421
Views
4
CrossRef citations to date
0
Altmetric
Review

Circadian rhythms in diabetic retinopathy: an overview of pathogenesis and investigational drugs

ORCID Icon &
Pages 1431-1442 | Received 04 Aug 2020, Accepted 23 Oct 2020, Published online: 02 Dec 2020

References

  • Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010Dec3;330(6009):1349–1354. .
  • Duffy JF, Zitting KM, Chinoy ED, Aging and Circadian Rhythms. Sleep Med Clin. 2015 Dec; 10(4):423–434
  • Vitaterna MH, Takahashi JS, Turek FW. Overview of circadian rhythms. Alcohol Res Health. 2001;25(2):85–93.
  • Czeisler CA, Duffy JF, Shanahan TL, et al. Stability, precision, and near-24-hour period of the human circadian pacemaker. Science. 1999 Jun 25;284(5423):2177–2181.
  • Mistlberger RE, Skene DJ. Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev. 2004;79(3):533–556.
  • Emens JS, Burgess HJ. Effect of light and melatonin and other melatonin receptor agonists on human circadian physiology. Sleep Med Clin. 2015 Dec;10(4):435–453.
  • Reid KJ. Assessment of Circadian Rhythms. Neurol Clin. 2019 Aug;37(3):505–526.
  • Patton AP, Hastings MH. The suprachiasmatic nucleus. Curr Biol. 2018 Aug 6;28(15):R816–r822.
  • Hastings MH, Maywood ES, Brancaccio M. Generation of circadian rhythms in the suprachiasmatic nucleus. Nat Rev Neurosci. 2018 Aug;19(8):453–469.
  • Weaver DR. The suprachiasmatic nucleus: a 25-year retrospective. J Biol Rhythms. 1998 Apr;13(2):100–112.
  • Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci. 2011 Sep 2;12(10):553–569.
  • Morin LP, Allen CN. The circadian visual system, 2005. Brain Res Rev. 2006 Jun;51(1):1–60.
  • Wässle H. Parallel processing in the mammalian retina. Nat Rev Neurosci. 2004;5(10):747–757.
  • Ruan G-X, Zhang D-Q, Zhou T, et al. Circadian organization of the mammalian retina. Proc Nat Acad Sci. 2006;103(25):9703–9708.
  • Tosini G, Davidson AJ, Fukuhara C, et al. Localization of a circadian clock in mammalian photoreceptors. Faseb J. 2007;21(14):3866–3871.
  • Liu X, Zhang Z, Ribelayga CP. Heterogeneous expression of the core circadian clock proteins among neuronal cell types in mouse retina. PloS One. 2012;7(11):e50602.
  • Lee HS, Nelms JL, Nguyen M, et al. The eye is necessary for a circadian rhythm in the suprachiasmatic nucleus. Nat Neurosci. 2003;6(2):111–112.
  • Álvarez-López C, Cernuda-Cernuda R, Alcorta E, et al. Altered endogenous activation of CREB in the suprachiasmatic nucleus of mice with retinal degeneration. Brain Res. 2004;1024(1–2):137–145.
  • Storch K-F, Paz C, Signorovitch J, et al. Intrinsic circadian clock of the mammalian retina: importance for retinal processing of visual information. Cell. 2007;130(4):730–741.
  • Sawant OB, Horton AM, Zucaro OF, et al. The circadian clock gene Bmal1 controls thyroid hormone-mediated spectral identity and cone photoreceptor function. Cell Rep. 2017;21(3):692–706.
  • Baba K, Piano I, Lyuboslavsky P, et al. Removal of clock gene Bmal1 from the retina affects retinal development and accelerates cone photoreceptor degeneration during aging. Proc Nat Acad Sci. 2018;115(51):13099–13104.
  • Bhatwadekar AD, Beli E, Diao Y, et al. Conditional deletion of Bmal1 accentuates microvascular and macrovascular injury. Am J Pathol. 2017;187(6):1426–1435.
  • Ait‐Hmyed O, Felder‐Schmittbuhl MP, Garcia‐Garrido M, et al. Mice lacking Period 1 and Period 2 circadian clock genes exhibit blue cone photoreceptor defects. Eur J Neurosci. 2013;37(7):1048–1060.
  • Ait‐Hmyed Hakkari O, Acar N, Savier E, et al. Rev‐Erbα modulates retinal visual processing and behavioral responses to light. Faseb J. 2016;30(11):3690–3701.
  • Wong JC, Smyllie NJ, Banks GT, et al. Differential roles for cryptochromes in the mammalian retinal clock. Faseb J. 2018;32(8):4302–4314.
  • Tosini G, Menaker M. Circadian rhythms in cultured mammalian retina. Science. 1996;272(5260):419–421.
  • Sakamoto K, Oishi K, Shiraishi M, et al. Two circadian oscillatory mechanisms in the mammalian retina. Neuroreport. 2000;11(18):3995–3997.
  • Chen W, Baler R. The rat arylalkylamine N-acetyltransferase E-box: differential use in a master vs. a slave oscillator. Mol Brain Res. 2000;81(1–2):43–50.
  • Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, et al. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci. 2014;15(12):23448–23500.
  • Daneault V, Dumont M, Masse E, et al. Light-sensitive brain pathways and aging. J Physiol Anthropol. 2016;35(1):1–12.
  • Sengupta A, Baba K, Mazzoni F, et al. Localization of melatonin receptor 1 in mouse retina and its role in the circadian regulation of the electroretinogram and dopamine levels. PloS One. 2011;6(9):e24483.
  • Wiechmann AF, Summers JA. Circadian rhythms in the eye: the physiological significance of melatonin receptors in ocular tissues. Prog Retin Eye Res. 2008;27(2):137–160.
  • Savaskan E, Wirz-Justice A, Olivieri G, et al. Distribution of melatonin MT1 receptor immunoreactivity in human retina. J Histochem Cytochem. 2002;50(4):519–525.
  • Savaskan E, Jockers R, Ayoub M, et al. The MT2 melatonin receptor subtype is present in human retina and decreases in Alzheimer’s disease. Curr Alzheimer Res. 2007 Feb;4(1):47–51.
  • Diabetes facts 2020. [cited 2020 Jun]. Available from: https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-figures.html
  • International Diabetes Federation - Eye health 2020.  [cited 2020 Jun]. Available from: https://www.idf.org/our-activities/care-prevention/eye-health.html
  • Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–277.
  • Kusuhara S, Fukushima Y, Ogura S, et al. Pathophysiology of diabetic retinopathy: the old and the new. Diabetes Metab J. 2018;42(5):364–376.
  • Kwon J-W, Jee D, La TY. Neovascular glaucoma after vitrectomy in patients with proliferative diabetic retinopathy. Medicine (Baltimore). 2017;96:10.
  • Havens SJ, Gulati V. Neovascular glaucoma. Retinal pharmacotherapeutics. Vol. 55.  Basel, Switzerland: Karger Publishers; 2016. p. 196–204.
  • Mizutani M, Kern TS, Lorenzi M. Accelerated death of retinal microvascular cells in human and experimental diabetic retinopathy. J Clin Invest. 1996;97(12):2883–2890.
  • Stefánsson E, Chan YK, Bek T, et al. Laws of physics help explain capillary non-perfusion in diabetic retinopathy. Eye. 2018;32(2):210–212.
  • Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2:14.
  • Shin ES, Sorenson CM, Sheibani N. Diabetes and retinal vascular dysfunction. J Ophthalmic Vis Res. 2014;9(3):362.
  • Barber AJ, Lieth E, Khin SA, et al. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J Clin Invest. 1998;102(4):783–791.
  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012 Mar 29; 366(13):1227–1239.
  • Gao G, Li Y, Zhang D, et al. Unbalanced expression of VEGF and PEDF in ischemia-induced retinal neovascularization. FEBS Lett. 2001;489(2–3):270–276.
  • Kolár P. Patophysiology of diabetic retinopathy. Vnitr Lek. 2013;59(3):173.
  • West KE, Jablonski MR, Warfield B, et al. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. J Appl Physiol. 2011;110(3):619-626.
  • Publishing HH. Blue light has a dark side - Harvard Health. 2020. [cited 2020 Jun]. Available from: https://www.health.harvard.edu/staying-healthy/blue-light-has-a-dark-side
  • Busik JV, Tikhonenko M, Bhatwadekar A, et al. Diabetic retinopathy is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med. 2009;206(13):2897–2906.
  • Polito A, Del Borrello M, Polini G, et al. Diurnal variation in clinically significant diabetic macular edema measured by the stratus OCT. Retina. 2006;26(1):14–20.
  • Kotsidis ST, Lake SS, Alexandridis AD, et al. 24-Hour variation of optical coherence tomography–measured retinal thickness in diabetic macular edema. Eur J Ophthalmol. 2012;22(5):785–791.
  • Larsen M, Wang M, Sander B. Overnight thickness variation in diabetic macular edema. Invest Ophthalmol Vis Sci. 2005;46(7):2313–2316.
  • Dost A, Bechtold‐Dalla Pozza S, Bollow E, et al. Blood pressure regulation determined by ambulatory blood pressure profiles in children and adolescents with type 1 diabetes mellitus: impact on diabetic complications. Pediatr Diabetes. 2017;18(8):874–882.
  • Alio J, Hernandez I, Millan A, et al. Pupil responsiveness in diabetes mellitus. Ann Ophthalmol. 1989;21(4):132–137.
  • Fulk GW, Bower A, McBRIDE K, et al. Sympathetic denervation of the iris dilator in noninsulin-dependent diabetes. Optometry Vision Sci. 1991;68(12):954–956.
  • Lucas R, Hattar S, Takao M, et al. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 2003;299(5604):245–247.
  • Park JC, Chen Y-F, Blair NP, et al. Pupillary responses in non-proliferative diabetic retinopathy. Sci Rep. 2017;7:44987.
  • Ba‐Ali S, Brøndsted AE, Andersen HU, et al. Pupillary light responses in type 1 and type 2 diabetics with and without retinopathy. Acta Ophthalmol. 2020;98(5): 477-484.
  • Poulsen P, Bek T, Ebbehøj E, et al. 24-h ambulatory blood pressure and retinopathy in normoalbuminuric IDDM patients. Diabetologia. 1998;41(1):105–110.
  • Mateo-Gavira I, Vílchez-López FJ, García-Palacios MV, et al. Nocturnal blood pressure is associated with the progression of microvascular complications and hypertension in patients with type 1 diabetes mellitus. J Diabetes Complications. 2016;30(7):1326–1332.
  • Knudsen ST, Poulsen PL, Hansen KW, et al. Pulse pressure and diurnal blood pressure variation: association with micro-and macrovascular complications in type 2 diabetes. Am J Hypertens. 2002;15(3):244–250.
  • Ba-Ali S, Brøndsted AE, Andersen HU, et al. Assessment of diurnal melatonin, cortisol, activity, and sleep− wake cycle in patients with and without diabetic retinopathy. Sleep Med. 2019;54:35–42.
  • Reutrakul S, Crowley SJ, Park JC, et al. Relationship between intrinsically photosensitive ganglion cell function and circadian regulation in diabetic retinopathy. Sci Rep. 2020;10(1):1–11.
  • Hikichi T, Tateda N, Miura T. Alteration of melatonin secretion in patients with type 2 diabetes and proliferative diabetic retinopathy. Clin Ophthalmol. 2011;5:655.
  • Chen W, Cao H, Lu Q-Y, et al. Urinary 6-sulfatoxymelatonin level in diabetic retinopathy patients with type 2 diabetes. Int J Clin Exp Pathol. 2014;7(7):4317.
  • Reutrakul S, Siwasaranond N, Nimitphong H, et al. Associations between nocturnal urinary 6-sulfatoxymelatonin, obstructive sleep apnea severity and glycemic control in type 2 diabetes. Chronobiol Int. 2017;34(3):382–392.
  • Aydin E, Sahin S. Increased melatonin levels in aqueous humor of patients with proliferative retinopathy in type 2 diabetes mellitus. Int J Ophthalmol. 2016;9(5):721.
  • Ames A, Li -Y-Y, Heher E, et al. Energy metabolism of rabbit retina as related to function: high cost of Na+ transport. J Neurosci. 1992;12(3):840–853.
  • Tyni T, Paetau A, Strauss AW, et al. Mitochondrial fatty acid β-oxidation in the human eye and brain: implications for the retinopathy of long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency. Pediatr Res. 2004;56(5):744–750.
  • Vancura P, Wolloscheck T, Baba K, et al. Circadian and dopaminergic regulation of fatty acid oxidation pathway genes in retina and photoreceptor cells. PLoS One. 2016;11(10):e0164665.
  • Tikhonenko M, Lydic TA, Wang Y, et al. Remodeling of retinal Fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes. 2010;59(1):219–227.
  • Wang Q, Tikhonenko M, Bozack SN, et al. Changes in the daily rhythm of lipid metabolism in the diabetic retina. PloS One. 2014;9(4):e95028.
  • Obara EA, Hannibal J, Heegaard S, et al. Loss of melanopsin-expressing retinal ganglion cells in patients with diabetic retinopathy. Invest Ophthalmol Vis Sci. 2017;58(4):2187–2192.
  • Bhatwadekar AD, Yan Y, Qi X, et al. Per2 mutation recapitulates the vascular phenotype of diabetes in the retina and bone marrow. Diabetes. 2013;62(1):273–282.
  • Jadhav V, Luo Q, Dominguez M, et al. Per2-mediated vascular dysfunction is caused by the upregulation of the connective tissue growth factor (CTGF). PloS One. 2016;11(9):e0163367.
  • Coughlin BA, Feenstra DJ, Mohr S. Müller cells and diabetic retinopathy. Vision Res. 2017;139:93–100.
  • Pannicke T, Iandiev I, Wurm A, et al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes. 2006;55(3):633–639.
  • Hassan I, Luo Q, Majumdar S, et al. Tumor necrosis factor alpha (TNF-α) disrupts Kir4. 1 channel expression resulting in müller cell dysfunction in the retina. Invest Ophthalmol Vis Sci. 2017;58(5):2473–2482.
  • Alex A, Luo Q, Mathew D, et al. Metformin corrects abnormal circadian rhythm and kir4.1 channels in diabetes. Invest Ophthalmol Vis Sci. 2020 Jun 3;61(6):46.
  • Wang Q, Bozack SN, Yan Y, et al. Regulation of retinal inflammation by rhythmic expression of MiR-146a in diabetic retina. Invest Ophthalmol Vis Sci. 2014;55(6):3986–3994.
  • Qi X, Mitter SK, Yan Y, et al. Diurnal rhythmicity of autophagy is impaired in the diabetic retina. Cells. 2020;9(4):905.
  • Bughi S, Shaw S, Bessman A. Laser damage to retinal ganglion cells: the effect on circadian rhythms. J Diabetes Complications. 2006;20(3):184–187.
  • Do Carmo Buonfiglio D, Peliciari-Garcia RA, Do Amaral FG, et al. Early-stage retinal melatonin synthesis impairment in streptozotocin-induced diabetic wistar rats. Invest Ophthalmol Vis Sci. 2011;52(10):7416–7422.
  • Mehrzadi S, Motevalian M, Rezaei Kanavi M, et al. Protective effect of melatonin in the diabetic rat retina. Fundam Clin Pharmacol. 2018;32(4):414–421.
  • Jiang T, Chang Q, Cai J, et al. Protective effects of melatonin on retinal inflammation and oxidative stress in experimental diabetic retinopathy. Oxid Med Cell Longev. 2016;2016.
  • Djordjevic B, Cvetkovic T, Stoimenov TJ, et al. Oral supplementation with melatonin reduces oxidative damage and concentrations of inducible nitric oxide synthase, VEGF and matrix metalloproteinase 9 in the retina of rats with streptozotocin/nicotinamide induced pre-diabetes. Eur J Pharmacol. 2018;833:290–297.
  • Jiang T, Chang Q, Zhao Z, et al. Melatonin-mediated cytoprotection against hyperglycemic injury in müller cells. PLoS One. 2012;7(12):e50661.
  • Diabetic Retinopathy: Effects of Melatonin Treatment on Visual Functions and Circadian Rhythm - Full Text View - ClinicalTrials.gov 2020. [cited 2020 Jun]. Available from: https://clinicaltrials.gov/ct2/show/NCT03478306
  • Liu J, Clough SJ, Hutchinson AJ, et al. MT1 and MT2 melatonin receptors: a therapeutic perspective. Annu Rev Pharmacol Toxicol. 2016;56:361–383.
  • Lockley SW, Dressman MA, Licamele L, et al. Tasimelteon for non-24-hour sleep–wake disorder in totally blind people (SET and RESET): two multicentre, randomised, double-masked, placebo-controlled phase 3 trials. Lancet. 2015;386(10005):1754–1764.
  • Quera Salva MA, Hartley S, Léger D, et al. Non-24-hour sleep–wake rhythm disorder in the totally blind: diagnosis and management. Front Neurol. 2017;8:686.
  • Barnea M, Haviv L, Gutman R, et al. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta Mol Basis Dis. 2012;1822(11):1796–1806.
  • Lamia KA, Sachdeva UM, DiTacchio L, et al. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 2009;326(5951):437–440.
  • Vieira E. The impact of metformin on circadian clock gene. J Diabetes Metab Disord Control. 2014;1(3):00016.
  • Thomas AP, Hoang J, Vongbunyong K, et al. Administration of melatonin and metformin prevents deleterious effects of circadian disruption and obesity in male rats. Endocrinology. 2016;157(12):4720–4731.
  • Diabetes. 2020. [cited 2020 Jun]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
  • Ciulla TA, Bracha P, Pollack J, et al. Real-world outcomes of anti–vascular endothelial growth factor therapy in diabetic macular edema in the United States. Ophthalmol Retina. 2018;2(12):1179–1187.
  • Ciulla TA, Hussain RM, Pollack JS, et al. Visual acuity outcomes and anti–vascular endothelial growth factor therapy intensity in neovascular age-related macular degeneration patients: a real-world analysis of 49 485 eyes. Ophthalmol Retina. 2020;4(1):19–30.
  • Miller BH, McDearmon EL, Panda S, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3342–3347.
  • The Nobel Prize in Physiology or Medicine 2017 2020. [cited 2020 Jun]. Available from: https://www.nobelprize.org/prizes/medicine/2017/press-release/
  • Montaigne D, Marechal X, Modine T, et al. Daytime variation of perioperative myocardial injury in cardiac surgery and its prevention by Rev-Erbα antagonism: a single-centre propensity-matched cohort study and a randomised study. Lancet. 2018;391(10115):59–69.
  • Koyanagi S, Kuramoto Y, Nakagawa H, et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63(21):7277–7283.
  • Cha HK, Chung S, Lim HY, et al. Small molecule modulators of the circadian molecular clock with implications for neuropsychiatric diseases. Front Mol Neurosci. 2019;11:496.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.