1,363
Views
11
CrossRef citations to date
0
Altmetric
Perspective

A case study of foliglurax, the first clinical mGluR4 PAM for symptomatic treatment of Parkinson’s disease: translational gaps or a failing industry innovation model?

ORCID Icon, ORCID Icon, , &
Pages 1323-1338 | Received 01 Jul 2020, Accepted 15 Oct 2020, Published online: 11 Nov 2020

References

  • Dowden H, Munro J. Trends in clinical success rates and therapeutic focus. Nat Rev Drug Discov. 2019;18(7):495–496.
  • Wouters OJ, McKee M, Luyten J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA. 2020;323(9):844–853.
  • Bunnage ME, Gilbert AM, Jones LH, et al. Know your target, know your molecule. Nat Chem Biol. 2015;11(6):368–372.
  • Koroshetz WJ, Behrman S, Brame CJ, et al. Framework for advancing rigorous research. Elife. 2020;9. DOI:10.7554/eLife.55915.
  • Rigor and Reproducibility. [cited 2020 May 22]. https://www.nih.gov/research-training/rigor-reproducibility/principles-guidelines-reporting-preclinical-research
  • Morgan P, Van Der Graaf PH, Arrowsmith J, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving phase II survival. Drug Discov Today. 2012;17(9–10):419–424.
  • Bunnage ME, Chekler ELP, Jones LH. Target validation using chemical probes. Nat Chem Biol. 2013;9(4):195–199.
  • Plenge RM. Disciplined approach to drug discovery and early development. Sci Transl Med. 2016;8(349):349ps15.
  • Morgan P, Brown DG, Lennard S, et al. Impact of a five-dimensional framework on R&D productivity at AstraZeneca. Nat Rev Drug Discov. 2018;17(3):167–181.
  • Lundbeck reports headline results from phase IIa AMBLED study of foliglurax in Parkinson’s disease. [cited 2020 Apr 3]. https://investor.lundbeck.com/releases
  • Charvin D, Medori R, Hauser RA, et al. Therapeutic strategies for Parkinson disease: beyond Dopaminergic drugs. Nat Rev Drug Discov. 2018;17(11):804–822. .
  • Sebastianutto I, Cenci MA. mGlu receptors in the treatment of Parkinson’s disease and L-DOPA-Induced dyskinesia. Curr Opin Pharmacol. 2018;38:81–89.
  • Volpi C, Fallarino F, Mondanelli G, et al. Opportunities and challenges in drug discovery targeting metabotropic glutamate Receptor 4. Expert Opin Drug Discov. 2018;13(5):411–423.
  • Conn PJ, Pin JP. Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol. 1997;37:205–237.
  • Nicoletti F, Bockaert J, Collingridge GL, et al. Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology. 2011;60(7–8):1017–1041.
  • Bradley SR, Standaert DG, Rhodes KJ, et al. Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the Rat and Mouse basal Ganglia. J Comp Neurol. 1999;407(1):33–46.
  • Corti C, Aldegheri L, Somogyi P, et al. Distribution and Synaptic Localisation of the Metabotropic Glutamate Receptor 4 (mGluR4) in the Rodent CNS. Neuroscience. 2002;110(3):403–420.
  • Ferraguti F, Shigemoto R. Metabotropic glutamate receptors. Cell Tissue Res. 2006;326(2):483–504.
  • Bogenpohl J, Galvan A, Hu X, et al. Metabotropic glutamate receptor 4 in the basal Ganglia of Parkinsonian Monkeys: ultrastructural localization and electrophysiological effects of activation in the Striatopallidal complex. Neuropharmacology. 2013;66:242–252.
  • Cirone J, Sharp C, Jeffery G, et al. Distribution of metabotropic glutamate receptors in the superior colliculus of the adult Rat, Ferret and Cat. Neuroscience. 2002;109(4):779–786.
  • Wichmann T, DeLong MR. Models of basal Ganglia function and pathophysiology of movement disorders. Neurosurg Clin N Am. 1998;9(2):223–236.
  • Lozano A, Hutchison W, Kiss Z, et al. Methods for microelectrode-guided posteroventral pallidotomy. J Neurosurg. 1996;84(2):194–202.
  • Magnin M, Morel A, Single-Unit JD. Analysis of the Pallidum, Thalamus and subthalamic nucleus in Parkinsonian patients. Neuroscience. 2000;96(3):549–564.
  • Brown P, Oliviero A, Mazzone P, et al. Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J Neurosci. 2001;21(3):1033–1038.
  • Nini A, Feingold A, Slovin H, et al. Neurons in the globus Pallidus do not show correlated activity in the normal Monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism. J Neurophysiol. 1995;74(4):1800–1805.
  • Bergman H, Feingold A, Nini A, et al. Physiological Aspects of Information Processing in the Basal Ganglia of Normal and Parkinsonian Primates. Trends Neurosci. 1998;21(1):32–38.
  • Raz A, Vaadia E, Bergman H. Firing Patterns and Correlations of Spontaneous discharge of Pallidal neurons in the normal and the Tremulous 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine Vervet model of Parkinsonism. J Neurosci. 2000;20(22):8559–8571.
  • Valenti O, Marino MJ, Wittmann M, et al. Group III Metabotropic Glutamate Receptor-Mediated Modulation of the Striatopallidal Synapse. J Neurosci. 2003;23(18):7218–7226.
  • Beurrier C, Lopez S, Révy D, et al. Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental Parkinsonism. Faseb J. 2009;23(10):3619–3628.
  • Marino MJ, Williams DL, O’Brien JA, et al. Allosteric Modulation of Group III Metabotropic Glutamate Receptor 4: A Potential Approach to Parkinson’s Disease Treatment. Proc Natl Acad Sci USA. 2003;100(23):13668–13673.
  • Célanire S, Campo B. Recent advances in the drug discovery of metabotropic glutamate receptor 4 (mGluR4) activators for the treatment of cns and non-CNS disorders. Expert Opin Drug Discov. 2012;7(3):261–280.
  • Lindsley CW, Niswender CM, Engers DW, et al. Recent progress in the development of mGluR4 positive allosteric modulators for the treatment of Parkinson’s disease. Curr Top Med Chem. 2009;9(10):949–963.
  • East SP, Gerlach K. MGluR4 positive allosteric modulators with potential for the treatment of Parkinson’s disease: WO09010455. Expert Opin Ther Pat. 2010;20(3):441–445.
  • Hopkins CR, Lindsley CW, Niswender CM. mGluR4-positive allosteric modulation as potential treatment for Parkinson’s disease. Future Med Chem. 2009;1(3):501–513.
  • Huang X, Dale E, Brodbeck RM, et al. Chemical biology of mGlu4 receptor activation: dogmas, challenges, strategies and opportunities. Curr Top Med Chem. 2014;14(15):1755–1770.
  • Conn PJ, Kuduk SD, Doller D. Drug design strategies for GPCR allosteric modulators. Annu Rep Med Chem. 2012;47:441–457.
  • Maj M, Bruno V, Dragic Z, et al. (−)-PHCCC, a positive allosteric modulator of mglur4: characterization, mechanism of action, and neuroprotection. Neuropharmacology. 2003;45(7):895–906.
  • Williams R, Niswender CM, Luo Q, et al. Positive allosteric modulators of the metabotropic glutamate receptor subtype 4 (mGluR4). part II: challenges in hit-to-lead. Bioorg Med Chem Lett. 2009;19(3):962–966.
  • Wang L, Martin B, Brenneman R, et al. Allosteric modulators of g protein-coupled receptors: future therapeutics for complex physiological disorders. J Pharmacol Exp Ther. 2009;331(2):340–348.
  • Williams R, Zhou Y, Niswender CM, et al. Re-exploration of the PHCCC Scaffold: discovery of improved positive allosteric modulators of mGluR4. ACS Chem Neurosci. 2010;1(6):411–419.
  • Charvin D, Pomel V, Ortiz M, et al. Discovery, structure-activity relationship, and antiparkinsonian effect of a potent and brain-penetrant chemical series of positive allosteric modulators of metabotropic glutamate receptor 4. J Med Chem. 2017;60(20):8515–8537.
  • Schann S, Mayer S, Morice C, et al. Novel oxime derivatives and their use as allosteric modulators of metabotropic glutamate receptors. WO2011051478A1, May 5, 2011.
  • Charvin D, Manteau B, Pomel V, et al. Novel Chromone Oxime Derivative and Its Use as Allosteric Modulator of Metabotropic Glutamate Receptors.
  • Ghose AK, Ott GR, Hudkins RL. Technically extended multiparameter optimization (TEMPO): an advanced robust scoring scheme to calculate central nervous system druggability and monitor lead optimization. ACS Chem Neurosci. 2017;8(1):147–154.
  • Moving beyond rules: the development of a central nervous system multiparameter optimization (cns mpo) approach to enable alignment of druglike properties – PubMed. [cited 2020 May 21]. https://pubmed.ncbi.nlm.nih.gov/22778837/
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1):3–25.
  • Calculation of molecular properties. [cited 2020 Apr 26]. https://www.molinspiration.com/services/properties.html
  • Pajouhesh H, Lenz GR. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2005;2(4):541–553.
  • Gregory KJ, Bridges TM, Gogliotti RG, et al. In vitro to in vivo translation of allosteric modulator concentration-effect relationships: implications for drug discovery. ACS Pharmacol Transl Sci. 2019;2(6):442–452.
  • Christopoulos A, Kenakin T, Protein-Coupled Receptor G. Allosterism and Complexing. Pharmacol Rev. 2002;54(2):323–374.
  • Johnstone S, Albert JS. Pharmacological property optimization for allosteric ligands: a medicinal chemistry perspective. Bioorg Med Chem Lett. 2017;27(11):2239–2258.
  • Coughlin Q, Hopper AT, Blanco M-J, et al. Allosteric modalities for membrane-bound receptors: insights from drug hunting for brain diseases. J Med Chem. 2019;62(13):5979–6002.
  • Gomeza J, Mary S, Brabet I, et al. Coupling of metabotropic glutamate receptors 2 and 4 to G Alpha 15, G Alpha 16, and Chimeric G Alpha q/i proteins: characterization of new antagonists. Mol Pharmacol. 1996;50(4):923–930.
  • Nakajima Y, Iwakabe H, Akazawa C, et al. Molecular characterization of a Novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-Amino-4-phosphonobutyrate. J Biol Chem. 1993;268(16):11868–11873.
  • Bollinger SR, Engers DW, Panarese JD, et al. Discovery, structure–activity relationship, and biological characterization of a novel series of 6-((1 H -Pyrazolo[4,3- b]Pyridin-3-Yl)Amino)-Benzo[d]Isothiazole-3-Carboxamides as positive allosteric modulators of the metabotropic glutamate receptor 4 (MGlu 4). J Med Chem. 2019;62(1):342–358.
  • Gogliotti RD, Engers DW, Garcia-Barrantes PM, et al. Discovery of 3-aminopicolinamides as metabotropic glutamate receptor subtype 4 (mGlu4) positive allosteric modulator warheads engendering CNS exposure and in vivo efficacy. Bioorg Med Chem Lett. 2016;26(12):2915–2919.
  • Jones CK, Bubser M, Thompson AD, et al. The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an Adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2012;340(2):404–421.
  • Le Poul E, Boléa C, Girard F, et al. A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther. 2012;343(1):167–177.
  • Jones CK, Engers DW, Thompson AD, et al. Discovery, synthesis, and structure-activity relationship development of a series of N-4-(2,5-Dioxopyrrolidin-1-Yl)Phenylpicolinamides (VU0400195, ML182): characterization of a novel positive allosteric modulator of the metabotropic glutamate receptor 4 (mGlu(4)) with oral efficacy in an Antiparkinsonian animal model. J Med Chem. 2011;54(21):7639–7647.
  • East SP, Bamford S, Dietz MGA, et al. An orally bioavailable positive allosteric modulator of the mGlu4 receptor with efficacy in an animal model of motor dysfunction. Bioorg Med Chem Lett. 2010;20(16):4901–4905.
  • Charvin D, Di Paolo T, Bezard E, et al. Foliglurax: from mGlu4 receptors to patients with Parkinson’s disease; Lisbon, Portugal, 2019; p Abs S35–03.
  • Charvin D, Di Paolo T, Bezard E, et al. An mGlu4-positive allosteric modulator alleviates parkinsonism in primates: PXT002331 in Parkinsonian primate models. Mov Disord. 2018;33(10):1619–1631.
  • Ko WKD, Camus SM, Li Q, et al. An evaluation of Istradefylline treatment on Parkinsonian motor and cognitive deficits in 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-treated Macaque models. Neuropharmacology. 2016;110(Pt A):48–58.
  • Stanley P, Pioli EY, Kozak R, et al. Meta-analysis of Amantadine efficacy for improving preclinical research reliability. Mov Disord. 2018;33(10):1555–1557.
  • Iderberg H, Maslava N, Thompson AD, et al. Pharmacological stimulation of metabotropic glutamate receptor Type 4 in a Rat model of Parkinson’s disease and L-DOPA-induced dyskinesia: comparison between a positive allosteric modulator and an orthosteric agonist. Neuropharmacology. 2015;95:121–129.
  • Bennouar K-E, Uberti MA, Melon C, et al. Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology. 2013;66:158–169.
  • Lopez S, Bonito-Oliva A, Pallottino S, et al. Activation of metabotropic glutamate 4 receptors decreases L-DOPA-induced dyskinesia in a Mouse model of Parkinson’s disease. J Parkinsons Dis. 2011;1(4):339–346.
  • Mann E, Jackson M, Lincoln L, et al. Antiparkinsonian effects of a metabotropic glutamate receptor 4 Agonist in MPTP-treated marmosets. J Parkinsons Dis. 2020. DOI:10.3233/JPD-191824
  • Blayo A-L, Manteau B, Mayer S, et al. Discovery, characterization and anti-Parkinsonian effect of a Novel mGluR4 PAM chemical series. Vol. MEDI 71. 256th American Chemical Society National Meeting and Exposition. 2018 Aug 18.
  • Kil K-E, Poutiainen P, Zhang Z, et al. Synthesis and evaluation of N-(Methylthiophenyl)Picolinamide derivatives as PET radioligands for metabotropic glutamate receptor subtype 4. Bioorg Med Chem Lett. 2016;26(1):133–139.
  • Kil K-E, Poutiainen P, Zhang Z, et al. Radiosynthesis and evaluation of an 18 F-labeled positron emission tomography (PET) radioligand for metabotropic glutamate receptor subtype 4 (mGlu4). J Med Chem. 2014;57(21):9130–9138.
  • Tanabe Y, Masu M, Ishii T, et al. Family of metabotropic glutamate receptors. Neuron. 1992;8(1):169–179.
  • Shi Q, Savage JE, Hufeisen SJ, et al. L-Homocysteine sulfinic acid and other acidic homocysteine derivatives are potent and selective metabotropic glutamate receptor agonists. J Pharmacol Exp Ther. 2003;305(1):131–142.
  • O’Brien DE, Shaw DM, Cho HP, et al. Differential pharmacology and binding of mGlu2 receptor allosteric modulators. Mol Pharmacol. 2018;93(5):526–540.
  • Rook JM, Tantawy MN, Ansari MS, et al. Relationship between in vivo receptor occupancy and efficacy of metabotropic glutamate receptor subtype 5 allosteric modulators with different in vitro binding profiles. Neuropsychopharmacology. 2015;40(3):755–765.
  • Takano A, Nag S, Jia Z, et al. Characterization of [11C]PXT012253 as a PET radioligand for mglu4 allosteric modulators in nonhuman primates. Mol Imaging Biol. 2019;21(3):500–508.
  • Research, C. for D. E. and. Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. [cited 2020 May 26]. http://www.fda.gov/regulatory-information/search-fda-guidance-documents/estimating-maximum-safe-starting-dose-initial-clinical-trials-therapeutics-adult-healthy-volunteers
  • Panarese JD, Engers DW, Wu Y-J, et al. Discovery of VU2957 (Valiglurax): an mGlu4 positive allosteric modulator evaluated as a preclinical candidate for the treatment of Parkinson’s disease. ACS Med Chem Lett. 2019;10(3):255–260.
  • Panarese JD, Engers DW, Wu Y-J, et al. The discovery of VU0652957 (VU2957, Valiglurax): SAR and DMPK challenges en route to an mGlu4 PAM development candidate. Bioorg Med Chem Lett. 2019;29(2):342–346.
  • Elmer LW. Rasagiline adjunct therapy in patients with Parkinson’s disease: post Hoc analyses of the PRESTO and LARGO trials. Parkinsonism Relat Disord. 2013;19(11):930–936.
  • Cattaneo C, Sardina M, Bonizzoni E. Safinamide as Add-On Therapy to Levodopa in Mid- to Late-Stage Parkinson’s Disease Fluctuating Patients: post Hoc Analyses of Studies 016 and SETTLE. J Parkinsons Dis. 2016;6(1):165–173.
  • Oertel W, Eggert K, Pahwa R, et al. Randomized, Placebo-controlled trial of ADS-5102 (Amantadine) extended-release capsules for Levodopa-induced dyskinesia in Parkinson’s disease (EASE LID 3). Mov Disord. 2017;32(12):1701–1709.
  • Sako W, Murakami N, Motohama K, et al. The effect of Istradefylline for Parkinson’s disease: a meta-analysis. Sci Rep. 2017;7(1):18018.
  • CDER Clinical Review, NDA 022075. [cited 2020 Oct 4]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/022075Orig1s000MedR.pdf.
  • Olanow CW, Factor SA, Espay AJ, et al. CTH-300 study investigators. Apomorphine sublingual film for off episodes in Parkinson’s disease: a randomised, double-blind, placebo-controlled phase 3 study. Lancet Neurol. 2020;19(2):135–144.
  • LeWitt PA, Guttman M, Tetrud JW, et al. 6002-US-005 study group. Adenosine A2A receptor antagonist Istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol. 2008;63(3):295–302.
  • Stacy M, Silver D, Mendis T, et al. A 12-week, placebo-controlled study (6002-US-006) of Istradefylline in Parkinson disease. Neurology. 2008;70(23):2233–2240.
  • Flor PJ, Acher FC. Orthosteric versus allosteric GPCR activation: the great challenge of group-III MGluRs. Biochem Pharmacol. 2012;84(4):414–424.
  • Cajina M, Nattini M, Song D, et al. Qualification of LSP1-2111 as a brain penetrant group III metabotropic glutamate receptor orthosteric agonist. ACS Med Chem Lett. 2014;5(2):119–123.
  • Kenakin T, Strachan RT. PAM-antagonists: a better way to block pathological receptor signaling? Trends Pharmacol Sci. 2018;39(8):748–765.
  • Langmead CJ, Christopoulos A. Supra-physiological efficacy at GPCRs: superstition or super agonists? BrJ Pharmacol. 2013;169(2):353–356.
  • Schmidt WJ. Dopamine-glutamate interactions in the basal Ganglia. Amino Acids. 1998;14(1–3):5–10.
  • Wierońska JM, Zorn SH, Doller D, et al. Metabotropic glutamate receptors as targets for new antipsychotic drugs: historical perspective and critical comparative assessment. Pharmacol Ther. 2016;157:10–27.
  • Wang J, Qu X, Shoup TM, et al. Synthesis and characterization of fluorine-18-Labeled N-(4-Chloro-3-((Fluoromethyl-D2)Thio)Phenyl)Picolinamide for imaging of mGluR4 in brain. J Med Chem. 2020;63(6):3381–3389.
  • Leurquin-Sterk G, Celen S, Van Laere K, et al. What we observe in vivo is not always what we see in vitro: development and validation of 11C-JNJ-42491293, a novel radioligand for mGluR2. J Nucl Med. 2017;58(1):110–116.
  • Jenkins BG, Zhu A, Poutiainen P, et al. Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration. Neuropharmacology. 2016;108:462–473.
  • Niswender CM, Jones CK, Lin X, et al. Development and antiparkinsonian activity of VU0418506, a selective positive allosteric modulator of metabotropic glutamate receptor 4 homomers without activity at mGlu2/4 heteromers. ACS Chem Neurosci. 2016;7(9):1201–1211.
  • Fulton MG, Loch MT, Cuoco CA, et al. Challenges in the discovery and optimization of mGlu2/4 heterodimer positive allosteric modulators. LDDD. 2019;16(12):1387–1394.
  • Fulton MG, Loch MT, Rodriguez AL, et al. Synthesis and pharmacological evaluation of bivalent tethered ligands to target the mGlu2/4 heterodimeric receptor results in a compound with mGlu2/2 homodimer selectivity. Bioorg Med Chem Lett. 2020;127212. DOI:10.1016/j.bmcl.2020.127212
  • Duty S, Jenner P. Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol. 2011;164(4):1357–1391.
  • Bespalov A, Steckler T, Altevogt B, et al. Failed trials for central nervous system disorders do not necessarily invalidate preclinical models and drug targets. Nat Rev Drug Discov. 2016;15(7):516.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.