2,699
Views
33
CrossRef citations to date
0
Altmetric
Review

Inhibition of Bruton´s tyrosine kinase as a novel therapeutic approach in multiple sclerosis

&
Pages 1143-1150 | Received 30 Apr 2020, Accepted 06 Aug 2020, Published online: 19 Aug 2020

References

  • Reder AT, Feng X. How type I interferons work in multiple sclerosis and other diseases: some unexpected mechanisms. J Interferon Cytokine Res. 2014 Aug;34(8):589–599.
  • Tselis A, Khan O, Lisak RP. Glatiramer acetate in the treatment of multiple sclerosis. Neuropsychiatr Dis Treat. 2007 Apr;3(2):259–267.
  • Brinkmann V, Billich A, Baumruker T, et al. Fingolimod (FTY720): discovery and development of an oral drug to treat multiple sclerosis. Nat Rev Drug Discov. 2010 Nov;9(11):883–897. .
  • Goodman AD, Anadani N, Gerwitz L. Siponimod in the treatment of multiple sclerosis. Expert Opin Investig Drugs. 2019 Dec;28(12):1051–1057.
  • Shirani A, Stuve O. Natalizumab for Multiple Sclerosis: A Case in Point for the Impact of Translational Neuroimmunology. J Immunol. 2017 Feb 15;198(4):1381–1386.
  • Wingerchuk DM, Weinshenker BG. Disease modifying therapies for relapsing multiple sclerosis. BMJ. 2016 Aug 22;354:i3518. .
  • Jacobs BM, Ammoscato F, Giovannoni G, et al. Cladribine: mechanisms and mysteries in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2018 Dec;89(12):1266–1271. .
  • Evan JR, Bozkurt SB, Thomas NC, et al. Alemtuzumab for the treatment of multiple sclerosis. Expert Opin Biol Ther. 2018 Mar;18(3):323–334. .
  • Torkildsen O, Myhr KM, Bo L. Disease-modifying treatments for multiple sclerosis - a review of approved medications. Eur J Neurol. 2016 Jan;23(Suppl 1):18–27.
  • Hauser SL, Waubant E, and Arnold DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008 Feb 14;358(7):676–688. .
  • Weber MS, Prod’homme T, Patarroyo JC, et al. B-cell activation influences T-cell polarization and outcome of anti-CD20 B-cell depletion in central nervous system autoimmunity. Ann Neurol. 2010 Sep;68(3):369–383. .
  • Kinzel S, Lehmann-Horn K, Torke S, et al. Myelin-reactive antibodies initiate T cell-mediated CNS autoimmune disease by opsonization of endogenous antigen. Acta Neuropathol. 2016 Jul;132(1):43–58. .
  • Lehmann-Horn K, Kinzel S, Feldmann L, et al. Intrathecal anti-CD20 efficiently depletes meningeal B cells in CNS autoimmunity. Ann Clin Transl Neur. 2014 Jul;1(7):490–496.
  • Komori M, Lin YC, Cortese I, et al. Insufficient disease inhibition by intrathecal rituximab in progressive multiple sclerosis. Ann Clin Transl Neur. 2016 Mar;3(3):166–179.
  • Hauser SL, Bar-Or A, Comi G, et al. Ocrelizumab versus Interferon Beta-1a in relapsing multiple sclerosis. N Engl J Med. 2017 Jan 19;376(3):221–234.
  • Montalban X, Hauser SL, Kappos L, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017 Jan 19;376(3):209–220.
  • Hauser SL, Bar-Or A, Cohen J, et al. Efficacy and safety of ofatumumab versus teriflunomide in relapsing multiple sclerosis: results of the phase 3 ASCLEPIOS I and II trials. Mult Scler J. 2019;25:890–891.
  • Sorensen PS, Lisby S, Grove R, et al. Safety and efficacy of ofatumumab in relapsing-remitting multiple sclerosis: a phase 2 study. Neurology. 2014 Feb 18;82(7):573–581.
  • Bar-Or A, Grove RA, Austin DJ, et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: the MIRROR study. Neurology. 2018 May 15;90(20):e1805–e1814.
  • Tallantyre EC, Whittam DH, Jolles S, et al. Secondary antibody deficiency: a complication of anti-CD20 therapy for neuroinflammation. J Neurol. 2018 May;265(5):1115–1122. .
  • Barmettler S, Ong MS, and Farmer JR, et al. Association of immunoglobulin levels, infectious risk, and mortality with rituximab and hypogammaglobulinemia. JAMA Network Open. 2018 Nov 2;1(7):e184169.
  • Casulo C, Maragulia J, Zelenetz AD. Incidence of hypogammaglobulinemia in patients receiving rituximab and the use of intravenous immunoglobulin for recurrent infections. Clin Lymphoma Myeloma Leuk. 2013 Apr;13(2):106–111.
  • Roberts DM, Jones RB, Smith RM, et al. Rituximab-associated hypogammaglobulinemia: incidence, predictors and outcomes in patients with multi-system autoimmune disease. J Autoimmun. 2015;57:60–65.
  • Sacco KA, Abraham RS. Consequences of B-cell-depleting therapy: hypogammaglobulinemia and impaired B-cell reconstitution. Immunotherapy. 2018 Jun;10(8):713–728.
  • Thomas JD, Sideras P, Smith CI, et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science. 1993 Jul 16;261(5119):355–358.
  • Tsukada S, Saffran DC, Rawlings DJ, et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell. 1993 Jan 29;72(2):279–290.
  • Vetrie D, Vorechovsky I, Sideras P, et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature. 1993 Jan 21;361(6409):226–233.
  • Rawlings DJ, Saffran DC, Tsukada S, et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science. 1993 Jul 16;261(5119):358–361.
  • de Weers M, Mensink RG, Kraakman ME, et al. Mutation analysis of the Bruton’s tyrosine kinase gene in X-linked agammaglobulinemia: identification of a mutation which affects the same codon as is altered in immunodeficient xid mice. Hum Mol Genet. 1994 Jan;3(1):161–166. .
  • Bruton OC. Agammaglobulinemia. Pediatrics. 1952 Jun;9(6):722–728.
  • Basile N, Danielian S, Oleastro M, et al. Clinical and molecular analysis of 49 patients with X-linked agammaglobulinemia from a single center in Argentina. J Clin Immunol. 2009 Jan;29(1):123–129. .
  • Middendorp S, Dingjan GM, Maas A, et al. Function of Bruton’s tyrosine kinase during B cell development is partially independent of its catalytic activity. J Immunol. 2003 Dec 1;171(11):5988–5996.
  • Kersseboom R, Middendorp S, Dingjan GM, et al. Bruton’s tyrosine kinase cooperates with the B cell linker protein SLP-65 as a tumor suppressor in Pre-B cells. J Exp Med. 2003 Jul 7;198(1):91–98.
  • Kuehn HS, Swindle EJ, Kim MS, et al. The phosphoinositide 3-kinase-dependent activation of Btk is required for optimal eicosanoid production and generation of reactive oxygen species in antigen-stimulated mast cells. J Immunol. 2008 Dec 1;181(11):7706–7712.
  • Kim YY, Park KT, Jang SY, et al. HM71224, a selective Bruton’s tyrosine kinase inhibitor, attenuates the development of murine lupus. Arthritis Res Ther. 2017 Sep 26;19(1):211.
  • Rankin AL, Seth N, Keegan S, et al. Selective inhibition of BTK prevents murine lupus and antibody-mediated glomerulonephritis. J Immunol. 2013 Nov 1;191(9):4540–4550.
  • Bender AT, Pereira A, Fu K, et al. Btk inhibition treats TLR7/IFN driven murine lupus. Clin Immunol. 2016;164:65–77.
  • Ren L, Campbell A, and Fang H, et al. Analysis of the Effects of the Bruton’s tyrosine kinase (Btk) inhibitor ibrutinib on monocyte fcgamma receptor (FcgammaR) Function. J Biol Chem. 2016 Feb 5;291(6):3043–3052.
  • Mano H. Tec family of protein-tyrosine kinases: an overview of their structure and function. Cytokine Growth Factor Rev. 1999 Sep-Dec;10(3–4):267–280.
  • Horwood NJ, Urbaniak AM, Danks L. Tec family kinases in inflammation and disease. Int Rev Immunol. 2012 Apr;31(2):87–103.
  • Schwartzberg PL, Finkelstein LD, Readinger JA. TEC-family kinases: regulators of T-helper-cell differentiation. Nat Rev Immunol. 2005 Apr;5(4):284–295.
  • Palumbo T, Nakamura K, Lassman C, et al. Bruton Tyrosine Kinase Inhibition Attenuates Liver Damage in a Mouse Warm Ischemia and Reperfusion Model. Transplantation. 2017 Feb;101(2):322–331. .
  • Ellmeier W, Jung S, Sunshine MJ, et al. Severe B cell deficiency in mice lacking the tec kinase family members Tec and Btk. J Exp Med. 2000 Dec 4;192(11):1611–1624.
  • Molina-Cerrillo J, Alonso-Gordoa T, Gajate P, et al. Bruton’s tyrosine kinase (BTK) as a promising target in solid tumors. Cancer Treat Rev. 2017;58:41–50.
  • Conley ME, Rohrer J, Rapalus L, et al. Defects in early B-cell development: comparing the consequences of abnormalities in pre-BCR signaling in the human and the mouse. Immunol Rev. 2000 Dec;178(1):75–90. .
  • Nomura K, Kanegane H, Karasuyama H, et al. Genetic defect in human X-linked agammaglobulinemia impedes a maturational evolution of pro-B cells into a later stage of pre-B cells in the B-cell differentiation pathway. Blood. 2000 Jul 15;96(2):610–617.
  • Wicker LS, Scher I. X-linked immune deficiency (xid) of CBA/N mice. Curr Top Microbiol Immunol. 1986;124:87–101.
  • Khan WN, Alt FW, Gerstein RM, et al. Defective B cell development and function in Btk-deficient mice. Immunity. 1995 Sep;3(3):283–299. .
  • Reid GK, Osmond DG. B lymphocyte production in the bone marrow of mice with X-linked immunodeficiency (xid). J Immunol. 1985 Oct;135(4):2299–2302.
  • Middendorp S, Dingjan GM, Hendriks RW. Impaired precursor B cell differentiation in Bruton’s tyrosine kinase-deficient mice. J Immunol. 2002 Mar 15;168(6):2695–2703.
  • Hendriks RW, de Bruijn MF, Maas A, et al. Inactivation of Btk by insertion of lacZ reveals defects in B cell development only past the pre-B cell stage. Embo J. 1996 Sep 16;15(18):4862–4872.
  • Dingjan GM, Middendorp S, Dahlenborg K, et al. Bruton’s tyrosine kinase regulates the activation of gene rearrangements at the lambda light chain locus in precursor B cells in the mouse. J Exp Med. 2001 May 21;193(10):1169–1178.
  • Cariappa A, Tang M, Parng C, et al. The follicular versus marginal zone B lymphocyte cell fate decision is regulated by Aiolos, Btk, and CD21. Immunity. 2001 May;14(5):603–615. .
  • Katewa A, Wang Y, Hackney JA, et al. Btk-specific inhibition blocks pathogenic plasma cell signatures and myeloid cell-associated damage in IFNalpha-driven lupus nephritis. JCI Insight. 2017 Apr 6;2(7):e90111.
  • Lopez-Herrera G, Vargas-Hernandez A, Gonzalez-Serrano ME, et al. Bruton’s tyrosine kinase–an integral protein of B cell development that also has an essential role in the innate immune system. J Leukoc Biol. 2014 Feb;95(2):243–250. .
  • Satterthwaite AB. Bruton’s tyrosine kinase, a component of B cell signaling pathways, has multiple roles in the pathogenesis of lupus. Front Immunol. 2017;8:1986.
  • Saito K, Scharenberg AM, Kinet JP. Interaction between the Btk PH domain and phosphatidylinositol-3,4,5-trisphosphate directly regulates Btk. J Biol Chem. 2001 May 11;276(19):16201–16206.
  • Baraldi E, Djinovic Carugo K, Hyvonen M, et al. Structure of the PH domain from Bruton’s tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure. 1999 Apr 15;7(4):449–460.
  • Packham G, Krysov S, Allen A, et al. The outcome of B-cell receptor signaling in chronic lymphocytic leukemia: proliferation or anergy. Haematologica. 2014 Jul;99(7):1138–1148. .
  • Felix NJ, Suri A, Salter-Cid L, et al. Targeting lymphocyte co-stimulation: from bench to bedside. Autoimmunity. 2010 Nov;43(7):514–525.
  • Seda V, Mraz M. B-cell receptor signalling and its crosstalk with other pathways in normal and malignant cells. Eur J Haematol. 2015 Mar;94(3):193–205.
  • Woyach JA, Johnson AJ, Byrd JC. The B-cell receptor signaling pathway as a therapeutic target in CLL. Blood. 2012 Aug 9;120(6):1175–1184.
  • Deeks ED, Ibrutinib: A Review in Chronic Lymphocytic Leukaemia. Drugs. 2017 Feb; 77(2):225–236
  • Miklos D, Cutler CS, Arora M, et al. Ibrutinib for chronic graft-versus-host disease after failure of prior therapy. Blood. 2017 Nov 23;130(21):2243–2250.
  • Rahmat LT, Logan AC. Ibrutinib for the treatment of patients with chronic graft-versus-host disease after failure of one or more lines of systemic therapy. Drugs Today (Barc). 2018 May;54(5):305–313.
  • Dimopoulos MA, Tedeschi A, and Trotman J, et al. Phase 3 trial of ibrutinib plus rituximab in waldenstrom’s macroglobulinemia. N Engl J Med. 2018 jun 21;378(25):2399–2410.
  • Maddocks K. Update on mantle cell lymphoma. Blood. 2018 Oct 18;132(16):1647–1656.
  • Awan FT, Jurczak W. Use of acalabrutinib in patients with mantle cell lymphoma. Expert Rev Hematol. 2018 Jun;11(6):495–502.
  • Syed YY. Zanubrutinib: first approval. Drugs. 2020 Jan;80(1):91–97.
  • ClinicalTrials.gov 2020 [cited 2020 Feb 5]. Available from: https://clinicaltrials.gov/
  • Haselmayer P, Camps M, and Liu-Bujalski L, et al. Efficacy and pharmacodynamic modeling of the BTK inhibitor evobrutinib in autoimmune disease models. J Immunol. 2019 May 15;202(10):2888–2906.
  • Montalban X, Arnold DL, and Weber MS, et al. Placebo-controlled trial of an oral BTK inhibitor in multiple sclerosis. N Engl J Med. 2019 Jun 20;380(25):2406–2417.
  • Chang BY, Huang MM, and Francesco M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther. 2011 Jul 13;13(4):R115.
  • Honigberg LA, Smith AM, Sirisawad M, et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc Natl Acad Sci U S A. 2010 Jul 20;107(29):13075–13080.
  • Vargas L, Hamasy A, Nore BF, et al. Inhibitors of BTK and ITK: state of the new drugs for cancer, autoimmunity and inflammatory diseases. Scand J Immunol. 2013 Aug;78(2):130–139. .
  • Goess C, Harris CM, Murdock S, et al. ABBV-105, a selective and irreversible inhibitor of Bruton’s tyrosine kinase, is efficacious in multiple preclinical models of inflammation. Mod Rheumatol. 2019 May;29(3):510–522. .
  • Di Paolo JA, Huang T, Balazs M, et al. Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol. 2011 Jan;7(1):41–50. .
  • Park JK, Byun JY, Park JA, et al. HM71224, a novel Bruton’s tyrosine kinase inhibitor, suppresses B cell and monocyte activation and ameliorates arthritis in a mouse model: a potential drug for rheumatoid arthritis. Arthritis Res Ther. 2016 Apr 18;18(1). DOI:10.1186/s13075-016-0988-z.
  • Lehmann-Horn K, Schleich E, Hertzenberg D, et al. Anti-CD20 B-cell depletion enhances monocyte reactivity in neuroimmunological disorders. J Neuroinflammation. 2011 Oct 26;8(1):146.
  • Hausser-Kinzel S, Nissimov N, Hajiyeva Z, et al. Immunophenotyping identifies a subgroup of MS patients that experiences pro-inflammatory immune cell activation upon B cell-depleting therapy. Mult Scler J. 2019;25:659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.