):828–834.
  • Heltshe S, West NE, VanDevanter DR, et al. Study design considerations for the standardized treatment of pulmonary exacerbations 2 (STOP2): a trial to compare intravenous antibiotic treatment durations in CF. Contemp Clin Trials. 2018;64:35–40.
  • Heltshe S, Goss CH. Optimizing treatment of CF pulmonary exacerbation: a tough nut to crack. Thorax. 2016;71(2):101–102.
  • Dakin C, Henry RL, Field P, et al. Defining an exacerbation of pulmonary disease in cystic fibrosis. Pediatr Pulmonol. 2001;31(6):436–442.
  • Bilton D, Canny G, Conway S, et al. Pulmonary exacerbation: towards a definition for use in clinical trials. Report from the EuroCareCF working group on outcome parameters in clinical trials. J Cyst Fibros. 2011;10(S2):S79–81.
  • Foundation CF. 2018 annual data report; cystic fibrosis foundation patient registry. 2018. Available at: https://www.cff.org/Research/Researcher-Resources/Patient-Registry/2018-Patient-Registry-Annual-Data-Report.pdf
  • Quon B, Psoter K, Mayer-Hamblett N, et al. Disparities in access to lung transplantation for patients with cystic fibrosis by socioeconomic status. Am J Respir Crit Care Med. 2012;186(10):1008–1013.
  • Ramos K, Quon BS, Psoter K, et al. Predictors of non-referral of patients with cystic fibrosis for lung transplant evaluation in the United States. J Cyst Fibros. 2016;15(2):196–203.
  • Martin C, Hamard C, Kanaan R, et al. Causes of death in French cystic fibrosis patients: the need for improvement in transplantation referral strategies. J Cyst Fibros. 2016;15(2):204–212.
  • Ramos K, Quon BS, Heltshe SL, et al. Heterogeneity in survival among adult cystic fibrosis patients with FEV1 <30% of predicted in the United States. Chest. 2017;S0012-3692(17):30033–30036.
  • George P, Banya W, Pareek N, et al. Improved survival at low lung function in cystic fibrosis: cohort study from 1990 to 2007. BMJ. 2011;342:d1008.
  • Kerem E, Reisman J, Corey M, et al. Levison H Prediction of mortality in patients with cystic fibrosis. N Engl J Med. 1992;326(18):1187–1191.
  • Stephenson A, Sykes J, Berthiaume Y, et al. Clinical and demographic factors with post-lung transplantation survival in individuals with cystic fibrosis. J Heart Lung Transplant. 2015;34(9):1139–1145.
  • Hirche T, Knoop C, Hebestreit H, et al. ECORN-CF Study group. Practical guidelines: lung transplantation in patients with cystic fibrosis. Pulm Med. 2014;2014:621342. DOI:10.1155/2014/621342
  • Kapnadak S, Dimango E, Hadjiladis D, et al. Cystic fibrosis foundation consensus guidelines for the care of individuals with advanced cystic fibrosis lung disease. J Cyst Fibros. 2020;S1569-1993(20):30063–30064.
  • Quittner A, Goldbeck L, Abbott J, et al. Prevalence of depression and anxiety in patients with cystic fibrosis and parent caregivers: results of the International Depression Epidemiological study across nine countries. Thorax. 2014;69(12):1090–1097.
  • Riekert K. Plenary session II. adherence … Where’s the app for that? 26th North American CF Conference 2012. Orlando (FL): Pediatr Pulmonol. 2012;47(S35).
  • Ploessi C, Pettit RS, Donaldson J. Prevalence of depression and antidepressant therapy use in a pediatric cystic fibrosis population. Ann Pharmacother. 2014;48(4):488–493.
  • Snell C, Fernandes S, Bujoreanu IS, et al. Depression, illness severity, and healthcare utilization in cystic fibrosis. Pediatr Pulmonol. 2014;49(12):11177–11181.
  • Hilliard M, McQuaid EL, Nabors L, et al. Resilience in youth and families living with pediatric health and developmental conditions: introduction to the special issue on resilience. J Pediatr Psychol. 2015;40(9):835–839.
  • Conway S, Pond MN, Hamnett T, et al. Compliance with treatment in adult patients with cystic fibrosis. Thorax. 1996;51(1):29–33.
  • Sawicki G, Sellers DE, Robinson WM. High treatment burden in adults with cystic fibrosis: challenges to disease self-management. J Cyst Fibros. 2009;8:91–96.
  • Quittner A, Saez-Flores E, Barton JD. The psychological burden of cystic fibrosis. Curr Opin Pulm Med. 2016;22(2):187–191.
  • Chin M, Aaron SD, Bell SC. The treatment of pulmonary and extrapulmonary manifestations of cystic fibrosis. Presse Med. 2017;46(6):e139–e164.
  • Verkeij M, de Winter D, Hurley MA, et al. Implementing the international committee on mental health in cystic fibrosis (ICMH) guidelines: screening accuracy and referral-treatment pathways. J Cyst Fibros. 2018;17(6):821–827.
  • Abbott J, Havermans T, Jarvholm S, et al. Mental health screening in cystic fibrosis centers across Europe. J Cyst Fibros. 2019;18(2):299–303.
  • Jarvholm S, Ericson P, Gilijam M. Patient acceptance and outcome of mental health screening in Swedish adults with cystic fibrosis. Qual Life Res. 2020;29(6):1579–1585.
  • Compton M, Soper M, Reilly B, et al. A feasibility study of urgent implementation of cystic fibrosis multidisciplinary telemedicine clinic in the face of COVID-19 pandemic: single-center experience. Telemed J E Health. 2020. DOI:10.1089/tmj.2020.0091.
  • Colombo C, Burgen PR, Gartner S, et al. Impact of COVID-19 on people with cystic fibrosis. Lancet Respir Med. 2020;8(5):e35–e36.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.