2,167
Views
32
CrossRef citations to date
0
Altmetric
Review

Developing DMD therapeutics: a review of the effectiveness of small molecules, stop-codon readthrough, dystrophin gene replacement, and exon-skipping therapies

&
Pages 167-176 | Received 17 Jan 2020, Accepted 21 Dec 2020, Published online: 06 Jan 2021

References

  • Duchenne. The pathology of paralysis with muscular degeneration (paralysie myosclerotique), or paralysis with apparent hypertrophy. Br Med J. 1867 Dec 14;2(363): 541–542.
  • Moat SJ, Bradley DM, Salmon R, et al. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur J Hum Genet. 2013 Oct;21(10):1049–1053.
  • Dubowitz V. The Duchenne dystrophy story: from phenotype to gene and potential treatment. J Child Neurol. 1989;4(4):240–250.
  • Worton RG. Duchenne muscular dystrophy: gene and gene product; mechanism of mutation in the gene [Review]. J Inherit Metab Dis. 1992;15(4):539–550.
  • Díaz-Nido J, Avila J. The cytoskeleton. Mol Biol of Neuron. 1997;317,13.
  • Rando TA. The dystrophin–glycoprotein complex, cellular signaling, and the regulation of cell survival in the muscular dystrophies. Muscle Nerve. 2001;24(12):1575–1594.
  • Allen DG, Whitehead NP, Froehner SC. Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev. 2016 Jan;96(1):253–305.
  • Koenig M, Beggs A, Moyer M, et al. The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet. 1989;45(4):498.
  • Sutherland DH, Olshen R, Cooper L, et al. The pathomechanics of gait in Duchenne muscular dystrophy. Dev Med Child Neurol. 1981;23(1):3–22.
  • Lovering RM, Porter NC, Bloch RJ. The muscular dystrophies: from genes to therapies. Phys Ther. 2005;85(12):1372–1388.
  • Alkan H, Mutlu A, Fırat T, et al. Effects of functional level on balance in children with Duchenne muscular dystrophy. Eur J Paediatr Neurol. 2017;21(4):635–638.
  • Webb C. Parents’ perspectives on coping with Duchenne muscular dystrophy. Child Care Health Dev. 2005;31(4):385–396.
  • Ropars J, Lempereur M, Vuillerot C, et al. Muscle activation during gait in children with duchenne muscular dystrophy. PLoS ONE. 2016;11(9):e0161938.
  • Nigro G, Comi LI, Limongelli FM, et al. Prospective study of X‐linked progressive muscular dystrophy in Campania. Muscle Nerve. 1983;6(4):253–262.
  • Hsu JD, Jackson R. Treatment of symptomatic foot and ankle deformities in the nonambulatory neuromuscular patient. Foot Ankle. 1985;5(5):238–244.
  • Kato M. Genomics and cure: understanding narratives of patients with Duchenne muscular dystrophy in Japan. Anthropol Med. 2018 Apr;25(1):85–101.
  • Kaspar RW, Allen HD, Montanaro F. Current understanding and management of dilated cardiomyopathy in Duchenne and Becker muscular dystrophy. J Am Acad Nurse Pract. 2009;21(5):241–249.
  • McNally EM, Kaltman JR, Benson DW, et al. Contemporary cardiac issues in Duchenne muscular dystrophy. Circulation. 2015;131(18):1590–1598.
  • Viollet L, Thrush PT, Flanigan KM, et al. Effects of angiotensin-converting enzyme inhibitors and/or beta blockers on the cardiomyopathy in Duchenne muscular dystrophy. Am J Cardiol. 2012;110(1):98–102.
  • Meyers TA, Townsend D. Cardiac pathophysiology and the future of cardiac therapies in Duchenne muscular dystrophy. Int J Mol Sci. 2019;20(17):4098.
  • Morrison-Nozik A, Anand P, Zhu H, et al. Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program. Proc Natl Acad Sci U S A. 2015;112(49):E6780–E6789.
  • Beato M, Herrlich P, Schütz G. Steroid hormone receptors: many actors in search of a plot. Cell. 1995;83(6):851–857.
  • Hoffman EP, Reeves E, Damsker J, et al. Novel approaches to corticosteroid treatment in Duchenne muscular dystrophy. Phys Med Rehab Clin. 2012;23(4):821–828.
  • Heier CR, Yu Q, Fiorillo AA, et al. Vamorolone targets dual nuclear receptors to treat inflammation and dystrophic cardiomyopathy. Life Sci Alliance. 2019;2(1):e201800186.
  • Manzur AY, Kuntzer T, Pike M, et al. Glucocorticoid corticosteroids for Duchenne muscular dystrophy. Cochrane Db Syst Rev. 2008;1.
  • Balaban B, Matthews DJ, Clayton GH, et al. Corticosteroid treatment and functional improvement in Duchenne muscular dystrophy: long-term effect. Am J Phys Med Rehabil. 2005;84(11):843–850.
  • Zeeshan M, Kumar A, Sahu JK, et al. Chemistry and pharmacology of deflazacort: a novel bioactive compound for the treatment of Duchenne muscular dystrophy-a mini review. Curr Bioact Compd. 2019;15(1):41–44.
  • Hoffman EP. Pharmacotherapy of Duchenne muscular dystrophy. Handb Exp Pharmacol. 2019 Aug;3;2.
  • Shieh PB, McIntosh J, Jin F, et al. Deflazacort versus prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: A post HOC analysis from the ACT DMD trial. Muscle Nerve. 2018 Nov;58(5):639–645.
  • Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–361.
  • Jeronimo G, Nozoe KT, Polesel DN, et al. Impact of corticotherapy, nutrition, and sleep disorder on quality of life of patients with Duchenne muscular dystrophy. Nutrition. 2016;32(3):391–393.
  • Cowen L, Mancini M, Martin A, et al. Variability and trends in corticosteroid use by male United States participants with Duchenne muscular dystrophy in the Duchenne registry. BMC Neurol. 2019;19(1):84.
  • Damsker JM, Cornish MR, Kanneboyina P, et al. Vamorolone, a dissociative steroidal compound, reduces collagen antibody-induced joint damage and inflammation when administered after disease onset. Inflammation Res. 2019;68(11):969–980.
  • Smith EC, Conklin LS, Hoffman EP, et al. Efficacy and safety of vamorolone in Duchenne muscular dystrophy: an 18-month interim analysis of a non-randomized open-label extension study. PLoS Med. 2020 Sep;17(9):e1003222.
  • Hoffman EP, Riddle V, Siegler MA, et al. Phase 1 trial of vamorolone, a first-in-class steroid, shows improvements in side effects via biomarkers bridged to clinical outcomes. Steroids. 2018;134:43–52.
  • Conklin LS, Damsker JM, Hoffman EP, et al. Phase IIa trial in Duchenne muscular dystrophy shows vamorolone is a first-in-class dissociative steroidal anti-inflammatory drug. Pharmacol Res. 2018;136:140–150.
  • Mavroudis PD, van den Anker J, Conklin LS, et al. Population pharmacokinetics of vamorolone (VBP15) in healthy men and boys with Duchenne muscular dystrophy. J Clin Pharmacol. 2019;59(7):979–988.
  • Hoffman EP, Schwartz BD, Mengle-Gaw LJ, et al. Vamorolone trial in Duchenne muscular dystrophy shows dose-related improvement of muscle function. Neurology. 2019 Sep 24;93(13):e1312–e1323.
  • Finanger E, Vandenborne K, Finkel RS, et al. Phase 1 study of edasalonexent (CAT-1004), an oral NF-κB inhibitor, in pediatric patients with Duchenne muscular dystrophy. J Neuromuscul Dis. 2019;6(1):43–54.
  • Dorchies OM, Reutenauer-Patte J, Dahmane E, et al. The anticancer drug tamoxifen counteracts the pathology in a mouse model of duchenne muscular dystrophy. Am J Pathol. 2013 Feb;182(2):485–504.
  • Nagy S, Hafner P, Schmidt S, et al. Tamoxifen in Duchenne muscular dystrophy (TAMDMD): study protocol for a multicenter, randomized, placebo-controlled, double-blind phase 3 trial. Trials. 2019 Nov 21;20(1):637.
  • Buyse GM, Van der Mieren G, Erb M, et al. Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance. Eur Heart J. 2009 Jan;30(1):116–124.
  • Hoffman EP, Bronson A, Levin AA, et al. Restoring dystrophin expression in duchenne muscular dystrophy muscle progress in exon skipping and stop codon read through. Am J Pathol. 2011 Jul;179(1):12–22.
  • Finkel RS. Read-through strategies for suppression of nonsense mutations in Duchenne/Becker muscular dystrophy: aminoglycosides and ataluren (PTC124). J Child Neurol. 2010 Sep;25(9):1158–1164.
  • Malik V, Rodino-Klapac LR, Viollet L, et al. Aminoglycoside-induced mutation suppression (stop codon readthrough) as a therapeutic strategy for Duchenne muscular dystrophy. Ther Adv Neurol Disord. 2010 Nov;3(6):379–389.
  • Arakawa M, Shiozuka M, Nakayama Y, et al. Negamycin restores dystrophin expression in skeletal and cardiac muscles of mdx mice. J Biochem. 2003 Nov;134(5):751–758.
  • Howard M, Frizzell RA, Bedwell DM. Aminoglycoside antibiotics restore CFTR function by overcoming premature stop mutations. Nat Med. 1996 Apr;2(4):467–469.
  • Dunant P, Walter MC, Karpati G, et al. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve. 2003 May;27(5):624–627.
  • Malik V, Rodino‐Klapac LR, Viollet L, et al. Gentamicin‐induced readthrough of stop codons in Duchenne muscular dystrophy. Ann Neurol. 2010;67(6):771–780.
  • Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker muscular dystrophy due to nonsense mutations. Ann Neurol. 2001;49(6):706–711.
  • Hamed SA. Drug evaluation: PTC-124–a potential treatment of cystic fibrosis and Duchenne muscular dystrophy. IDrugs. 2006 Nov;9(11):783–789.
  • Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007 May 3;447(7140):87–91.
  • Sheridan C. Doubts raised over ‘read-through’ Duchenne drug mechanism. Nat Biotechnol. 2013 Sep;31(9):771–773.
  • Auld DS, Thorne N, Maguire WF, et al. Mechanism of PTC124 activity in cell-based luciferase assays of nonsense codon suppression. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3585–3590.
  • McElroy SP, Nomura T, Torrie LS, et al. A lack of premature termination codon read-through efficacy of PTC124 (Ataluren) in a diverse array of reporter assays. PLoS Biol. 2013;11(6):e1001593.
  • Landfeldt E, Sejersen T, Tulinius M. A mini-review and implementation model for using ataluren to treat nonsense mutation Duchenne muscular dystrophy. Acta Paediatr. 2019 Feb;108(2):224–230.
  • Konstan MW, VanDevanter DR, Rowe SM, et al. Efficacy and safety of ataluren in patients with nonsense-mutation cystic fibrosis not receiving chronic inhaled aminoglycosides: the international, randomized, double-blind, placebo-controlled Ataluren Confirmatory Trial in Cystic Fibrosis (ACT CF). J Cyst Fibros. 2020 Jul; 19(4):595-601.
  • McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017 Sep 23;390(10101):1489–1498.
  • Namgoong JH, Bertoni C. Clinical potential of ataluren in the treatment of Duchenne muscular dystrophy. Degener Neurol Neuromuscul Dis. 2016;6:37.
  • Mercuri E, Muntoni F, Osorio AN, et al. Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study. J Comp Eff Res. 2020 Apr;9(5):341–360.
  • Shimizu-Motohashi Y, Miyatake S, Komaki H, et al. Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res. 2016;8(6):2471–2489.
  • Siva K, Covello G, Denti MA. Exon-skipping antisense oligonucleotides to correct missplicing in neurogenetic diseases. Nucleic Acid Ther. 2014 Feb;24(1):69–86.
  • Echevarria L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet. 2018 Aug 1;27(R2):R163–R172.
  • Aartsma-Rus A, Straub V, Hemmings R, et al. Development of exon skipping therapies for Duchenne muscular dystrophy: a critical review and a perspective on the outstanding issues. Nucleic Acid Ther. 2017 Oct;27(5):251–259.
  • Kole R, Krieg AM. Exon skipping therapy for Duchenne muscular dystrophy. Adv Drug Deliv Rev. 2015 Jun;29(87):104–107.
  • Aoki Y, Nakamura A, Yokota T, et al. In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther. 2010 Nov;18(11):1995–2005.
  • Wein N, Vulin A, Findlay AR, et al. Efficient skipping of single exon duplications in DMD patient-derived cell lines using an antisense oligonucleotide approach. J Neuromuscul Dis. 2017;4(3):199–207.
  • Yokota T, Lu QL, Partridge T, et al. Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol. 2009 Jun;65(6):667–676.
  • Lu QL, Rabinowitz A, Chen YC, et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A. 2005 Jan 4;102(1):198–203.
  • Mg Mm D, Villiet P, Eperon IC, et al. Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides. Hum Mol Genet. 1998 Jul;7(7):1083–1090.
  • Aartsma-Rus A, Ferlini A, Goemans N, et al. Translational and regulatory challenges for exon skipping therapies. Hum Gene Ther. 2014 Oct;25(10):885–892.
  • Lu QL, Cirak S, Partridge T. What can we learn from clinical trials of exon skipping for DMD? Mol Ther Nucleic Acids. 2014;3:e152.
  • Stein CA. Eteplirsen approved for Duchenne muscular dystrophy: the FDA faces a difficult choice. Mol Ther. 2016 Nov;24(11):1884–1885.
  • Staff P. FDA approves first targeted treatment for rare Duchenne muscular dystrophy mutation. In: Bronstein D, editors. Pharmacy Practice News (PPN): pharmacy Practice News (PPN). 2019;56(8):491-504.
  • Dhillon S. Viltolarsen: first Approval. Drugs. 2020 Jun;9.
  • Rodrigues M, Yokota T. An Overview of Recent Advances and Clinical Applications of Exon Skipping and Splice Modulation for Muscular Dystrophy and Various Genetic Diseases. Methods Mol Biol. 2018;1828:31-55. doi:10.1007/978-1-4939-8651-4_2. PMID: 30171533. Humana Press. New York
  • Echigoya Y, Lim KRQ, Melo D, et al. Exons 45-55 skipping using mutation-tailored cocktails of antisense morpholinos in the DMD gene. Mol Ther. 2019 Nov 6;27(11):2005–2017.
  • Aartsma-Rus A, Goemans NA. Sequel to the eteplirsen saga: eteplirsen is approved in the United States but was not approved in Europe. Nucleic Acid Ther. 2019 Feb;29(1):13–15.
  • Kesselheim AS, Avorn J. Approving a problematic muscular dystrophy drug: implications for FDA policy. JAMA. 2016 Dec 13;316(22):2357–2358.
  • Railroading at the FDA. Nat Med22, 1193 (2016). https://doi.org/10.1038/nm.4234201611221193-1193 doi:10.1038/nm.4234
  • Mattingly TJ 2nd, Simoni-Wastila L. Patient-centered drug approval: the role of patient advocacy in the drug approval process. J Manag Care Spec Pharm. 2017 Oct;23(10):1078–1082.
  • Garralda ME, McConachie H, Le Couteur A, et al. Emotional impact of genetic trials in progressive paediatric disorders: a dose-ranging exon-skipping trial in Duchenne muscular dystrophy. Child Care Health Dev. 2013 May;39(3):449–455.
  • Bhattacharya A, Bhattacharya S. Patient-driven initiatives for prioritizing drug discovery for rare diseases. Indian J Med Res. 2019;149(3):326.
  • Fletcher S, Bellgard M, Price L, et al. Translational development of splice-modifying antisense oligomers. Expert Opin Biol Ther. 2017;17(1):15–30.
  • Edwards KT. The role of patient participation in drug approvals: lessons from the accelerated approval of Eteplirsen. Food Drug LJ. 2017;72:406.
  • Charleston JS, Schnell FJ, Dworzak J, et al. Eteplirsen treatment for Duchenne muscular dystrophy: exon skipping and dystrophin production. Neurology. 2018;90(24):e2146–e2154.
  • Alfano LN, Charleston JS, Connolly AM, et al. Long-term treatment with eteplirsen in nonambulatory patients with Duchenne muscular dystrophy. Medicine (Baltimore). 2019;98:26.
  • Lu Q-L, Cirak S, Partridge T. What can we learn from clinical trials of exon skipping for DMD? Mol Ther Nucleic Acids. 2014;3:3.
  • Randeree L, Eslick GD. Eteplirsen for paediatric patients with Duchenne muscular dystrophy: A pooled-analysis. J Clin Neurosci. 2018 Mar;49:1–6.
  • Lim KR, Maruyama R, Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des Devel Ther. 2017;11:533–545.
  • Uaesoontrachoon K, Srinivassane S, Warford J, et al. Orthogonal analysis of dystrophin protein and mRNA as a surrogate outcome for drug development. Biomark Med. 2019;13(14):1209–1225.
  • Echigoya Y, Lim KRQ, Trieu N, et al. Quantitative antisense screening and optimization for exon 51 skipping in Duchenne muscular dystrophy. Mol Ther. 2017 Nov 1;25(11):2561–2572.
  • Nguyen Q, Yokota T. Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med. 2017 Oct 16;7:4.
  • Aupy P, Echevarria L, Relizani K, et al. Identifying and avoiding tcDNA-ASO sequence-specific toxicity for the development of DMD exon 51 skipping therapy. Mol Ther Nucleic Acids. 2019 Nov 27;19:371–383.
  • Roshmi RR, Yokota T. Viltolarsen for the treatment of Duchenne muscular dystrophy. Drugs Today (Barc). 2019 Oct;55(10):627–639.
  • Hwang J, Yokota T. Recent advancements in exon-skipping therapies using antisense oligonucleotides and genome editing for the treatment of various muscular dystrophies. Expert Rev Mol Med. 2019 Oct;2(21):e5.
  • Watanabe N, Nagata T, Satou Y, et al. NS-065/NCNP-01: an antisense oligonucleotide for potential treatment of exon 53 skipping in Duchenne muscular dystrophy. Mol Ther Nucleic Acids. 2018 Dec 7;13:442–449.
  • Komaki H, Takeshima Y, Matsumura T, et al. DMD CLINICAL THERAPIES II: P. 129A Japanese phase I/II study of NS-065/NCNP-01, exon 53 skipping drug, in patients with Duchenne muscular dystrophy-a dose-finding study. Neuromuscul Disord. 2018;28:S68.
  • Clemens PR, Rao VK, Connolly AM, et al. Safety, tolerability, and efficacy of viltolarsen in boys with Duchenne muscular dystrophy amenable to exon 53 skipping: a phase 2 randomized clinical trial. JAMA Neurol. 2020 May;26.
  • Dzierlega K, Yokota T. Optimization of antisense-mediated exon skipping for Duchenne muscular dystrophy. Gene Ther. 2020 Jun;27(9):1.
  • Shimizu-Motohashi Y, Komaki H, Motohashi N, et al. Restoring dystrophin expression in Duchenne muscular dystrophy: current status of therapeutic approaches. J Pers Med. 2019;9(1):1.
  • Muntoni F, Frank D, Sardone V, et al. Golodirsen induces exon skipping leading to Sarcolemmal dystrophin expression in Duchenne muscular dystrophy patients with mutations amenable to exon 53 skipping (S22. 001). Neurology. 2018 April; 90 (15 Supplement)
  • Heo YA. Golodirsen: first Approval. Drugs. 2020 Feb;80(3):329–333.
  • Lundin KE, Gissberg O, Smith CE, et al. Oligonucleotide-Based Therapies. In: Olof Gissberg, Rula Zain, Karin E. Lundin, editors. Chemical development of therapeutic oligonucleotides. Springer, 2019. p. 3–16.
  • Jearawiriyapaisarn N, Moulton HM, Buckley B, et al. Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther. 2008 Sep;16(9):1624–1629.
  • Wu B, Moulton HM, Iversen PL, et al. Effective rescue of dystrophin improves cardiac function in dystrophin-deficient mice by a modified morpholino oligomer. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):14814–14819.
  • Echigoya Y, Nakamura A, Nagata T, et al. Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A. 2017 Apr 18;114(16):4213–4218.
  • Taylor NP Daiichi DMD trial misses primary efficacy endpoint. FierceBiotech. 2018 cited 2018 Apr 25. Available from: https://www.fiercebiotech.com/biotech/daiichi-dmd-trial-misses-primary-efficacy-endpoint
  • Hilhorst N, Spanoudi-Kitrimi I, Goemans N, et al. Injection site reactions after long-term subcutaneous delivery of drisapersen: a retrospective study. Eur J Pediatr. 2019 Feb;178(2):253–258.
  • Lim KRQ, Yoon C, Yokota T. Applications of CRISPR/Cas9 for the treatment of Duchenne muscular dystrophy. J Pers Med. 2018 Nov 24;8:4.
  • Amoasii L, Hildyard JC, Li H, et al. Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy. Science. 2018;362(6410):86–91.
  • Duan D. Systemic AAV Micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018 Oct 3;26(10):2337–2356.
  • Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun. 2017 Jul;25(8):16105.
  • Asher DR, Thapa K, Dharia SD, et al. Clinical development on the frontier: gene therapy for duchenne muscular dystrophy. Expert Opin Biol Ther. 2020 Mar;20(3):263–274.
  • Mendell JR, Sahenk Z, Lehman K, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with Duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 2020 Jun;77:15.
  • Le Guiner C, Servais L, Montus M, et al. Long-term microdystrophin gene therapy is effective in a canine model of Duchenne muscular dystrophy. Nat Commun. 2017;8(1):1–15.
  • Mack DL, Poulard K, Goddard MA, et al. Systemic AAV8-mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther. 2017 Apr 5;25(4):839–854.
  • Elverman M, Goddard MA, Mack D, et al. Long-term effects of systemic gene therapy in a canine model of myotubular myopathy. Muscle Nerve. 2017 Nov;56(5):943–953.
  • Lim KRQ, Echigoya Y, Nagata T, et al. Efficacy of multi-exon skipping treatment in Duchenne muscular dystrophy dog model neonates. Mol Ther. 2019 Jan 2;27(1):76–86.
  • Blain AM, Greally E, McClorey G, et al. Peptide-conjugated phosphodiamidate oligomer-mediated exon skipping has benefits for cardiac function in mdx and Cmah-/-mdx mouse models of Duchenne muscular dystrophy. PLoS One. 2018;13(6):e0198897.
  • Korinthenberg R. A new era in the management of Duchenne muscular dystrophy. Dev Med Child Neurol. 2019 Mar;61(3):292–297.
  • Ma KM, Thomas ES, Wereszczynski J, et al. Empirical and computational comparison of alternative therapeutic exon skip repairs for Duchenne muscular dystrophy. Biochemistry. 2019 Apr 16;58(15):2061–2076.
  • Nakamura A, Shiba N, Miyazaki D, et al. Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy [Original Article]. J Hum Genet. 2016;62:459-463 12/15/online
  • Nakamura A, Fueki N, Shiba N, et al. Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet. 2016 Jul;61(7):663–667.
  • Adkin CF, Meloni PL, Fletcher S, et al. Multiple exon skipping strategies to by-pass dystrophin mutations. Neuromuscul Disord. 2012 Apr;22(4):297–305.
  • Ferreiro V, Giliberto F, Muniz GM, et al. Asymptomatic Becker muscular dystrophy in a family with a multiexon deletion. Muscle Nerve. 2009 Feb;39(2):239–243.
  • Suvodirsen - wave life sciences [Internet]. Springer Nature Switzerland AG. 2019 [cited 2020 Jan 3]. Available from: https://adisinsight.springer.com/drugs/800050661.
  • Nguyen Q, Yokota T. Immortalized muscle cell model to test the exon skipping efficacy for Duchenne muscular dystrophy. J Pers Med. 2017;7(4):13.
  • Echigoya Y, Mouly V, Garcia L, et al. In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS One. 2015;10(3):e0120058.
  • Kim J, Hu C, Moufawad El Achkar C, et al. Patient-customized oligonucleotide therapy for a rare genetic disease. N Engl J Med 2019 Oct 24 381(17):1644–1652.
  • Echigoya Y, Yokota T. Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther. 2014 Feb;24(1):57–68.
  • Aslesh T, Maruyama R, Yokota T. Skipping Multiple Exons to Treat DMD-Promises and Challenges. Biomedicines. 2018 Jan 2;6:1.
  • Yokota T, Duddy W, Echigoya Y, et al. Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther. 2012 Sep;12(9):1141–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.