260
Views
0
CrossRef citations to date
0
Altmetric
Review

RNA therapeutics for mood disorders: current evidence toward clinical trials

, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 721-736 | Received 15 Dec 2020, Accepted 06 May 2021, Published online: 31 May 2021

References

  • National Comorbidity Survey [Internet]. [ cited 2020 Dec 14]. Available from: https://www.hcp.med.harvard.edu/ncs/
  • Gili M, Castellví P, Vives M, et al. Mental disorders as risk factors for suicidal behavior in young people: a meta-analysis and systematic review of longitudinal studies. J Affect Disord. 2019 Feb 15;245:152–162.
  • Rush AJ, Trivedi MH, Wisniewski SR, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report. Am J Psychiatry. 2006;163(11):1905–1917.
  • Del Matto L, Muscas M, Murru A, et al. Lithium and suicide prevention in mood disorders and in the general population: a systematic review. Neurosci Biobehav Rev. 2020;116:142–153.
  • Consoloni J-L, M’Bailara K, Perchec C, et al. Trajectories of medication adherence in patients with bipolar disorder along 2 years-follow-up. J Affect Disord. 2021 Mar 1;282:812–819.
  • Leuchter AF, Cook IA, Hunter AM, et al. A new paradigm for the prediction of antidepressant treatment response. Dialogues Clin Neurosci. 2009;11(4):435–446.
  • Wong M-L LJ. From monoamines to genomic targets: a paradigm shift for drug discovery in depression. Nat Rev Drug Discov. 2004 Feb;3(2):136–151.
  • Di Giovanni G, Svob Strac D, Sole M, et al. Monoaminergic and histaminergic strategies and treatments in brain diseases. Front Neurosci. 2016;10:541.
  • Malhi GS, Outhred T. Therapeutic mechanisms of lithium in bipolar disorder: recent advances and current understanding. CNS Drugs. 2016;30(10):931–949.
  • Ménard C, Hodes GE, Russo SJ. Pathogenesis of depression: insights from human and rodent studies. Neuroscience. 2016 May;321:138–162.
  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008 Oct;455(7215):894–902.
  • Epigenetic KS. Mechanisms in psychiatric diseases and epigenetic therapy. Drug Dev Res. 2016;77(7):407–413.
  • Penner-Goeke S, Binder EB. Epigenetics and depression. Dialogues Clin Neurosci. 2019 Dec;21(4):397–405.
  • Camkurt MA, Karababa İF, Erdal ME, et al. MicroRNA dysregulation in manic and euthymic patients with bipolar disorder. J Affect Disord. 2020 Jan;261:84–90.
  • Bennett CF. Therapeutic antisense oligonucleotides are coming of age. Annu Rev Med. 2019 Jan 27;70(1):307–321.
  • Bennett CF, Baker BF, Pham N, et al. Pharmacology of antisense drugs.2017;57:81-105.
  • Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017 May 3;25(5):1069–1075.
  • Bajan S, Hutvagner G. RNA-based therapeutics: from antisense oligonucleotides to miRNAs. 2020;9(1):137.
  • Grimm D. The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence. 2011;2(1):8.
  • Liu YP, Von Eije KJ, Schopman NC, et al. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther. 2009 Oct;17(10):1712–1723.
  • O’Carroll D, Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology. 2013 Jan;38(1):39–54.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009 Jan 23;136(2):215–233.
  • Bonneau E, Neveu B, Kostantin E, et al. How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. EJIFCC. 2019 Jun 24;30(2):114–127.
  • Bader AG, Brown D, Winkler M. The promise of microrna replacement therapy. Cancer Res. 2010 Sep 15;70(18):7027–7030.
  • Boudreau RL, Monteys AM, Davidson BL. Minimizing variables among hairpin-based RNAi vectors reveals the potency of shRNAs. RNA. 2008 Jan 9;14(9):1834–1844.
  • Broderick J, Zamore P. microRNA therapeutics. Gene Ther. 2011 Dec;18(12):1104–1110.
  • Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods Internet]. 2007 Sep [cited 2020 Dec 8];4(9):721–726. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857099/
  • Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–550.
  • Allemailem KS, Almatroudi A, Alsahli MA, et al. Recent advances in understanding oligonucleotide aptamers and their applications as therapeutic agents. 3 Biotech. 2020 Dec;10(12):551.
  • Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009 Oct;62(10):1006–1012.
  • Ferrés-Coy A, Galofré M, Pilar-Cuéllar F, et al. Therapeutic antidepressant potential of a conjugated siRNA silencing the serotonin transporter after intranasal administration. Mol Psychiatry. 2016 Mar;21(3):328–338.
  • Artigas F, Bortolozzi A. Therapeutic potential of conjugated siRNAs for the treatment of major depressive disorder. Neuropsychopharmacology. 2017 Jan;42(1):371.
  • Whiting P, Savović J, Jpt H, et al. ROBIS: a new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol. 2016 Jan;69:225–234.
  • Apazoglou K, Farley S, Gorgievski V, et al. Antidepressive effects of targeting ELK-1 signal transduction. Nat Med. 2018 May;24(5):591–597.
  • Belzeaux R, Gorgievski V, Fiori LM, et al. GPR56/ADGRG1 is associated with response to antidepressant treatment. Nat Commun. 2020 Dec;11(1):1635.
  • Cryan JF, Slattery DA. Animal models of mood disorders: recent developments. Curr Opin Psychiatry. 2007 Jan;20(1):1–7.
  • Nestler EJ, Hyman SE. Animal models of neuropsychiatric disorders. Nat Neurosci. 2010 Oct;13(10):1161–1169.
  • Krishnan V, Nestler EJ. Animal models of depression: molecular perspectives. Curr Top Behav Neurosci. 2011;7:121–147.
  • Planchez B, Surget A, Belzung C. Animal models of major depression: drawbacks and challenges. J Neural Transm. 2019 Nov;126(11):1383–1408.
  • Dieterich A, Yohn CN, Samuels BA. Chronic Stress Shifts Effort-Related Choice Behavior in a Y-Maze Barrier Task in Mice. J Vis Exp. 2020 Aug 13;(162). cited 2020 Dec 15. Internet]. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7646533/
  • Kaidanovich-Beilin O, Lipina T, Vukobradovic I, et al. Assessment of social interaction behaviors. J Vis Exp. 2011 Feb 25;(48). cited 2020 Dec 15. Available from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3197404/
  • Seo J-S, Park J-Y, Choi J, et al. NADPH oxidase mediates depressive behavior induced by chronic stress in mice. J Neurosci. 2012 Jul 11;32(28):9690–9699.
  • Blasco-Serra A, González-Soler EM, Cervera-Ferri A, et al. A standardization of the novelty-suppressed feeding test protocol in rats. Neurosci Lett. 2017 Sep 29;658:73–78.
  • Takao K, Miyakawa T. Light/dark transition test for mice. J Vis Exp. 2006 Nov 13;(1):104.
  • Sanna MD, Quattrone A, Galeotti N. Antidepressant-like actions by silencing of neuronal ELAV-like RNA-binding proteins HuB and HuC in a model of depression in male mice. Neuropharmacology. 2018 Jun;135:444–454.
  • Galeotti N, Vivoli E, Norcini M, et al. An antidepressant behaviour in mice carrying a gene-specific InsP3R1, InsP3R2 and InsP3R3 protein knockdown. Neuropharmacology. 2008 Dec;55(7):1156–1164.
  • Bortolozzi A, Castañé A, Semakova J, et al. Selective siRNA-mediated suppression of 5-HT1A autoreceptors evokes strong anti-depressant-like effects. Mol Psychiatry. 2012 Jun;17(6):612–623.
  • Choi J, Kim J, Kim T-K, et al. TRH and TRH receptor system in the basolateral amygdala mediate stress-induced depression-like behaviors. Neuropharmacology. 2015 Oct;97:346–356.
  • Kim T-K, Kim J-E, Park J-Y, et al. Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala. Neurobiol Dis. 2015 Jul;79:59–69.
  • Kim SS, Wang H, Li X-Y, et al. Neurabin in the anterior cingulate cortex regulates anxiety-like behavior in adult mice. Mol Brain. 2011;4(1):6.
  • Aceto G, Colussi C, Leone L, et al. Chronic mild stress alters synaptic plasticity in the nucleus accumbens through GSK3β-dependent modulation of Kv4.2 channels. Proc Natl Acad Sci. 2020 Apr 7;117(14):8143–8153.
  • Liu Y, Li M, Fan M, et al. Chromodomain Y-like protein–mediated histone crotonylation regulates stress-induced depressive behaviors. Biol Psychiatry. 2019 Apr;85(8):635–649.
  • Li S-X, Han Y, Xu L-Z, et al. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Mol Psychiatry. 2018 Mar;23(3):597–608.
  • Aurbach EL, Inui EG, Turner CA, et al. Fibroblast growth factor 9 is a novel modulator of negative affect. Proc Natl Acad Sci. 2015 Sep 22;112(38):11953–11958.
  • Fanous S, Terwilliger EF, Hammer Jr RP, et al. Viral depletion of VTA BDNF in rats modulates social behavior, consequences of intermittent social defeat stress, and long-term weight regulation. Neurosci Lett. 2011 Sep;502(3):192–196.
  • Lou D, Wang J, Wang X. miR-124 ameliorates depressive-like behavior by targeting STAT3 to regulate microglial activation. Mol Cell Probes. 2019 Dec;48:101470.
  • Higuchi F, Uchida S, Yamagata H, et al. Hippocampal MicroRNA-124 Enhances Chronic Stress Resilience in Mice. J Neurosci. 2016 Jul 6;36(27):7253–7267.
  • Panta A, Pandey S, Duncan IN, et al. Mir363-3p attenuates post-stroke depressive-like behaviors in middle-aged female rats. Brain Behav Immun. 2019 May;78:31–40.
  • Li Y, Li S, Yan J, et al. miR-182 (microRNA-182) suppression in the hippocampus evokes antidepressant-like effects in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2016 Feb;65:96–103.
  • Launay JM, Mouillet-Richard S, Baudry A, et al. Raphe-mediated signals control the hippocampal response to SRI antidepressants via miR-16. Transl Psychiatry. 2011 Nov;1(11):e56.
  • Wang F, Zuroske T, Watts JK. RNA therapeutics on the rise. Nat Rev Drug Discov. 2020 Jul;19(7):441–442.
  • Katare YK, Piazza JE, Bhandari J, et al. Intranasal delivery of antipsychotic drugs. Schizophr Res. 2017 Jun;184:2–13.
  • Fullana MN, Ferrés-Coy A, Ortega JE, et al. Selective Knockdown of TASK3 potassium channel in monoamine neurons: a new therapeutic approach for depression. Mol Neurobiol. 2019 Apr 1;56(4):3038–3052.
  • Morgan P, Van Der Graaf PH, Arrowsmith J, et al. Can the flow of medicines be improved? Fundamental pharmacokinetic and pharmacological principles toward improving Phase II survival. Drug Discov Today. 2012 May;17(9–10):419–424.
  • Blin O, Davies CH, Lu B. Clinical innovation for neurodegenerative diseases. Clin Investig. 2012 Jul;2(7):663–665.
  • Promising mRNA tech comes with regulatory, CMC headaches [Internet]. Endpoints News. [ cited 2020 Dec 14]. Available from: https://endpts.com/promising-mrna-tech-comes-with-regulatory-cmc-headaches/
  • Alnylam Receives Approval of ONPATTROTM (patisiran) in Europe [Internet]. Investor Relations | Alnylam Pharmaceuticals, Inc. [ cited 2020 Dec 14]. Available from: https://investors.alnylam.com/press-release?id=23066
  • RNA Based Therapeutics Market Size, Share and Analysis Report 2020 [Internet]. [ cited 2020 Dec 14]. Available from: https://www.alliedmarketresearch.com/rna-based-therapeutics-market

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.