542
Views
5
CrossRef citations to date
0
Altmetric
Review

Cardiac fibrosis: emerging agents in preclinical and clinical development

, ORCID Icon, ORCID Icon, , , , & show all
Pages 153-166 | Received 18 Jul 2020, Accepted 20 Dec 2020, Published online: 04 Jan 2021

References

  • Travers JG, Kamal FA, Robbins J, et al. Cardiac Fibrosis: the Fibroblast Awakens. Circ Res. 2016;118(1021–1040):1021–1040.
  • Suthahar N, Meijers WC, Silljé HHW, et al. From inflammation to fibrosis-molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14(235–250):235–250.
  • Kong P, Christia P, Frangogiannis NG. The pathogenesis of cardiac fibrosis. Cell Mol Life Sci. 2014;71(549–574). DOI:10.1007/s00018-013-1349-6
  • Creemers EE, Pinto YM. Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 2011;89(265–272). DOI:10.1093/cvr/cvq308
  • Kai H, Mori T, Tokuda K, et al. Pressure overload-induced transient oxidative stress mediates perivascular inflammation and cardiac fibrosis through angiotensin II. Hypertens Res. 2006;29(711–718):711–718.
  • de Bakker JM, van Capelle FJ, Janse MJ, et al. Fractionated electrograms in dilated cardiomyopathy: origin and relation to abnormal conduction. J Am Coll Cardiol. 1996;27(1071–1078):1071–1078.
  • Spach MS, Boineau JP. Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing Clin Electrophysiol. 1997;20(397–413):397–413.
  • Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol. 2000;35:569–582.
  • Strutz F, Zeisberg M, Renziehausen A, et al. TGF-beta 1 induces proliferation in human renal fibroblasts via induction of basic fibroblast growth factor (FGF-2). Kidney Int. 2001;59(579–592):579–592.
  • Grotendorst GR, Rahmanie H, Duncan MR. Combinatorial signaling pathways determine fibroblast proliferation and myofibroblast differentiation. Faseb J. 2004;18(469–479):469–479.
  • Kulasekaran P, Scavone CA, Rogers DS, et al. Endothelin-1 and transforming growth factor-beta1 independently induce fibroblast resistance to apoptosis via AKT activation. Am J Respir Cell Mol Biol. 2009;41(484–493):484–493.
  • Schirone L, Forte M, Palmerio S, et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid Med Cell Longev. 2017;2017(3920195):1–16.
  • de Boer RA, Daniels LB, Maisel AS, et al. State of the Art: newer biomarkers in heart failure. Eur J Heart Fail. 2015;17(559–569):559–569.
  • Liu FT, Patterson RJ, Wang JL. Intracellular functions of galectins. Biochim Biophys Acta. 2002;1572(263–273). DOI:10.1016/s0304-4165(02)00313-6
  • Besler C, Lang D, Urban D, et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ Heart Fail. 2017;10(3). DOI:10.1161/CIRCHEARTFAILURE.116.003804
  • Ho JE, Liu C, Lyass A, et al. Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. J Am Coll Cardiol. 2012;60(1249–1256):1249–1256.
  • Srivatsan V, George M, Shanmugam E. Utility of galectin-3 as a prognostic biomarker in heart failure: where do we stand? Eur J Prev Cardiol. 2015;22(9):1096–1110.
  • Brilla CG, Funck RC, Rupp H. Lisinopril-mediated regression of myocardial fibrosis in patients with hypertensive heart disease. Circulation. 2000;102(1388–1393):1388–1393.
  • Varo N, Iraburu MJ, Varela M, et al. Chronic AT(1) blockade stimulates extracellular collagen type I degradation and reverses myocardial fibrosis in spontaneously hypertensive rats. Hypertension. 2000;35(1197–1202):1197–1202.
  • Zannad F, Alla F, Dousset B, et al. Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation. 2000;102(22):2700–2706.
  • Kosmala W, Przewlocka-Kosmala M, Szczepanik-Osadnik H, et al. A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome. JACC Cardiovasc Imaging. 2011;4(1239–1249):1239–1249.
  • Qi G, Jia L, Li Y, et al. Angiotensin II infusion-induced inflammation, monocytic fibroblast precursor infiltration, and cardiac fibrosis are pressure dependent. Cardiovasc Toxicol. 2011;11(157–167):157–167.
  • Mazurek JA, Jessup M. Understanding Heart Failure. Card Electrophysiol Clin. 2015;7(557–575):557–575.
  • Le DE, Pascotto M, Leong-Poi H, et al. Anti-inflammatory and pro-angiogenic effects of beta blockers in a canine model of chronic ischemic cardiomyopathy: comparison between carvedilol and metoprolol. Basic Res Cardiol. 2013;108(384). DOI:10.1007/s00395-013-0384-7
  • Ziegler KA, Ahles A, Wille T, et al. Local sympathetic denervation attenuates myocardial inflammation and improves cardiac function after myocardial infarction in mice. Cardiovasc Res. 2018;114(291–299):291–299.
  • Lin TT, Sung JL, Syu JY, et al. Anti-inflammatory and antiarrhythmic effects of beta blocker in a rat model of rheumatoid arthritis. J Am Heart Assoc. 2020;9(e016084). DOI:10.1161/JAHA.120.016084
  • Kim HB, Hong YJ, Park HJ, et al. Effects of Ivabradine on Left Ventricular Systolic Function and Cardiac Fibrosis in Rat Myocardial Ischemia-Reperfusion Model. Chonnam Med J. 2018;54(167–172):167.
  • Ma D, Xu T, Cai G, et al. Effects of ivabradine hydrochloride combined with trimetazidine on myocardial fibrosis in rats with chronic heart failure. Exp Ther Med. 2019;18(1639–1644):1639–1644.
  • Simko F, Baka T, Poglitsch M, et al. Effect of ivabradine on a hypertensive heart and the renin-angiotensin-aldosterone system in L-NAME-induced hypertension. Int J Mol Sci. 2018;19(10):3017.
  • Oesterle A, Laufs U, Liao JK. Pleiotropic Effects of Statins on the Cardiovascular System. Circ Res. 2017;120(229–243):229–243.
  • Albert MA, Danielson E, Rifai N, et al. Effect of statin therapy on C-reactive protein levels: the pravastatin inflammation/CRP evaluation (PRINCE): a randomized trial and cohort study. Jama. 2001;286(64–70):64.
  • Bauersachs J, Galuppo P, Fraccarollo D, et al. Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation. 2001;104(982–985):982–985.
  • Nadruz W Jr., Lagosta VJ, Moreno H Jr., et al. Simvastatin prevents load-induced protein tyrosine nitration in overloaded hearts. Hypertension. 2004;43(1060–1066):1060–1066.
  • Iglarz M, Touyz RM, Viel EC, et al. Peroxisome proliferator-activated receptor-alpha and receptor-gamma activators prevent cardiac fibrosis in mineralocorticoid-dependent hypertension. Hypertension. 2003;42(737–743):737–743.
  • Diep QN, Benkirane K, Amiri F, et al. PPAR alpha activator fenofibrate inhibits myocardial inflammation and fibrosis in angiotensin II-infused rats. J Mol Cell Cardiol. 2004;36(295–304):295–304.
  • Shiroshita-Takeshita A, Brundel BJJM, Burstein B, et al. Effects of simvastatin on the development of the atrial fibrillation substrate in dogs with congestive heart failure. Cardiovasc Res. 2007;74(75–84). DOI:10.1016/j.cardiores.2007.01.002
  • Yu B, Yu M, Zhang H, et al. Suppression of miR-143-3p contributes to the anti-fibrosis effect of atorvastatin on myocardial tissues via the modulation of Smad2 activity. Exp Mol Pathol. 2020;112(104346):104346.
  • Abulhul E, McDonald K, Martos R, et al. Long-term statin therapy in patients with systolic heart failure and normal cholesterol: effects on elevated serum markers of collagen turnover, inflammation, and B-type natriuretic peptide. Clin Ther. 2012;34(91–100):91–100.
  • Kjekshus J, Apetrei E, Barrios V, et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007;357(2248–2261):2248–2261.
  • Krum H, Ashton E, Reid C, et al. Double-blind, randomized, placebo-controlled study of high-dose HMG CoA reductase inhibitor therapy on ventricular remodeling, pro-inflammatory cytokines and neurohormonal parameters in patients with chronic systolic heart failure. J Card Fail. 2007;13(1–7):1–7.
  • Marik PE, Varon J. Omega-3 dietary supplements and the risk of cardiovascular events: a systematic review. Clin Cardiol. 2009;32(365–372):365–372.
  • Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(1090–1098):1090–1098.
  • Mozaffarian D, Bryson CL, Lemaitre RN, et al. Fish intake and risk of incident heart failure. J Am Coll Cardiol. 2005;45(2015–2021):2015–2021.
  • Belin RJ, Greenland P, Martin L, et al. Fish intake and the risk of incident heart failure: the Women’s Health Initiative. Circ Heart Fail. 2011;4(404–413):404–413.
  • Tavazzi L, Maggioni AP, Marchioli R, et al. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): a randomised, double-blind, placebo-controlled trial. Lancet. 2008;372(1223–1230). DOI:10.1016/s0140-6736(08)61239-8
  • Bhatt DL, Steg PG, Miller M, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med. 2019;380(11–22):11–22.
  • Szeiffova Bacova B, Viczenczova C, Andelova K, et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial Cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants (Basel). 2020;9. DOI:10.3390/antiox9060546.
  • Endo J, Sano M, Isobe Y, et al. 18-HEPE, an n-3 fatty acid metabolite released by macrophages, prevents pressure overload-induced maladaptive cardiac remodeling. J Exp Med. 2014;211(1673–1687):1673–1687.
  • McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(993–1004):993–1004.
  • Burke RM, Lighthouse JK, Mickelsen DM, et al. Sacubitril/Valsartan Decreases Cardiac Fibrosis in Left Ventricle Pressure Overload by Restoring PKG Signaling in Cardiac Fibroblasts. Circ Heart Fail. 2019;12(e005565). DOI:10.1161/CIRCHEARTFAILURE.118.005565
  • Schmieder RE, Wagner F, Mayr M, et al. The effect of sacubitril/valsartan compared to olmesartan on cardiovascular remodelling in subjects with essential hypertension: the results of a randomized, double-blind, active-controlled study. Eur Heart J. 2017;38(3308–3317):3308–3317.
  • Zile MR, O’Meara E, Claggett B, et al. Effects of Sacubitril/Valsartan on Biomarkers of Extracellular Matrix Regulation in Patients With HFrEF. J Am Coll Cardiol. 2019;73(795–806):795–806.
  • Solomon SD, McMurray JJV, Anand IS, et al. Angiotensin-neprilysin inhibition in heart failure with preserved ejection fraction. N Engl J Med. 2019;381(1609–1620):1609–1620.
  • Bodey F, Hopper I, Krum H. Neprilysin inhibitors preserve renal function in heart failure. Int J Cardiol. 2015;179(329–330):329–330.
  • Jordan J, Stinkens R, Jax T, et al. Improved insulin sensitivity with angiotensin receptor neprilysin inhibition in individuals with obesity and hypertension. Clin Pharmacol Ther. 2017;101(254–263):254–263.
  • Selvanayagam J. Study of Sacubitril/ValsarTan on MyocardIal OxygenatioN and Fibrosis in Heart Failure With Preserved Ejection Fraction (PRISTINE-HF). ClinicalTrials.gov. 2020.
  • Bell DS. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care. 2003;26(2433–2441):2433–2441.
  • Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol. 2016;90(84–93):84–93.
  • Aronis KN, Tsoukas MA, Mantzoros CS. Potential cardioprotective action of GLP-1: from bench to bedside. Metabolism. 2014;63(979–988):979–988.
  • Zhang D-P, Xu L, Wang L-F, et al. Effects of antidiabetic drugs on left ventricular function/dysfunction: a systematic review and network meta-analysis. Cardiovasc Diabetol. 2020;19:10.
  • Huang DD, Huang HF, Yang Q, et al. Liraglutide improves myocardial fibrosis after myocardial infarction through inhibition of CTGF by activating cAMP in mice. Eur Rev Med Pharmacol Sci. 2018;22(4648–4656). DOI:10.26355/eurrev_201807_15524
  • Zhao T, Chen H, Xu F, et al. Liraglutide alleviates cardiac fibrosis through inhibiting P4halpha-1 expression in STZ-induced diabetic cardiomyopathy. Acta Biochim Biophys Sin (Shanghai). 2019;51(293–300):293–300.
  • von Bibra H, St John Sutton M. Diastolic dysfunction in diabetes and the metabolic syndrome: promising potential for diagnosis and prognosis. Diabetologia. 2010;53(1033–1045):1033–1045.
  • Saponaro F, Sonaglioni A, Rossi A, et al. Improved diastolic function in type 2 diabetes after a six month liraglutide treatment. Diabetes Res Clin Pract. 2016;118(21–28):21–28.
  • Bojer AS. Effect of liraglutide on diastolic dysfunction on cardiac mri in type 2 diabetes patients. ClinicalTrials.gov Identifier: NCT02655770. 2020.
  • Hirose M, Takano H, Hasegawa H, et al. The effects of dipeptidyl peptidase-4 on cardiac fibrosis in pressure overload-induced heart failure. J Pharmacol Sci. 2017;135(164–173):164–173.
  • Esposito G, Cappetta D, Russo R, et al. Sitagliptin reduces inflammation, fibrosis and preserves diastolic function in a rat model of heart failure with preserved ejection fraction. Br J Pharmacol. 2017;174(4070–4086):4070–4086.
  • Inthachai T, Lekawanvijit S, Kumfu S, et al. Dipeptidyl peptidase-4 inhibitor improves cardiac function by attenuating adverse cardiac remodelling in rats with chronic myocardial infarction. Exp Physiol. 2015;100(667–679):667–679.
  • Aroor A, Manrique-Acevedo C, Demarco V. The role of dipeptidylpeptidase-4 inhibitors in management of cardiovascular disease in diabetes; focus on linagliptin. Cardiovasc Diabetol. 2018;17. DOI:10.1186/s12933-018-0704-1.
  • Seferovic PM, Coats AJS, Ponikowski P, et al. European society of cardiology/heart failure association position paper on the role and safety of new glucose-lowering drugs in patients with heart failure. Eur J Heart Fail. 2020;22(196–213):196–213.
  • Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus. N Engl J Med. 2013;369(1317–1326):1317–1326.
  • Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(2117–2128):2117–2128.
  • McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(1995–2008):1995–2008.
  • Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(1413–1424):1413–1424.
  • Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017;377(644–657):644–657.
  • Li C, Zhang J, Xue M, et al. SGLT2 inhibition with empagliflozin attenuates myocardial oxidative stress and fibrosis in diabetic mice heart. Cardiovasc Diabetol. 2019;18(15). DOI:10.1186/s12933-019-0816-2
  • Lee HC, Shiou Y-L, Jhuo S-J, et al. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats. Cardiovasc Diabetol. 2019;18(45). DOI:10.1186/s12933-019-0849-6
  • Kang S, Verma S, Hassanabad AF, et al. Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: novel Translational Clues to Explain EMPA-REG OUTCOME Results. Can J Cardiol. 2020;36(543–553):543–553.
  • Santos-Gallego CG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates adverse left ventricular remodeling in nondiabetic heart failure by enhancing myocardial energetics. J Am Coll Cardiol. 2019;73(1931–1944):1931–1944.
  • Santos-GallegoCG, Requena-Ibanez JA, San Antonio R, et al. Empagliflozin ameliorates diastolic dysfunction and left ventricular fibrosis/stiffness in nondiabetic heart failure: a multimodality study. JACC Cardiovasc Imaging. 2020. DOI:10.1016/j.jcmg.2020.07.042.
  • Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 Inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104(298–310):298–310.
  • Ye Y, Jia X, Bajaj M, et al. Dapagliflozin Attenuates Na(+)/H(+) Exchanger-1 in Cardiofibroblasts via AMPK Activation. Cardiovasc Drugs Ther. 2018;32(553–558):553–558.
  • Ye Y, Bajaj M, Yang HC, et al. SGLT-2 inhibition with dapagliflozin reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic cardiomyopathy in mice with type 2 diabetes. Further augmentation of the effects with Saxagliptin, a DPP4 Inhibitor. Cardiovasc Drugs Ther. 2017;31:119–132.
  • Birnbaum Y, Bajaj M, Yang HC, et al. SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovasc Drugs Ther. 2018;32(135–145):135–145.
  • Zhao X-Q. Effects of SGLT-2 Inhibition on myocardial fibrosis and inflammation as assessed by cardiac MRI in patients with DM2. ClinicalTrials.gov Identifier: NCT03782259. 2018.
  • Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019;380(2295–2306):2295–2306.
  • Kondo H, Akoumianakis I, Akawi N, et al. Direct effects of canagliflozin on human myocardial redox signalling: a novel role for SGLT1 inhibition. Eur Heart J. 2020;41(Supplement_2). DOI:10.1093/ehjci/ehaa946.3351
  • Packer M. Molecular, cellular, and clinical evidence that sodium-glucose cotransporter 2 inhibitors act as neurohormonal antagonists when used for the treatment of chronic heart failure. J Am Heart Assoc. 2020;9(e016270). DOI:10.1161/JAHA.120.016270
  • Birnbaum Y, Tran D, Chen H, et al. Ticagrelor Improves remodeling, reduces apoptosis, inflammation and fibrosis and increases the number of progenitor stem cells after myocardial infarction in a rat model of ischemia reperfusion. Cell Physiol Biochem. 2019;53(961–981):961–981.
  • Chen H, Tran D, Yang H-C, et al. Dapagliflozin and ticagrelor have additive effects on the attenuation of the activation of the NLRP3 inflammasome and the progression of diabetic cardiomyopathy: an AMPK-mTOR Interplay. Cardiovasc Drugs Ther. 2020;34(443–461):443–461.
  • Sjogren B, Parra S, Heath LJ, et al. Cardiotonic steroids stabilize regulator of G protein signaling 2 protein levels. Mol Pharmacol. 2012;82(500–509):500–509.
  • Nance MR, Kreutz B, Tesmer V, et al. Structural and functional analysis of the regulator of G protein signaling 2-galphaq complex. Structure. 2013;21(438–448):438–448.
  • Sjogren B, Parra S, Atkins KB, et al. Digoxin-mediated upregulation of RGS2 protein protects against cardiac injury. J Pharmacol Exp Ther. 2016;357(311–319):311–319.
  • Ghofrani HA, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369(330–340). DOI:10.1056/NEJMoa1209655
  • Kataoka H, Otsuka F, Ogura T, et al. The role of nitric oxide and the renin-angiotensin system in salt-restricted Dahl rats. Am J Hypertens. 2001;14:276–285.
  • Geschka S, Kretschmer A, Sharkovska Y, et al. Soluble guanylate cyclase stimulation prevents fibrotic tissue remodeling and improves survival in salt-sensitive Dahl rats. PLoS One. 2011;6(e21853). DOI:10.1371/journal.pone.0021853
  • Shea CM, Price GM, Liu G, et al. Soluble guanylate cyclase stimulator praliciguat attenuates inflammation, fibrosis, and end-organ damage in the Dahl model of cardiorenal failure. Am J Physiol Renal Physiol. 2020;318(1):F148–F159.
  • Udelson JE, Lewis GD, Shah SJ, et al. Effect of praliciguat on peak rate of oxygen consumption in patients with heart failure with preserved ejection fraction: the CAPACITY HFpEF Randomized Clinical Trial. JAMA. 2020;324(1522–1531):1522.
  • Armstrong PW, Lam CSP, Anstrom KJ, et al. Effect of Vericiguat vs Placebo on quality of life in patients with heart failure and preserved ejection fraction: the VITALITY-HFpEF Randomized Clinical Trial. JAMA. 2020;324(1512–1521):1512.
  • Armstrong PW, Pieske B, Anstrom KJ, et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382(1883–1893):1883–1893.
  • Tsutsumi Z, Moriwaki Y, Takahashi S, et al. Oxidized low-density lipoprotein autoantibodies in patients with primary gout: effect of urate-lowering therapy. Clin Chim Acta. 2004;339(117–122):117–122.
  • Zhang X, Zhang J-H, Chen X-Y, et al. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal. 2015;22(848–870):848–870.
  • Kang LL, Zhang DM, Ma CH, et al. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Sci Rep. 2016;6(27460). DOI:10.1038/srep27460
  • Jia G, Habibi J, Bostick BP, et al. Uric acid promotes left ventricular diastolic dysfunction in mice fed a Western diet. Hypertension. 2015;65(531–539):531–539.
  • Jia N, Dong P, Ye Y, et al. Allopurinol attenuates oxidative stress and cardiac fibrosis in angiotensin II-induced cardiac diastolic dysfunction. Cardiovasc Ther. 2012;30(117–123):117–123.
  • Givertz MM, Anstrom KJ, Redfield MM, et al. Effects of Xanthine oxidase inhibition in hyperuricemic heart failure patients: the Xanthine oxidase inhibition for hyperuricemic heart failure patients (EXACT-HF) Study. Circulation. 2015;131(1763–1771):1763–1771.
  • Yamagami K, Oka T, Wang Q, et al. Pirfenidone exhibits cardioprotective effects by regulating myocardial fibrosis and vascular permeability in pressure-overloaded hearts. Am J Physiol Heart Circ Physiol. 2015;309(H512–522):H512-H522.
  • Mirkovic S, Seymour A-ML, Fenning A, et al. Attenuation of cardiac fibrosis by pirfenidone and amiloride in DOCA-salt hypertensive rats. Br J Pharmacol. 2002;135(961–968):961–968.
  • Nguyen DT, Ding C, Wilson E, et al. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm. 2010;7(1438–1445):1438–1445.
  • Yamazaki T, Yamashita N, Izumi Y, et al. The antifibrotic agent pirfenidone inhibits angiotensin II-induced cardiac hypertrophy in mice. Hypertens Res. 2012;35(34–40):34–40.
  • Lewis GA, Schelbert EB, Naish JH, et al. Pirfenidone in heart failure with preserved ejection fraction-rationale and design of the PIROUETTE trial. Cardiovasc Drugs Ther. 2019;33(461–470):461–470.
  • Cottin V, Koschel D, Günther A, et al. Long-term safety of pirfenidone: results of the prospective, observational PASSPORT study. ERJ Open Res. 2018;4(4):00084–2018.
  • GorinaG, Richeldi L, Raghu G, et al. PRAISE, a randomized, placebo-controlled, double-blind Phase 2 clinical trial of pamrevlumab (FG-3019) in IPF patients. J Eur Respir J. 2017;50:OA3400.
  • Vainio LE, Szabò Z, Lin R, et al. Connective tissue growth factor inhibition enhances cardiac repair and limits fibrosis after myocardial infarction. JACC Basic Transl Sci. 2019;4(83–94). DOI:10.1016/j.jacbts.2018.10.007
  • Liu YH, D’Ambrosio M, Liao T-D, et al. N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. Am J Physiol Heart Circ Physiol. 2009;296(H404–412):H404-H412.
  • Kanasaki M, Nagai T, Kitada M, et al. Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin I-converting enzyme inhibitors. Fibrogenesis Tissue Repair. 2011;4(25). DOI:10.1186/1755-1536-4-25
  • Rousseau A, Michaud A, Chauvet MT, et al. The hemoregulatory peptide N-acetyl-Ser-Asp-Lys-Pro is a natural and specific substrate of the N-terminal active site of human angiotensin-converting enzyme. J Biol Chem. 1995;270(3656–3661):3656–3661.
  • Li P, Xiao HD, Xu J, et al. Angiotensin-converting enzyme N-terminal inactivation alleviates bleomycin-induced lung injury. Am J Pathol. 2010;177(1113–1121):1113–1121.
  • Ezan E, Carde P, Le Kerneau J, et al. Pharmcokinetics in healthy volunteers and patients of NAc-SDKP (seraspenide), a negative regulator of hematopoiesis. Drug Metab Dispos. 1994;22(6):843–848.
  • Dessy C, Moniotte S, Ghisdal P, et al. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Circulation. 2004;110(948–954):948–954.
  • Pouleur AC, Anker S, Brito D, et al. Rationale and design of a multicentre, randomized, placebo-controlled trial of mirabegron, a Beta3-adrenergic receptor agonist on left ventricular mass and diastolic function in patients with structural heart disease Beta3-left ventricular hypertrophy (Beta3-LVH). ESC Heart Fail. 2018;5(830–841). DOI:10.1002/ehf2.12306
  • Hermida N, Michel L, Esfahani H, et al. Cardiac myocyte beta3-adrenergic receptors prevent myocardial fibrosis by modulating oxidant stress-dependent paracrine signaling. Eur Heart J. 2018;39(888–898):888–898.
  • Bundgaard H, Liu -C-C, Garcia A, et al. beta(3) adrenergic stimulation of the cardiac Na+-K+ pump by reversal of an inhibitory oxidative modification. Circulation. 2010;122(2699–2708):2699–2708.
  • Bundgaard H, Axelsson A, Thomsen JH, et al. The first-in-man randomized trial of a beta3 adrenoceptor agonist in chronic heart failure: the BEAT-HF trial. Eur J Heart Fail. 2017;19(566–575):566–575.
  • Tyagi P, Tyagi V, Chancellor M. Mirabegron: a safety review. Expert Opin Drug Saf. 2011;10(287–294):287–294.
  • Takimoto E, Champion HC, Li M, et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med. 2005;11(214–222):214–222.
  • Perez NG, Piaggio MR, Ennis IL, et al. Phosphodiesterase 5A inhibition induces Na+/H+ exchanger blockade and protection against myocardial infarction. Hypertension. 2007;49(1095–1103):1095–1103.
  • Pokreisz P, Vandenwijngaert S, Bito V, et al. Ventricular phosphodiesterase-5 expression is increased in patients with advanced heart failure and contributes to adverse ventricular remodeling after myocardial infarction in mice. Circulation. 2009;119(408–416):408–416.
  • Gong W, Yan M, Chen J, et al. Chronic inhibition of cyclic guanosine monophosphate-specific phosphodiesterase 5 prevented cardiac fibrosis through inhibition of transforming growth factor beta-induced Smad signaling. Front Med. 2014;8(445–455):445–455.
  • Salloum FN, Abbate A, Das A, et al. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol. 2008;294(H1398–1406):H1398-H1406.
  • Chau VQ, Salloum FN, Hoke NN, et al. Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol. 2011;300(H2272–2279):H2272-H2279.
  • Kim KH, Kim Y-J, Ohn J-H, et al. Long-term effects of sildenafil in a rat model of chronic mitral regurgitation: benefits of ventricular remodeling and exercise capacity. Circulation. 2012;125(1390–1401):1390–1401.
  • Guazzi M, Vicenzi M, Arena R, et al. PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail. 2011;4(8–17):8–17.
  • Griffin MO, Fricovsky E, Ceballos G, et al. Tetracyclines: a pleitropic family of compounds with promising therapeutic properties. Review of the literature. Am J Physiol Cell Physiol. 2010;299:C539–548.
  • Webb CS, Bonnema DD, Ahmed SH, et al. Specific temporal profile of matrix metalloproteinase release occurs in patients after myocardial infarction: relation to left ventricular remodeling. Circulation. 2006;114(1020–1027):1020–1027.
  • Cerisano G, Buonamici P, Valenti R, et al. Early short-term doxycycline therapy in patients with acute myocardial infarction and left ventricular dysfunction to prevent the ominous progression to adverse remodelling: the TIPTOP trial. Eur Heart J. 2014;35(184–191):184–191.
  • Jugdutt BI. Ventricular remodeling after infarction and the extracellular collagen matrix: when is enough enough? Circulation. 2003;108(11):1395–1403.
  • Petrov G, Regitz-Zagrosek V, Lehmkuhl E, et al. Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation. 2010;122(11_suppl_1):S23–28.
  • Petrov G, Dworatzek E, Schulze TM, et al. Maladaptive remodeling is associated with impaired survival in women but not in men after aortic valve replacement. JACC Cardiovasc Imaging. 2014;7(1073–1080):1073–1080.
  • Campbell DJ, Somaratne JB, Jenkins AJ, et al. Differences in myocardial structure and coronary microvasculature between men and women with coronary artery disease. Hypertension. 2011;57(186–192):186–192.
  • Treibel TA, López B, González A, et al. Reappraising myocardial fibrosis in severe aortic stenosis: an invasive and non-invasive study in 133 patients. Eur Heart J. 2018;39(699–709):699–709.
  • Kararigas G, Dworatzek E, Petrov G, et al. Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur J Heart Fail. 2014;16(1160–1167):1160–1167.
  • Grodstein F, Stampfer MJ, Colditz GA, et al. Postmenopausal hormone therapy and mortality. N Engl J Med. 1997;336(1769–1775):1769–1776.
  • Rossouw JE, Anderson GL, Prentice RL, et al. Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results from the women’s health initiative randomized controlled trial. JAMA. 2002;288(321–333). DOI:10.1001/jama.288.3.321
  • Jankowska EA, Rozentryt P, Ponikowska B, et al. Circulating estradiol and mortality in men with systolic chronic heart failure. JAMA. 2009;301(1892–1901):1892.
  • Zhang C, Liu J, Zhong JF, et al. Engineering CAR-T cells. Biomark Res. 2017;5(22). DOI:10.1186/s40364-017-0102-y
  • June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(64–73):64–73.
  • Sermer D, Brentjens R. CAR T-cell therapy: full speed ahead. Hematol Oncol. 2019;37(Suppl 1):95–100.
  • Aghajanian H, Kimura T, Rurik JG, et al. Targeting cardiac fibrosis with engineered T cells. Nature. 2019;573(430–433):430–433.
  • Lo A, Wang L-CS, Scholler J, et al. Tumor-promoting desmoplasia is disrupted by depleting FAP-expressing stromal cells. Cancer Res. 2015;75(2800–2810):2800–2810.
  • Ashur C, Frishman WH. Cardiosphere-Derived Cells and Ischemic Heart Failure. Cardiol Rev. 2018;26(1):8–21.
  • Malliaras K, Zhang Y, Seinfeld J, et al. Cardiomyocyte proliferation and progenitor cell recruitment underlie therapeutic regeneration after myocardial infarction in the adult mouse heart. EMBO Mol Med. 2013;5(191–209):191–209.
  • Makkar RR, Smith RR, Cheng K, et al. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet. 2012;379(895–904):895–904.
  • Eduardo Marbán M. 2020. Regression of fibrosis & reversal of diastolic dysfunction in hfpef patients treated with allogeneic CDCs (Regress-HFpEF). PhD. ClinicalTrials.gov Identifier: NCT02941705.
  • Gallet R, Dawkins J, Valle J, et al. Exosomes secreted by cardiosphere-derived cells reduce scarring, attenuate adverse remodelling, and improve function in acute and chronic porcine myocardial infarction. Eur Heart J. 2017;38(201–211):201–211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.