367
Views
5
CrossRef citations to date
0
Altmetric
Review

Therapeutic angiogenesis in coronary artery disease: a review of mechanisms and current approaches

, , ORCID Icon, , &
Pages 947-963 | Received 31 Mar 2021, Accepted 02 Aug 2021, Published online: 13 Aug 2021

References

  • Virani SS, Alvaro A, Benjamin EJ, et al. Heart disease and stroke statistics—2020 update: a report from the American heart association. Circulation. 2020 Mar 3;141(9):e139–596.
  • Corpataux N, Spirito A, Gragnano F, et al. Validation of high bleeding risk criteria and definition as proposed by the academic research consortium for high bleeding risk. Eur Heart J. 2020 Oct 7;41(38):3743–3749.
  • Ueki Y, Bär S, Losdat S, et al. Validation of the Academic Research Consortium for High Bleeding Risk (ARC-HBR) criteria in patients undergoing percutaneous coronary intervention and comparison with contemporary bleeding risk scores. EuroIntervention. 2020 Aug;16(5):371–379.
  • Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol. 2002 Dec;29(6 Suppl 16):10–14.
  • Ferrara N, Henzel WJ. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun. 1989 Jun 15;161(2):851–858.
  • Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000 Apr;6(4):389–395.
  • Risau W. Mechanisms of angiogenesis. Nature. 1997 Apr;386(6626):671–674.
  • Wolfgang S, Ito Wulf D. Molecular mechanisms of coronary collateral vessel growth. Circ Res. 1996 Nov 1;79(5):911–919.
  • Potente M, Gerhardt H, Carmeliet P. Basic and therapeutic aspects of angiogenesis. Cell. 2011 Sep 16;146(6):873–887.
  • Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1α. J Clin Invest. 1999 Mar 1;103(5):691–696.
  • Buschmann I, Schaper W. Arteriogenesis versus angiogenesis: two mechanisms of vessel growth. News Physiol Sci Int J Physiol Prod Jointly Int Union Physiol Sci Am Physiol Soc. 1999 Jun;14:121–125.
  • Schaper W. Collateral circulation. Basic Res Cardiol. 2009 Jan;104(1):5–21.
  • Zimarino M, D’Andreamatteo M, Waksman R, et al. The dynamics of the coronary collateral circulation. Nat Rev Cardiol. 2014 Apr;11(4):191–197.
  • Werner GS, Jandt E, Krack A, et al. Growth Factors in the collateral circulation of chronic total coronary occlusions: relation to duration of occlusion and collateral function. Circulation. 2004 Oct 5;110(14):1940–1945.
  • Segura I, Serrano A, Buitrago GGD, et al. Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J. 2002;16(8):833–841.
  • Krysko DV, Vandenabeele P. From regulation of dying cell engulfment to development of anti-cancer therapy. Cell Death Differ. 2008 Jan;15(1):29–38.
  • Reinisch A, Bartmann C, Rohde E, et al. Humanized system to propagate cord blood-derived multipotent mesenchymal stromal cells for clinical application. Regen Med. 2007 Jul 1;2(4):371–382.
  • Hofmann NA, Reinisch A, Strunk D. Endothelial colony-forming progenitor cell isolation and expansion. In: Sr Seditor, Somatic stem cells: methods and protocols [internet]. Totowa, NJ:Humana Press;2012. cited 2021 Mar 28]. p. 381–387. (Methods in Molecular Biology)https://doi.org/10.1007/978-1-61779-815-3_23
  • Tian X, Hu T, He L, et al. Peritruncal Coronary endothelial cells contribute to proximal coronary artery stems and their aortic orifices in the mouse heart. PLOS ONE. 2013 Nov 21;8(11):e80857.
  • Wu B, Zhang Z, Lui W, et al. Endocardial cells form the coronary arteries by angiogenesis through myocardial-endocardial VEGF signaling. Cell. 2012 Nov 21;151(5):1083–1096.
  • Majesky MW. Development of coronary vessels. In: Current topics in developmental biology [internet]. Academic Press; 2004. cited 2021 Mar 28. p. 225–259. ( Developmental Vascular Biology; 62). Available from. https://www.sciencedirect.com/science/article/pii/S0070215304620084
  • Olivey HE, Svensson EC. Epicardial-Myocardial signaling directing coronary vasculogenesis. Circ Res. 2010Mar19;106(5):818–832.
  • Buschmann I, Heil M, Jost M, et al. Influence of inflammatory cytokines on arteriogenesis. Microcirculation. 2003;10(3–4):371–379.
  • Fraisl P, Mazzone M, Schmidt T, et al. Regulation of Angiogenesis by Oxygen and Metabolism. Dev Cell. 2009 Feb 17;16(2):167–179.
  • Nakada Y, Canseco DC, Thet S, et al. Hypoxia induces heart regeneration in adult mice. Nature. 2017 Jan;541(7636):222–227.
  • Bloor CM. Angiogenesis during exercise and training. Angiogenesis. 2005Dec1;8(3):263–271.
  • Walton CB, Ecker J, Anderson CD, et al. Cardiac angiogenesis directed by stable hypoxia inducible factor-1. Vasc Cell. 2013 Aug 29;5(1):15.
  • Song JW, Munn LL. Fluid forces control endothelial sprouting. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15342–15347.
  • Galie PA, Nguyen D-HT, Choi CK, et al. Fluid shear stress threshold regulates angiogenic sprouting. Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):7968–7973.
  • Vickerman V, Kamm RD. Mechanism of a flow-gated angiogenesis switch: early signaling events at cell-matrix and cell-cell junctions. Integr Biol Quant Biosci Nano Macro. 2012 Aug;4(8):863–874.
  • Griffioen AW, Molema G. Angiogenesis: potentials for pharmacologic intervention in the treatment of cancer, cardiovascular diseases, and chronic inflammation. Pharmacol Rev. 2000 Jun;52(2):237–268.
  • Maija B, Riikka K, Tanja H, et al. Vascular endothelial growth factor-B acts as a coronary growth factor in transgenic rats without inducing angiogenesis, vascular leak, or inflammation. Circulation. 2010 Oct 26;122(17):1725–1733.
  • Kivelä R, Bry M, Robciuc MR, et al. VEGF-B-induced vascular growth leads to metabolic reprogramming and ischemia resistance in the heart. EMBO Mol Med. 2014 Mar;6(3):307–321.
  • Aydin HI, Yozgat Y, Demirkaya E, et al. Correlation between vascular endothelial growth factor and leptin in children with cyanotic congenital heart disease. Turk J Pediatr. 2007 Dec;49(4):360–364.
  • Ripa RS. Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease. Dan Med J. 2012 Mar;59(3):B4411.
  • Siervo M, Ruggiero D, Sorice R, et al. Angiogenesis and biomarkers of cardiovascular risk in adults with metabolic syndrome. J Intern Med. 2010;268(4):338–347.
  • Jaba IM, Zhuang ZW, Li N, et al. NO triggers RGS4 degradation to coordinate angiogenesis and cardiomyocyte growth. J Clin Invest. 2013 Apr 1;123(4):1718–1731.
  • Accornero F, van Berlo JH, Benard MJ, et al. Placental growth factor regulates cardiac adaptation and hypertrophy through a paracrine mechanism. Circ Res. Internet]. 2011 Jul 22 [cited 2021 Mar 28];109(3). 272–280.
  • House SL, Wang J, Castro AM, et al. Fibroblast growth factor 2 is an essential cardioprotective factor in a closed‐chest model of cardiac ischemia‐reperfusion injury. Physiol Rep Internet]. 2015 Jan 27; 3(1):e12278.
  • Kato J, Kitamura K. Bench-to-bedside pharmacology of adrenomedullin. Eur J Pharmacol. 2015 Oct 5;764:140–148.
  • Kimáková P, Solár P, Solárová Z, et al. Erythropoietin and Its Angiogenic Activity. Int J Mol Sci [Internet]. 2017 Jul 13 [ cited 2021 Mar 28];18(7). Available from:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5536009/
  • Visconti RP, Richardson CD, Sato TN. Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proc Natl Acad Sci U S A. 2002 Jun 11;99(12):8219–8224.
  • Sun L, Li W, Lei F, et al. The regulatory role of microRNAs in angiogenesis‐related diseases. J Cell Mol Med. 2018 Oct;22(10):4568–4587.
  • Toldo S, Das A, Mezzaroma E, et al. Induction of MicroRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet. 2014 Jun;7(3):311–320.
  • Salloum FN. Hydrogen sulfide and cardioprotection — mechanistic insights and clinical translatability. Pharmacol Ther. 2015 Aug 1;152:11–17.
  • Gragnano F, Calabrò P. Role of dual lipid-lowering therapy in coronary atherosclerosis regression: evidence from recent studies. Atherosclerosis. 2018 Feb;269:219–228.
  • Parma L, Baganha F, Quax PHA, et al. Plaque angiogenesis and intraplaque hemorrhage in atherosclerosis. Eur J Pharmacol. 2017 Dec;5(816):107–115.
  • Howangyin K-Y, Zlatanova I, Pinto C, et al. Myeloid-Epithelial-Reproductive receptor tyrosine kinase and milk fat globule epidermal growth factor 8 coordinately improve remodeling after myocardial infarction via local delivery of vascular endothelial growth factor. Circulation. 2016 Mar 1;133(9):826–839.
  • Wu X, Reboll MR, Korf-Klingebiel M, et al. Angiogenesis after acute myocardial infarction. Cardiovasc Res. Internet]. 2020 Oct 16 [cited 2021 Mar 28];(cvaa287). https://doi.org/10.1093/cvr/cvaa287.
  • Seiler C, Stoller M, Pitt B, et al. The human coronary collateral circulation: development and clinical importance. Eur Heart J. 2013 Sep 7;34(34):2674–2682.
  • Das S, Goldstone AB, Wang H, et al. A unique collateral artery development program promotes neonatal heart regeneration. Cell. 2019 Feb 21;176(5):1128–1142.e18.
  • Mitsos S, Katsanos K, Koletsis E, et al. Therapeutic angiogenesis for myocardial ischemia revisited: basic biological concepts and focus on latest clinical trials. Angiogenesis. 2012 Mar 1;15(1):1–22.
  • Zhang R, Wang L, Zhang L, et al. Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP After stroke in the rat. Circ Res. 2003 Feb 21;92(3):308–313.
  • Inampudi C, Akintoye E, Ando T, et al. Angiogenesis in peripheral arterial disease. Curr Opin Pharmacol. 2018 Apr;39:60–67.
  • Gorenoi V, Brehm MU, Koch A, et al. Growth factors for angiogenesis in peripheral arterial disease. Cochrane vascular group, editor. Cochrane Database Syst Rev [Internet]. 2017Jun8; https://doi.org/10.1002/14651858.CD011741.pub2.
  • Harada K, Friedman M, Lopez JJ, et al. Vascular endothelial growth factor administration in chronic myocardial ischemia. Am J Physiol. 1996 May;270(5 Pt 2):H1791–1802.
  • Lopez JJ, Laham J, Stamler R, et al. A. VEGF administration in chronic myocardial ischemia in pigs. Cardiovasc Res. 1998Nov1;40(2):272–281
  • Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs. Circulation. 1994 May 1;89(5):2183–2189.
  • Pearlman JD, Hibberd MG, Chuang ML, et al. Magnetic resonance mapping demonstrates benefits of VEGF–induced myocardial angiogenesis. Nat Med. 1995 Oct;1(10):1085–1089.
  • Hariawala MD, Horowitz JR, Esakof D, et al. VEGF improves myocardial blood flow but produces edrf-mediated hypotension in porcine hearts. J Surg Res. 1996 Jun 1;63(1):77–82.
  • Voisine P, Bianchi C, Ruel M, et al. Inhibition of the cardiac angiogenic response to exogenous vascular endothelial growth factor. Surgery. 2004 Aug 1;136(2):407–415.
  • Munir B, Sodha NR, Shigetoshi M, et al. Functional, cellular, and molecular characterization of the angiogenic response to chronic myocardial Ischemia in diabetes. Circulation. 2007 Sep 11;116(11_supplement):I–31.
  • Symes JF, Losordo DW, Vale PR, et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg. 1999 Sep 1;68(3):830–836.
  • Rosengart Todd K, Lee Leonard Y, Patel Shailen R, et al. Angiogenesis gene therapy. Circulation. 1999 Aug 3;100(5):468–474.
  • Henry TD, Annex BH, McKendall George R, et al. The VIVA Trial. Circulation. 2003 Mar 18;107(10):1359–1365.
  • Hedman M, Hartikainen J, Syvänne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelial growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia: phase II results of the Kuopio Angiogenesis Trial (KAT). Circulation. 2003 Jun 3;107(21):2677–2683.
  • Ylä-Herttuala S, Martin JF. Cardiovascular gene therapy. Lancet. 2000 Jan 15;355(9199):213–222.
  • Losordo Douglas W, Vale Peter R, Symes James F, et al. Gene therapy for myocardial angiogenesis. Circulation. 1998 Dec 22;98(25):2800–2804.
  • Nabel EG, Plautz G, Nabel GJ. Site-Specific gene expression in vivo by direct gene transfer into the arterial wall. Science. 1990 Sep 14;249(4974):1285.
  • Vale Peter R, Losordo Douglas W, Milliken Charles E, et al. Randomized, Single-Blind, Placebo-Controlled pilot study of catheter-based myocardial gene transfer for therapeutic angiogenesis using left ventricular electromechanical mapping in patients with chronic myocardial Ischemia. Circulation. 2001 May 1;103(17):2138–2143.
  • Losordo DW, Vale PR, Hendel RC, et al. Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation. 2002 Apr 30;105(17):2012–2018. 10.1161/01.CIR.0000015982.70785.B7.
  • Jeong G-J, Oh JY, Kim Y-J, et al. Therapeutic angiogenesis via solar cell-facilitated electrical stimulation. ACS Appl Mater Interfaces. 2017 Nov 8;9(44):38344–38355.
  • Stewart DJ, Hilton JD, Arnold JMO, et al. Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF 121 (AdVEGF121) versus maximum medical treatment. Gene Ther. 2006 Nov;13(21):1503–1511. 10.1038/sj.gt.3302802.
  • Stewart DJ, Kutryk MJB, Fitchett D, et al. VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther J Am Soc Gene Ther. 2009 Jun;17(6):1109–1115. 10.1038/mt.2009.70.
  • Harada K, Grossman W, Friedman M, et al. Basic fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts. J Clin Invest. 1994 Aug 1;94(2):623–630.
  • Yanagisawa-Miwa A, Uchida Y, Nakamura F. Salvage of infarcted myocardium by angiogenic action of basi. Science. 1992 Sep 4;257(5075):1401.
  • Baffour R, Berman J, Garb JL, et al. Enhanced angiogenesis and growth of collaterals by in vivo administration of recombinant basic fibroblast growth factor in a rabbit model of acute lower limb ischemia: dose-response effect of basic fibroblast growth factor. J Vasc Surg. 1992 Aug 1;16(2):181–191.
  • Cuevas P, Giménez-Gallego G, Carceller F. Single topical application of human recombinant basic fibroblast growth factor (rbfgf) promotes neovascularization in rat cerebral cortex. Surg Neurol. 1993 May 1;39(5):380–384.
  • Schumacher B, Pecher P, von Specht BU, et al. Induction of neoangiogenesis in Ischemic myocardium by human growth factors. Circulation. 1998Feb24;97(7):645–650.
  • Ruel M, Laham RJ, Parker JA, et al. Long-term effects of surgical angiogenic therapy with fibroblast growth factor 2 protein. J Thorac Cardiovasc Surg. 2002 Jul 1;124(1):28–34.
  • Michael S, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2. Circulation. 2002 Feb 19;105(7):788–793.
  • Giordano FJ, Ping P, McKirnan MD, et al. Intracoronary gene transfer of fibroblast growth factor–5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med. 1996 May;2(5):534–539.
  • Grines CL, Watkins MW, Helmer G, et al. Angiogenic Gene Therapy (AGENT) trial in patients with stable angina pectoris. Circulation. 2002 Mar 19;105(11):1291–1297. 10.1161/hc1102.105595.
  • Grines CL, Watkins MW, Mahmarian JJ, et al. A randomized, double-blind, placebo-controlled trial of Ad5FGF-4 gene therapy and its effect on myocardial perfusion in patients with stable angina. J Am Coll Cardiol. 2003 Oct;42(8):1339–1347. 10.1016/S0735-1097(03)00988-4.
  • Td H, Cl G, Watkins MW, et al. Effects of Ad5FGF-4 in patients with Angina. J Am Coll Cardiol. 2007 Sep;50(11):1038–1046. 10.1016/j.jacc.2007.06.010.
  • Matsumura Y, Zhu Y, Jiang H, et al. Intramyocardial injection of a fully synthetic hydrogel attenuates left ventricular remodeling post myocardial infarction. Biomaterials. 2019 Oct 1;217:119289.
  • Blackburn NJR, Sofrenovic T, Kuraitis D, et al. Timing underpins the benefits associated with injectable collagen biomaterial therapy for the treatment of myocardial infarction. Biomaterials. 2015 Jan 1;(39):182–192. https://doi.org/10.1016/j.biomaterials.2014.11.004
  • Lister Z, Rayner KJ, Suuronen EJ. How biomaterials can influence various cell types in the repair and regeneration of the heart after myocardial infarction. Front Bioeng Biotechnol [Internet]. 2016 Jul 18 [ cited 2021 Mar 28];4. Available from:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948030.
  • Barker TH. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine. Biomaterials. 2011 Jun 1;32(18):4211–4214.
  • Ahmed TA, Dare EV, Hincke M. Fibrin: a versatile scaffold for tissue engineering applications. Tissue Eng Part B Rev. 2008 Jun;14(2):199–215.
  • Christman KL, Fok HH, Sievers RE, et al. Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction. Tissue Eng. 2004 Mar;10(3–4):403–409.
  • Shireman PK, Hampton B, Burgess WH, et al. Modulation of vascular cell growth kinetics by local cytokine delivery from fibrin glue suspensions. J Vasc Surg. 1999 May;29(5):852–861.
  • Zisch AH, Schenk U, Schense JC, et al. Covalently conjugated VEGF–fibrin matrices for endothelialization. J Control Release. 2001 May 14;72(1):101–113.
  • Jeon O, Ryu SH, Chung JH, et al. Control of basic fibroblast growth factor release from fibrin gel with heparin and concentrations of fibrinogen and thrombin. J Control Release. 2005 Jul 20;105(3):249–259.
  • Shi J, Fan C, Zhuang Y, et al. Heparan sulfate proteoglycan promotes fibroblast growth factor-2 function for ischemic heart repair. Biomater Sci. 2019 Nov 19;7(12):5438–5450.
  • Fan C, Shi J, Zhuang Y, et al. Myocardial-infarction-responsive smart hydrogels targeting matrix metalloproteinase for on-Demand growth factor delivery. Adv Mater. 2019;31(40):1902900.
  • An S, MJ P, Wang H, et al. Multi-phase catheter-injectable hydrogel enables dual-stage protein-engineered cytokine release to mitigate adverse left ventricular remodeling following myocardial infarction in a small animal model and a large animal model. Cytokine. 2020 Mar 1;127:154974.
  • Infanger DW, Lynch ME, Fischbach C. Engineered culture models for studies of tumor-microenvironment interactions. Annu Rev Biomed Eng. 2013 Jul 11;15(1):29–53.
  • Wei Z, Volkova E, Blatchley MR, et al. Hydrogel vehicles for sequential delivery of protein drugs to promote vascular regeneration. Adv Drug Deliv Rev. 2019;149–150:95–106.
  • Zisch AH, Lutolf MP, Ehrbar M, et al. Cell-demanded release of VEGF from synthetic, biointeractive cell-ingrowth matrices for vascularized tissue growth. FASEB J. 2003;17(15):2260–2262.
  • Phelps EA, Landázuri N, Thulé PM, et al. Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci U S A. 2010 Feb 23;107(8):3323–3328.
  • Saik JE, Gould DJ, Watkins EM, et al. Covalently immobilized platelet-derived growth factor-BB promotes angiogenesis in biomimetic poly(ethylene glycol) hydrogels. Acta Biomater. 2011 Jan;7(1):133–143.
  • Burdick JA, Prestwich GD. Hyaluronic acid hydrogels for biomedical applications. Adv Mater Deerfield Beach Fla. 2011 Mar 25;23(12):H41–56.
  • Peattie RA, Nayate AP, Firpo MA, et al. Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants. Biomaterials. 2004 Jun 1;25(14):2789–2798.
  • Eiselt P, Yeh J, Latvala RK, et al. Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials. 2000 Oct;21(19):1921–1927.
  • Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair - McDevitt - 2003 - Journal of Biomedical Materials Research Part A - Wiley Online Library [Internet]. [ cited 2021 Mar 28]. Available from: https://onlinelibrary-wiley-com.eresources.mssm.edu/doi/full/10.1002/jbm.a.10504
  • Yuan Z, Tsou Y-H, Zhang X-Q, et al. Injectable Citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after myocardial infarction. ACS Appl Mater Interfaces. 2019 Oct 23;11(42):38429–38439.
  • Biondi M, Ungaro F, Quaglia F, et al. Controlled drug delivery in tissue engineering. Adv Drug Deliv Rev. 2008 Jan 14;60(2):229–242.
  • Riley CM, Fuegy PW, Firpo MA, et al. Stimulation of in vivo angiogenesis using dual growth factor-loaded crosslinked glycosaminoglycan hydrogels. Biomaterials. 2006 Dec;27(35):5935–5943.
  • Peattie RA, Rieke ER, Hewett EM, et al. Dual growth factor-induced angiogenesis in vivo using hyaluronan hydrogel implants. Biomaterials. 2006 Mar 1;27(9):1868–1875.
  • Ruvinov E, Leor J, Cohen S. The promotion of myocardial repair by the sequential delivery of IGF-1 and HGF from an injectable alginate biomaterial in a model of acute myocardial infarction. Biomaterials. 2011 Jan;32(2):565–578.
  • Tengood JE, Ridenour R, Brodsky R, et al. Sequential delivery of basic fibroblast growth factor and platelet-derived growth factor for angiogenesis. Tissue Eng Part A. 2011 May;17(9–10):1181–1189.
  • Awada HK, Johnson NR, Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release Off J Control Release Soc. 2015 Jun 10;207:7–17.
  • Vasir JK, Tambwekar K, Garg S. Bioadhesive microspheres as a controlled drug delivery system. Int J Pharm. 2003 Apr 14;255(1):13–32.
  • Lee J, Lee KY. Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res. 2009 Jul;26(7):1739–1744.
  • Lee J, Bhang SH, Park H, et al. Active blood vessel formation in the ischemic hindlimb mouse model using a microsphere/hydrogel combination system. Pharm Res. 2010 May;27(5):767–774.
  • DeVolder R, Antoniadou E, Kong H. Enzymatically cross-linked injectable alginate-g-pyrrole hydrogels for neovascularization. J Control Release. 2013 Nov 28;172(1):30–37.
  • des Rieux A, Ucakar B, Mupendwa BPK, et al. 3D systems delivering VEGF to promote angiogenesis for tissue engineering. J Control Release. 2011 Mar 30;150(3):272–278.
  • Waters R, Alam P, Pacelli S, et al. Stem cell-inspired secretome-rich injectable hydrogel to repair injured cardiac tissue. Acta Biomater. 2018 Mar;15(69):95–106.
  • Kantoff PW, Kohn DB, Mitsuya H, et al. Correction of adenosine deaminase deficiency in cultured human T and B cells by retrovirus-mediated gene transfer. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6563–6567.
  • Ginn SL, Amaya AK, Alexander IE, et al. Gene therapy clinical trials worldwide to 2017: an update. J Gene Med. 2018;20(5):e3015.
  • Dunbar CE, High KA, Joung JK, et al. Gene therapy comes of age. Science. 2018 Jan 12;359(6372):eaan4672.
  • Kaminsky SM, Rosengart TK, Rosenberg J, et al. Gene therapy to stimulate angiogenesis to treat diffuse coronary artery disease. Hum Gene Ther. 2013 Nov;24(11):948–963.
  • Ylä-Herttuala S, Bridges C, Katz MG, et al. Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J. 2017 Jan 10: ehw547. https://doi.org/10.1093/eurheartj/ehw547
  • Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003 May;4(5):346–358.
  • Anson DS. The use of retroviral vectors for gene therapy-what are the risks? A review of retroviral pathogenesis and its relevance to retroviral vector-mediated gene delivery. Genet Vaccines Ther. 2004Aug13;2(1):9.
  • Gyöngyösi M, Khorsand A, Zamini S, et al. NOGA-guided analysis of regional myocardial perfusion abnormalities treated with intramyocardial injections of plasmid encoding vascular endothelial growth factor A-165 in patients with chronic myocardial ischemia: subanalysis of the EUROINJECT-ONE multicenter double-blind randomized study. Circulation. 2005 Aug 30;112(9 Suppl):I157–165.
  • Crystal RG, Harvey B-G, Wisnivesky JP, et al. Analysis of risk factors for local delivery of low- and intermediate-dose adenovirus gene transfer vectors to individuals with a spectrum of comorbid conditions. Hum Gene Ther. 2002 Jan 1;13(1):65–100.
  • Chung ES, Miller L, Patel AN, et al. Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. Eur Heart J. 2015 Sep 1;36(33):2228–2238.
  • Greenberg B, Butler J, Felker GM, et al. Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial. Lancet Lond Engl. 2016 Mar 19;387(10024):1178–1186.
  • Halonen PJ, Nurro J, Kuivanen A, et al. Current gene therapy trials for vascular diseases. Expert Opin Biol Ther. 2014 Mar;14(3):327–336.
  • Kilian EG, Sadoni S, Vicol C, et al. Myocardial transfection of hypoxia inducible factor-1alpha via an adenoviral vector during coronary artery bypass grafting. - A multicenter phase I and safety study -. Circ J Off J Jpn Circ Soc. 2010 May;74(5):916–924.
  • Rischpler C, Nekolla S, Schwaiger M. PET and SPECT in heart failure. Curr Cardiol Rep. 2013 Mar;15(3):337.
  • Kastrup J, Jørgensen E, Rück A, et al. Direct intramyocardial plasmid vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris A randomized double-blind placebo-controlled study: the euroinject one trial. J Am Coll Cardiol. 2005 Apr 5;45(7):982–988.
  • Kukuła K, Chojnowska L, Dąbrowski M, et al. Intramyocardial plasmid-encoding human vascular endothelial growth factor A165/basic fibroblast growth factor therapy using percutaneous transcatheter approach in patients with refractory coronary artery disease (VIF-CAD). Am Heart J. 2011 Mar;161(3):581–589.
  • Hedman M, Muona K, Hedman A, et al. Eight-year safety follow-up of coronary artery disease patients after local intracoronary VEGF gene transfer. Gene Ther. 2009 May;16(5):629–634.
  • Hedman M, Hartikainen J, Ylä-Herttuala S. Progress and prospects: hurdles to cardiovascular gene therapy clinical trials. Gene Ther. 2011 Aug;18(8):743–749.
  • Favaloro L, Diez M, Mendiz O, et al. High-dose plasmid-mediated VEGF gene transfer is safe in patients with severe ischemic heart disease (genesis-I). A phase I, open-label, two-year follow-up trial: VEGF gene transfer in myocardial Ischemia. Catheter Cardiovasc Interv. 2013 Nov 15;82(6):899–906.
  • Kastrup J, Jørgensen E, Fuchs S, et al. A randomised, double-blind, placebo-controlled, multicentre study of the safety and efficacy of BIOBYPASS (AdGVVEGF121.10NH) gene therapy in patients with refractory advanced coronary artery disease: the NOVA trial. EuroIntervention J Eur Collab Work Group Interv Cardiol Eur Soc Cardiol. 2011 Feb;6(7):813–818.
  • Hartikainen J, Hassinen I, Hedman A, et al. Adenoviral intramyocardial VEGF-DΔNΔC gene transfer increases myocardial perfusion reserve in refractory angina patients: a phase I/IIa study with 1-year follow-up. Eur Heart J. 2017 Sep 1;38(33):2547–2555.
  • Kaski JC, Consuegra-Sanchez L. Evaluation of ASPIRE trial: a Phase III pivotal registration trial, using intracoronary administration of Generx (Ad5FGF4) to treat patients with recurrent angina pectoris. Expert Opin Biol Ther. 2013 Dec;13(12):1749–1753.
  • Hou L, Kim JJ, Woo YJ, et al. Stem cell-based therapies to promote angiogenesis in ischemic cardiovascular disease. Am J Physiol Heart Circ Physiol. 2016 Feb 15;310(4):H455–465.
  • Perin EC, Willerson JT, Pepine CJ, et al. Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure: the FOCUS-CCTRN Trial. JAMA. 2012Apr25; cited 2021 Mar 6];307(16). Available from: http://jama.jamanetwork.com/article.aspx?doi=10.1001/jama.2012.418.
  • Traverse JH, Henry TD, Ellis SG, et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: the LateTIME randomized trial. JAMA. 2011 Nov 16;306(19):2110–2119.
  • Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet Lond Engl. 2004 Jul 10;364(9429):141–148.
  • Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the Poseidon randomized trial. JAMA. 2012 Dec 12;308(22):2369.
  • Losordo DW, Henry TD, Davidson C, et al. Intramyocardial, autologous CD34+ cell therapy for refractory angina. Circ Res. 2011 Aug 5;109(4):428–436.
  • Park S-J, Kim RY, Park B-W, et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following myocardial infarction. Nat Commun. 2019 Dec;10(1):3123.
  • Cambria E, Pasqualini FS, Wolint P, et al. Translational cardiac stem cell therapy: advancing from first-generation to next-generation cell types. Npj Regen Med. 2017 Dec;2(1):17.
  • Bian X, Ma K, Zhang C, et al. Therapeutic angiogenesis using stem cell-derived extracellular vesicles: an emerging approach for treatment of ischemic diseases. Stem Cell Res Ther. 2019 Dec;10(1):158.
  • Makridakis M, Roubelakis MG, Vlahou A. Stem cells: insights into the secretome. Biochim Biophys Acta BBA - Proteins Proteomics. 2013 Nov;1834(11):2380–2384.
  • Nasser M, Wu Y, Danaoui Y, et al. Engineering microenvironments towards harnessing pro-angiogenic potential of mesenchymal stem cells. Mater Sci Eng C Mater Biol Appl. 2019 Sep;102:75–84.
  • Muralidharan-Chari V, Clancy JW, Sedgwick A, et al. Microvesicles: mediators of extracellular communication during cancer progression. J Cell Sci. 2010 May 15;123(10):1603–1611.
  • Ren S, Chen J, Duscher D, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 2019 Dec;10(1):47.
  • Zhang B, Wu X, Zhang X, et al. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-Catenin pathway: hucMSC Exosomal Wnt4 promotes angiogenesis. STEM CELLS Transl Med. 2015 May;4(5):513–522.
  • Namazi H, Mohit E, Namazi I, et al. Exosomes secreted by hypoxic cardiosphere-derived cells enhance tube formation and increase pro-angiogenic miRNA. J Cell Biochem. 2018 May;119(5):4150–4160.
  • Potz BA, Parulkar AB, Abid RM, et al. Novel molecular targets for coronary angiogenesis and ischemic heart disease. Coron Artery Dis. 2017 Nov;28(7):605–613.
  • Potz BA, Sabe AA, Elmadhun NY, et al. Calpain inhibition modulates glycogen synthase kinase 3β pathways in ischemic myocardium: a proteomic and mechanistic analysis. J Thorac Cardiovasc Surg. 2017 Feb;153(2):342–357.
  • Potz BA, Sabe AA, Elmadhun NY, et al. Glycogen synthase kinase 3β inhibition improves myocardial angiogenesis and perfusion in a swine model of metabolic syndrome. J Am Heart Assoc. 2016 Jul 12;5(7). https://doi.org/10.1161/JAHA.116.003694.
  • Matyal R, Chu L, Mahmood F, et al. Neuropeptide Y improves myocardial perfusion and function in a swine model of hypercholesterolemia and chronic myocardial ischemia. J Mol Cell Cardiol. 2012 Dec;53(6):891–898.
  • Meier P, Gloekler S, de Marchi SF, et al. Myocardial salvage through coronary collateral growth by granulocyte colony-stimulating factor in chronic coronary artery disease: a controlled randomized trial. Circulation. 2009 Oct 6;120(14):1355–1363.
  • Seiler C, Pohl T, Wustmann K, et al. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation. 2001 Oct 23;104(17):2012–2017.
  • Freedman SB, Isner JM. Therapeutic angiogenesis for coronary artery disease. Ann Intern Med. 2002 Jan 1;136(1):54.
  • Briones E, Lacalle JR, Marin-Leon I, et al. Transmyocardial laser revascularization versus medical therapy for refractory angina. Cochrane Database Syst Rev. 2015 Feb;27(2):CD003712.
  • Moccia F, Antognazza MR, Lodola F. Towards novel geneless approaches for therapeutic angiogenesis. Front Physiol. 2021 Jan;20(11):616189.
  • Lodola F, Rosti V, Tullii G, et al. Conjugated polymers optically regulate the fate of endothelial colony-forming cells. Sci Adv. 2019 Sep;5(9):eaav4620.
  • Hagen MW, Hinds MT. The effects of topographic micropatterning on endothelial colony-forming cells. Tissue Eng Part A. 2021 Feb 1;27(3–4):270–281.
  • Simons M, Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Discov. 2003 Nov;2(11):863–872.
  • Simons M, Bonow RO, Chronos NA, et al. Clinical trials in coronary angiogenesis: issues, problems, consensus: an expert panel summary. Circulation. 2000 Sep 12;102(11):E73–86.
  • Spertus JA, Winder JA, Dewhurst TA, et al. Development and evaluation of the Seattle angina questionnaire: a new functional status measure for coronary artery disease. J Am Coll Cardiol. 1995 Feb;25(2):333–341.
  • Niu G, Chen X. PET Imaging of Angiogenesis. PET Clin. 2009 Jan 1;4(1):17–38.
  • Marlies O, Kim D, Allard W, et al. Molecular magnetic resonance imaging of myocardial angiogenesis after acute myocardial infarction. Circulation. 2010 Feb 16;121(6):775–783.
  • Wykrzykowska JJ, Henry TD, Lesser JR, et al. Imaging myocardial angiogenesis. Nat Rev Cardiol. 2009 Oct;6(10):648–658.
  • Laham RJ, Rezaee M, Post M, et al. Intracoronary and intravenous administration of basic fibroblast growth factor: myocardial and tissue distribution. Drug Metab Dispos Biol Fate Chem. 1999 Jul;27(7):821–826.
  • Post MJ, Laham R, Sellke FW, et al. Therapeutic angiogenesis in cardiology using protein formulations. Cardiovasc Res. 2001 Feb 16;49(3):522–531.
  • Peirce SM, Price RJ, Skalak TC. Spatial and temporal control of angiogenesis and arterialization using focal applications of VEGF164 and Ang-1*. Am J Physiol-Heart Circ Physiol. 2004 Mar 1;286(3):H918–25.
  • Lee DJ, Rocker AJ, Bardill JR, et al. A sulfonated reversible thermal gel for the spatiotemporal control of VEGF delivery to promote therapeutic angiogenesis. J Biomed Mater Res A. 2018;106(12):3053–3064.
  • González-Pérez F, Ibáñez-Fonseca A, Alonso M, et al. Combining tunable proteolytic sequences and a VEGF-mimetic peptide for the spatiotemporal control of angiogenesis within Elastin-Like recombinamer scaffolds. Acta Biomater. 2021 Aug;130:149–160.
  • Robich Michael P, Osipov Robert M, Reza N, et al. Resveratrol improves myocardial perfusion in a swine model of hypercholesterolemia and chronic myocardial Ischemia. Circulation. 2010 Sep 14;122(11_suppl_1):S142–9.
  • Greenberg JI, Shields DJ, Barillas SG, et al. A role for VEGF as a negative regulator of pericyte function and vessel maturation. Nature. 2008 Dec;456(7223):809–813.
  • Frontini MJ, Nong Z, Gros R, et al. Fibroblast growth factor 9 delivery during angiogenesis produces durable, vasoresponsive microvessels wrapped by smooth muscle cells. Nat Biotechnol. 2011 May;29(5):421–427.
  • Epstein Stephen E, Ran K, Shmuel F, et al. Angiogenesis Therapy. Circulation. 2001 Jul 3;104(1):115–119.
  • Flugelman MY, Virmani R, Correa R, et al. Smooth muscle cell abundance and fibroblast growth factors in coronary lesions of patients with nonfatal unstable angina. A clue to the mechanism of transformation from the stable to the unstable clinical state. Circulation. 1993 Dec;88(6):2493–2500.
  • Inoue M, Itoh H, Ueda M, et al. Vascular endothelial growth factor (VEGF) expression in human coronary atherosclerotic lesions: possible pathophysiological significance of VEGF in progression of atherosclerosis. Circulation. 1998 Nov 17;98(20):2108–2116.
  • Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005 Feb 15;65(3):550–563.
  • Roy H, Bhardwaj S, Ylä-Herttuala S. Biology of vascular endothelial growth factors. FEBS Lett. 2006 May 22;580(12):2879–2887.
  • Ylä-Herttuala S, Rissanen TT, Vajanto I, et al. Vascular endothelial growth factors: biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 2007 Mar 13;49(10):1015–1026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.