2,157
Views
0
CrossRef citations to date
0
Altmetric
Review

Experimental drugs for the prevention or treatment of sensorineural hearing loss

&
Pages 643-654 | Received 15 Feb 2023, Accepted 26 Jul 2023, Published online: 20 Aug 2023

References

  • Lin FR, Thorpe R, Gordon-Salant S, et al. Hearing loss prevalence and risk factors among older adults in the United States. J Gerontol A Biol Sci Med Sci. 2011 May;66(5):582–590.
  • Foster AC, Jacques BE, Piu F. Hearing loss: the final frontier of pharmacology. Pharmacol Res Perspect. 2022 Jun;10(3):e00970. doi: 10.1002/prp2.970
  • Pauler M, Schuknecht HF, White JA. Atrophy of the stria vascularis as a cause of sensorineural hearing loss. Laryngoscope. 1988 Jul;98(7):754–759. doi: 10.1288/00005537-198807000-00014
  • Johnsson LG. Sequence of degeneration of Corti’s organ and its first-order neurons. Ann Otol Rhinol Laryngol. 1974 May;83(3):294–303. doi: 10.1177/000348947408300303
  • Raphael Y. Cochlear pathology, sensory cell death and regeneration. Br Med Bull. 2002;63(1):25–38. doi: 10.1093/bmb/63.1.25
  • Liu XZ, Yan D. Ageing and hearing loss. J Pathol. 2007 Jan;211(2):188–197. doi: 10.1002/path.2102
  • Raman G, Lee J, Chung M, et al. Effectiveness of cochlear implants in adults with sensorineural hearing loss. Rockville (MD): AHRQ Technology Assessments; 2011.
  • Liu SS, Yang R. Inner ear drug delivery for sensorineural hearing loss: current challenges and opportunities. Front Neurosci. 2022;16:867453. doi: 10.3389/fnins.2022.867453
  • Roccio M, Senn P, Heller S. Novel insights into inner ear development and regeneration for targeted hearing loss therapies. Hear Res. 2019 Nov 28;397:107859.
  • Greenwood DD. A cochlear frequency-position function for several species–29 years later. J Acoust Soc Am. 1990 Jun;87(6):2592–2605. doi: 10.1121/1.399052
  • Dhanasingh A, NJ C, Rajan G, et al. Literature review on the distribution of spiral ganglion cell bodies inside the human cochlear central modiolar trunk. J Int Adv Otol. 2020 Apr;16(1):104–110.
  • Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci. 2022 May;120:103706. doi: 10.1016/j.mcn.2022.103706
  • Dallos P. Cochlear amplification, outer hair cells and prestin. Curr Opin Neurobiol. 2008 Aug;18(4):370–376. doi: 10.1016/j.conb.2008.08.016
  • Adachi N, Yoshida T, Nin F, et al. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear. J Physiol. 2013 Sep 15;591(18):4459–4472. doi: 10.1113/jphysiol.2013.258046
  • Narayan SS, Temchin AN, Recio A, et al. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae. Science. 1998 Dec 4;282(5395):1882–1884. doi: 10.1126/science.282.5395.1882
  • Kiang NY, Rho JM, Northrop CC, et al. Hair-cell innervation by spiral ganglion cells in adult cats. Science. 1982 Jul 9;217(4555):175–177. doi: 10.1126/science.7089553
  • Flores EN, Duggan A, Madathany T, et al. A non-canonical pathway from cochlea to brain signals tissue-damaging noise. Curr Biol. 2015 Mar 2;25(5):606–612. doi: 10.1016/j.cub.2015.01.009
  • Liberman MC. Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am. 1978 Feb;63(2):442–455. doi: 10.1121/1.381736
  • Costalupes JA, Young ED, Gibson DJ. Effects of continuous noise backgrounds on rate response of auditory nerve fibers in cat. J Neurophysiol. 1984 Jun;51(6):1326–1344. doi: 10.1152/jn.1984.51.6.1326
  • Wu PZ, Wen WP, O’Malley JT, et al. Assessing fractional hair cell survival in archival human temporal bones. Laryngoscope. 2020 Feb;130(2):487–495.
  • Carhart R, Jerger JF. Preferred method for clinical determination of pure-tone thresholds. J Speech Hear Disord. 1959;24(4):330–345. doi: 10.1044/jshd.2404.330
  • Hirsh IJ, Davis H, Silverman SR, et al. Development of materials for speech audiometry. J Speech Hear Disord. 1952 Sep;17(3):321–337.
  • Persson P, Harder H, Arlinger S, et al. Speech recognition in background noise: monaural versus binaural listening conditions in normal-hearing patients. Otol Neurotol. 2001 Sep;22(5):625–630.
  • Shera CA. Mechanisms of mammalian otoacoustic emission and their implications for the clinical utility of otoacoustic emissions. Ear Hear. 2004 Apr;25(2):86–97. doi: 10.1097/01.AUD.0000121200.90211.83
  • Melcher JR. Cellular generators of the binaural difference potential in cat. Hear Res. 1996 May;95(1–2):144–160. doi: 10.1016/0378-5955(96)00032-9
  • Valero MD, Burton JA, Hauser SN, et al. Noise-induced cochlear synaptopathy in rhesus monkeys (Macaca mulatta). Hear Res. 2017 Sep;353:213–223.
  • Hickman TT, Hashimoto K, Liberman LD, et al. Cochlear synaptic degeneration and regeneration after noise: effects of age and neuronal subgroup. Front Cell Neurosci. 2021;15:684706. doi: 10.3389/fncel.2021.684706
  • Kujawa SG, Liberman MC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J Neurosci. 2009 Nov 11;29(45):14077–14085. doi: 10.1523/JNEUROSCI.2845-09.2009
  • Bramhall N, Beach EF, Epp B, et al. The search for noise-induced cochlear synaptopathy in humans: mission impossible? Hear Res. 2019 Jun;377:88–103.
  • Liberman MC, Epstein MJ, Cleveland SS, et al. Toward a differential diagnosis of hidden hearing loss in humans. Plos One. 2016;11(9):e0162726. doi: 10.1371/journal.pone.0162726
  • Shaheen LA, Valero MD, Liberman MC. Towards a diagnosis of cochlear neuropathy with envelope following responses. J Assoc Res Otolaryngol. 2015 Dec;16(6):727–745. doi: 10.1007/s10162-015-0539-3
  • Valero MD, Hancock KE, Liberman MC. The middle ear muscle reflex in the diagnosis of cochlear neuropathy. Hear Res. 2016 Feb;332:29–38. doi: 10.1016/j.heares.2015.11.005
  • Valero MD, Hancock KE, Maison SF, et al. Effects of cochlear synaptopathy on middle-ear muscle reflexes in unanesthetized mice. Hear Res. 2018 Jun;363:109–118.
  • Mepani AM, Kirk SA, Hancock KE, et al. Middle ear muscle reflex and word recognition in “normal-hearing” adults: evidence for cochlear synaptopathy?. Ear & Hearing. 2020 Jan;41(1):25–38.
  • Mepani AM, Verhulst S, Hancock KE, et al. Envelope following responses predict speech-in-noise performance in normal-hearing listeners. J Neurophysiol. 2021 Apr 1;125(4):1213–1222. doi: 10.1152/jn.00620.2020
  • Laurell G. Pharmacological intervention in the field of ototoxicity. HNO. 2019 Jun;67(6):434–439. doi: 10.1007/s00106-019-0663-1
  • Steyger PS. Mechanisms of ototoxicity and otoprotection. Otolaryngol Clin North Am. 2021 Dec;54(6):1101–1115. doi: 10.1016/j.otc.2021.08.007
  • Musiime GM, Seale AC, Moxon SG, et al. Risk of gentamicin toxicity in neonates treated for possible severe bacterial infection in low- and middle-income countries: systematic review. Trop Med Int Health. 2015 Dec;20(12):1593–1606.
  • Garinis AC, Liao S, Cross CP, et al. Effect of gentamicin and levels of ambient sound on hearing screening outcomes in the neonatal intensive care unit: A pilot study. Int J Pediatr Otorhinolaryngol. 2017 Jun;97:42–50.
  • Garinis AC, Cross CP, Srikanth P, et al. The cumulative effects of intravenous antibiotic treatments on hearing in patients with cystic fibrosis. J Cyst Fibros. 2017 May;16(3):401–409.
  • Axdorph U, Laurell G, Bjorkholm M. Monitoring of hearing during treatment of leukaemia with special reference to the use of amikacin. J Intern Med. 1993 May;233(5):401–407. doi: 10.1111/j.1365-2796.1993.tb00691.x
  • Wei M, Yuan X. Cisplatin-induced ototoxicity in children with solid tumor. J Pediatr Hematol Oncol. 2019 Mar;41(2):e97–e100. doi: 10.1097/MPH.0000000000001282
  • Kros CJ, Steyger PS. Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med. 2019 Nov 1;9(11). doi: 10.1101/cshperspect.a033548
  • Li H, Steyger PS. Systemic aminoglycosides are trafficked via endolymph into cochlear hair cells. Sci Rep. 2011;1(1):159. doi: 10.1038/srep00159
  • Breglio AM, Rusheen AE, Shide ED, et al. Cisplatin is retained in the cochlea indefinitely following chemotherapy. Nat Commun. 2017 Nov 21;8(1):1654. doi: 10.1038/s41467-017-01837-1
  • Pan B, Akyuz N, Liu XP, et al. TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron. 2018 Aug 22;99(4):736–753 e6. doi: 10.1016/j.neuron.2018.07.033
  • Karasawa T, Wang Q, Fu Y, et al. TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci. 2008 Sep 1;121(Pt 17):2871–2879. doi: 10.1242/jcs.023705
  • Zheng J, Dai C, Steyger PS, et al. Vanilloid receptors in hearing: altered cochlear sensitivity by vanilloids and expression of TRPV1 in the organ of corti. J Neurophysiol. 2003 Jul;90(1):444–455.
  • Hailey DW, Esterberg R, Linbo TH, et al. Fluorescent aminoglycosides reveal intracellular trafficking routes in mechanosensory hair cells. J Clin Investig. 2017 Feb 1;127(2):472–486. doi: 10.1172/JCI85052
  • Prayuenyong P, Baguley DM, Kros CJ, et al. Preferential cochleotoxicity of cisplatin. Front Neurosci. 2021;15:695268. doi: 10.3389/fnins.2021.695268
  • Forge A, Schacht J. Aminoglycoside antibiotics. Audiol Neurootol. 2000 Jan;5(1):3–22. doi: 10.1159/000013861
  • Coffin AB, Boney R, Hill J, et al. Detecting novel ototoxins and potentiation of ototoxicity by disease settings. Front Neurol. 2021;12:725566. doi: 10.3389/fneur.2021.725566
  • Zager RA. Endotoxemia, renal hypoperfusion, and fever: interactive risk factors for aminoglycoside and sepsis-associated acute renal failure. Am J Kidney Dis. 1992 Sep;20(3):223–230. doi: 10.1016/S0272-6386(12)80694-9
  • Nguyen T, Jeyakumar A. Genetic susceptibility to aminoglycoside ototoxicity. Int J Pediatr Otorhinolaryngol. 2019 May;120:15–19. doi: 10.1016/j.ijporl.2019.02.002
  • Brock PR, Knight KR, Freyer DR, et al. Platinum-induced ototoxicity in children: a consensus review on mechanisms, predisposition, and protection, including a new International society of pediatric oncology boston ototoxicity scale. J Clin Oncol. 2012 Jul 1;30(19):2408–2417. doi: 10.1200/JCO.2011.39.1110
  • Sheth S, Mukherjea D, Rybak LP, et al. Mechanisms of cisplatin-induced ototoxicity and otoprotection. Front Cell Neurosci. 2017;11:338. doi: 10.3389/fncel.2017.00338
  • Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011;2011:937861. doi: 10.1155/2011/937861
  • Ingersoll MA, Malloy EA, Caster LE, et al. BRAF inhibition protects against hearing loss in mice. Sci Adv. 2020 Dec;6(49). doi: 10.1126/sciadv.abd0561
  • Huth ME, Han KH, Sotoudeh K, et al. Designer aminoglycosides prevent cochlear hair cell loss and hearing loss. J Clin Investig. 2015 Feb;125(2):583–592.
  • Hammill TL, Campbell KC. Protection for medication-induced hearing loss: the state of the science. Int J Audiol. 2018 Sep;57(sup4):S67–S75. doi: 10.1080/14992027.2018.1455114
  • Sarafraz Z, Ahmadi A, Daneshi A. Transtympanic injections of N-acetylcysteine and dexamethasone for prevention of cisplatin-induced ototoxicity: double blind randomized clinical trial. Int Tinnitus J. 2018 Jun 1;22(1):40–45. doi: 10.5935/0946-5448.20180007
  • van as JW, van den Berg H, van Dalen EC. Medical interventions for the prevention of platinum-induced hearing loss in children with cancer. Cochrane Database Syst Rev. 2016 Sep 27;9:CD009219.
  • Freyer DR, Chen L, Krailo MD, et al. Effects of sodium thiosulfate versus observation on development of cisplatin-induced hearing loss in children with cancer (ACCL0431): a multicentre, randomised, controlled, open-label, phase 3 trial. Lancet Oncol. 2017 Jan;18(1):63–74.
  • Piu F, Bishop KM. Local drug delivery for the treatment of neurotology disorders. Front Cell Neurosci. 2019;13:238. doi: 10.3389/fncel.2019.00238
  • Kempfle JS. Endoscopic-assisted drug delivery for inner ear regeneration. Otolaryngol Clin North Am. 2021 Feb;54(1):189–200. doi: 10.1016/j.otc.2020.09.022
  • Doody RS, Raman R, Sperling RA, et al. Peripheral and central effects of gamma-secretase inhibition by semagacestat in Alzheimer’s disease. Alzheimers Res Ther. 2015;7(1):36. doi: 10.1186/s13195-015-0121-6
  • Salt AN, King EB, Hartsock JJ, et al. Marker entry into vestibular perilymph via the stapes following applications to the round window niche of guinea pigs. Hear Res. 2012 Jan;283(1–2):14–23.
  • Kempfle JS, Fiorillo B, Kanumuri VV, et al. Quantitative imaging analysis of transcanal endoscopic Infracochlear approach to the internal auditory canal. Am J Otolaryngol. 2017 Sep;38(5):518–520.
  • Rauch SD, Halpin CF, Antonelli PJ, et al. Oral vs intratympanic corticosteroid therapy for idiopathic sudden sensorineural hearing loss: a randomized trial. JAMA. 2011 May 25;305(20):2071–2079. doi: 10.1001/jama.2011.679
  • Park AH, White DR, Moss JR, et al. Phase 3 trials of thermosensitive ciprofloxacin gel for middle ear effusion in children with tubes. Am J Otolaryngol-Head Neck Surg. 2016 Aug;155(2):324–331.
  • Rybak LP, Dhukhwa A, Mukherjea D, et al. Local drug delivery for prevention of hearing loss. Front Cell Neurosci. 2019;13:300. doi: 10.3389/fncel.2019.00300
  • Salt AN, Hirose K. Communication pathways to and from the inner ear and their contributions to drug delivery. Hear Res. 2018 May;362:25–37. doi: 10.1016/j.heares.2017.12.010
  • Salt AN, Plontke SK. Pharmacokinetic principles in the inner ear: Influence of drug properties on intratympanic applications. Hear Res. 2018 Oct;368:28–40. doi: 10.1016/j.heares.2018.03.002
  • Talaei S, Schnee ME, Aaron KA, et al. Dye tracking following posterior semicircular canal or round window membrane injections suggests a role for the cochlea aqueduct in modulating distribution. Front Cell Neurosci. 2019;13:471. doi: 10.3389/fncel.2019.00471
  • Plontke SK, Hartsock JJ, Gill RM, et al. Intracochlear drug injections through the round window membrane: measures to improve drug retention. Audiol Neurootol. 2016;21(2):72–79. doi: 10.1159/000442514
  • Andres-Mateos E, Landegger LD, Unzu C, et al. Choice of vector and surgical approach enables efficient cochlear gene transfer in nonhuman primate. Nat Commun. 2022 Mar 15;13(1):1359. doi: 10.1038/s41467-022-28969-3
  • Li H, Liu H, Heller S. Pluripotent stem cells from the adult mouse inner ear. Nat Med. 2003 Oct;9(10):1293–1299. doi: 10.1038/nm925
  • Oshima K, Heller S. Sound from silence. Nat Med. 2005 Mar;11(3):249–250. doi: 10.1038/nm0305-249
  • Cotanche DA. Regeneration of hair cell stereociliary bundles in the chick cochlea following severe acoustic trauma. Hear Res. 1987;30(2–3):181–195. doi: 10.1016/0378-5955(87)90135-3
  • Cruz RM, Lambert PR, Rubel EW. Light microscopic evidence of hair cell regeneration after gentamicin toxicity in chick cochlea. Arch Otolaryngology–Head & Neck Surgery. 1987 Oct;113(10):1058–1062. doi: 10.1001/archotol.1987.01860100036017
  • Stone JS, Cotanche DA. Hair cell regeneration in the avian auditory epithelium. Int J Dev Biol. 2007;51(6–7):633–647. doi: 10.1387/ijdb.072408js
  • Kawamoto K, Ishimoto S, Minoda R, et al. Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci. 2003 Jun 1;23(11):4395–4400. doi: 10.1523/JNEUROSCI.23-11-04395.2003
  • Shou J, Zheng JL, Gao WQ. Robust generation of new hair cells in the mature mammalian inner ear by adenoviral expression of Hath1. Mol Cell Neurosci. 2003 Jun;23(2):169–179. doi: 10.1016/S1044-7431(03)00066-6
  • Kelly MC, Chang Q, Pan A, et al. Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci. 2012 May 9;32(19):6699–6710. doi: 10.1523/JNEUROSCI.5420-11.2012
  • Lewis RM, Hume CR, Stone JS. Atoh1 expression and function during auditory hair cell regeneration in post-hatch chickens. Hear Res. 2012 Jul;289(1–2):74–85. doi: 10.1016/j.heares.2012.04.008
  • Bermingham NA, Hassan BA, Price SD, et al. Math1: an essential gene for the generation of inner ear hair cells. Science. 1999 Jun 11;284(5421):1837–1841. doi: 10.1126/science.284.5421.1837
  • Atkinson PJ, Huarcaya Najarro E, Sayyid ZN, et al. Sensory hair cell development and regeneration: similarities and differences. Development. 2015 May 1;142(9):1561–1571. doi: 10.1242/dev.114926
  • Kempfle JS, Turban JL, Edge AS. Sox2 in the differentiation of cochlear progenitor cells. Sci Rep. 2016 Mar 18;6:23293.
  • Ahmed M, Wong EY, Sun J, et al. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell. 2012 Feb 14;22(2):377–390. doi: 10.1016/j.devcel.2011.12.006
  • Bramhall NF, Shi F, Arnold K, et al. Lgr5-positive supporting cells generate new hair cells in the postnatal cochlea. Stem Cell Rep. 2014 Mar 11;2(3):311–322. doi: 10.1016/j.stemcr.2014.01.008
  • Li W, Wu J, Yang J, et al. Notch inhibition induces mitotically generated hair cells in mammalian cochleae via activating the Wnt pathway. Proc Natl Acad Sci U S A. 2015 Jan 6;112(1):166–171. doi: 10.1073/pnas.1415901112
  • Shi F, Hu L, Edge AS. Generation of hair cells in neonatal mice by beta-catenin overexpression in Lgr5-positive cochlear progenitors. Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13851–13856. doi: 10.1073/pnas.1219952110
  • Shi F, Kempfle JS, Edge AS. Wnt-responsive Lgr5-expressing stem cells are hair cell progenitors in the cochlea. J Neurosci. 2012 Jul 11;32(28):9639–9648. doi: 10.1523/JNEUROSCI.1064-12.2012
  • McLean WJ, McLean DT, Eatock RA, et al. Distinct capacity for differentiation to inner ear cell types by progenitor cells of the cochlea and vestibular organs. Development. 2016 Dec 1;143(23):4381–4393. doi: 10.1242/dev.139840
  • McLean WJ, Yin X, Lu L, et al. Clonal expansion of Lgr5-positive cells from mammalian cochlea and high-purity generation of sensory hair cells. Cell Rep. 2017 Feb 21;18(8):1917–1929. doi: 10.1016/j.celrep.2017.01.066
  • Daudet N, Zak M. Notch signalling: the multitask manager of inner ear development and regeneration. Adv Exp MedBiol. 2020;1218:129–157.
  • Samarajeewa A, Jacques BE, Dabdoub A. Therapeutic potential of Wnt and notch signaling and epigenetic regulation in mammalian sensory hair cell regeneration. Mol Ther. 2019 May 8;27(5):904–911. doi: 10.1016/j.ymthe.2019.03.017
  • Kelley MW. Regulation of cell fate in the sensory epithelia of the inner ear. Nat Rev Neurosci. 2006 Nov;7(11):837–849. doi: 10.1038/nrn1987
  • Mizutari K, Fujioka M, Hosoya M, et al. Notch inhibition induces cochlear hair cell regeneration and recovery of hearing after acoustic trauma. Neuron. 2013 Apr 24;78(2):403–403. doi: 10.1016/j.neuron.2013.04.004
  • Olsauskas-Kuprys R, Zlobin A, Osipo C. Gamma secretase inhibitors of Notch signaling. Onco Targets Ther. 2013;6:943–955. doi: 10.2147/OTT.S33766
  • Lumpkin EA, Collisson T, Parab P, et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns. 2003 Aug;3(4):389–395.
  • Maass JC, Gu R, Basch ML, et al. Changes in the regulation of the Notch signaling pathway are temporally correlated with regenerative failure in the mouse cochlea. Front Cell Neurosci. 2015;9:110. doi: 10.3389/fncel.2015.00110
  • Jeon SJ, Fujioka M, Kim SC, et al. Notch signaling alters sensory or neuronal cell fate specification of inner ear stem cells. J Neurosci. 2011 Jun 8;31(23):8351–8358. doi: 10.1523/JNEUROSCI.6366-10.2011
  • Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. Wiley Interdiscip Rev Dev Biol. 2020 Jan;9(1):e358. doi: 10.1002/wdev.358
  • Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008 Apr;4(2):68–75. doi: 10.4161/org.4.2.5851
  • Shi F, Cheng YF, Wang XL, et al. Beta-catenin up-regulates Atoh1 expression in neural progenitor cells by interaction with an Atoh1 3’ enhancer. J Biol Chem. 2010 Jan 1;285(1):392–400. doi: 10.1074/jbc.M109.059055
  • Lee S, Song JJ, Beyer LA, et al. Combinatorial Atoh1 and Gfi1 induction enhances hair cell regeneration in the adult cochlea. Sci Rep. 2020 Dec 8;10(1):21397. doi: 10.1038/s41598-020-78167-8
  • McLean WJ, Hinton AS, Herby JTJ, et al. Improved speech intelligibility in subjects with stable sensorineural hearing loss following intratympanic dosing of FX-322 in a Phase 1bstudy. Otol Neurotol. 2021 Aug 1;42(7):e849–e857. doi: 10.1097/MAO.0000000000003120
  • Hinton AS, Yang-Hood A, Schrader AD, et al. Approaches to treat sensorineural hearing loss by hair-cell regeneration: the current state of therapeutic developments and their potential impact on audiological clinical practice. J Am Acad Audiol. 2021 Nov;32(10):661–669.
  • Du X, Cai Q, West MB, et al. Regeneration of cochlear hair cells and hearing recovery through Hes1 modulation with siRNA nanoparticles in adult guinea pigs. Mol Ther. 2018 May 2;26(5):1313–1326. doi: 10.1016/j.ymthe.2018.03.004
  • Borse V, Barton M, Arndt H, et al. Dynamic patterns of YAP1 expression and cellular localization in the developing and injured utricle. Sci Rep. 2021 Jan 25;11(1):2140. doi: 10.1038/s41598-020-77775-8
  • Li XJ, Doetzlhofer A. Lin28b/let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling. Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):22225–22236. doi: 10.1073/pnas.2000417117
  • Ye Z, Su Z, Xie S, et al. Yap-lin28a axis targets let7-Wnt pathway to restore progenitors for initiating regeneration. Elife. 2020 Apr 30;9. doi:10.7554/eLife.55771.
  • Shu Y, Li W, Huang M, et al. Renewed proliferation in adult mouse cochlea and regeneration of hair cells. Nat Commun. 2019 Dec 4;10(1):5530. doi: 10.1038/s41467-019-13157-7
  • Rubbini D, Robert-Moreno A, Hoijman E, et al. Retinoic acid signaling mediates hair cell regeneration by repressing p27kip and sox2 in supporting cells. J Neurosci. 2015 Nov 25;35(47):15752–15766. doi: 10.1523/JNEUROSCI.1099-15.2015
  • Slattery EL, Speck JD, Warchol ME. Epigenetic influences on sensory regeneration: histone deacetylases regulate supporting cell proliferation in the avian utricle. J Assoc Res Otolaryngol. 2009 Sep;10(3):341–353. doi: 10.1007/s10162-009-0166-y
  • Kwan KY, White PM. Understanding the differentiation and epigenetics of cochlear sensory progenitors in pursuit of regeneration. Curr Opin Otolaryngol Head Neck Surg. 2021 Oct 1;29(5):366–372. doi: 10.1097/MOO.0000000000000741
  • Gnedeva K, Wang X, McGovern MM, et al. Organ of Corti size is governed by Yap/Tead-mediated progenitor self-renewal. Proc Natl Acad Sci U S A. 2020 Jun 16;117(24):13552–13561. doi: 10.1073/pnas.2000175117
  • Bohne BA, Harding GW. Degeneration in the cochlea after noise damage: primary versus secondary events. Am J Otol. 2000 Jul;21(4):505–509.
  • Liberman MC, Kiang NY. Acoustic trauma in cats. Cochlear pathology and auditory-nerve activity. Acta Otolaryngol Suppl. 1978;358:1–63.
  • Kujawa SG, Liberman MC. Acceleration of age-related hearing loss by early noise exposure: evidence of a misspent youth. J Neurosci. 2006 Feb 15;26(7):2115–2123. doi: 10.1523/JNEUROSCI.4985-05.2006
  • Kujawa SG, Liberman MC. Synaptopathy in the noise-exposed and aging cochlea: primary neural degeneration in acquired sensorineural hearing loss. Hear Res. 2015 Mar 11;330:191–199.
  • Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. J Neurophysiol. 2013 Aug;110(3):577–586. doi: 10.1152/jn.00164.2013
  • Ruel J, Wang J, Rebillard G, et al. Physiology, pharmacology and plasticity at the inner hair cell synaptic complex. Hear Res. 2007 May;227(1–2):19–27.
  • Liberman MC. Noise-induced and age-related hearing loss: new perspectives and potential therapies. F1000Res. 2017;6:927. doi: 10.12688/f1000research.11310.1
  • Viana LM, O’Malley JT, Burgess BJ, et al. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res. 2015 Sep;327:78–88.
  • Wu PZ, Liberman LD, Bennett K, et al. Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience. 2019 May 21;407:8–20. doi: 10.1016/j.neuroscience.2018.07.053
  • Wu PZ, O’Malley JT, de Gruttola V, et al. Primary neural degeneration in noise-exposed human cochleas: correlations with outer hair cell loss and word-discrimination scores. J Neurosci. 2021 May 19;41(20):4439–4447. doi: 10.1523/JNEUROSCI.3238-20.2021
  • Tremblay KL, Pinto A, Fischer ME, et al. Self-reported hearing difficulties among adults with normal audiograms: the beaver dam offspring study. Ear Hear. 2015 Nov;36(6):e290–9.
  • Green SH, Bailey E, Wang Q, et al. The Trk A, B, C’s of neurotrophins in the cochlea. Anat Rec. 2012 Nov;295(11):1877–1895.
  • Ernfors P, Kucera J, Lee KF, et al. Studies on the physiological role of brain-derived neurotrophic factor and neurotrophin-3 in knockout mice. Int J Dev Biol. 1995 Oct;39(5):799–807.
  • Wang Q, Green SH. Functional role of neurotrophin-3 in synapse regeneration by spiral ganglion neurons on inner hair cells after excitotoxic trauma in vitro. J Neurosci. 2011 May 25;31(21):7938–7949. doi: 10.1523/JNEUROSCI.1434-10.2011
  • Yu Q, Chang Q, Liu X, et al. Protection of spiral ganglion neurons from degeneration using small-molecule TrkB receptor agonists [In vitro research support, N.I.H., Extramural research support, Non-U.S. Gov’t]. J Neurosci. 2013 Aug 7;33(32):13042–13052. doi: 10.1523/JNEUROSCI.0854-13.2013
  • Richardson RT, O’Leary S, Wise A, et al. A single dose of neurotrophin-3 to the cochlea surrounds spiral ganglion neurons and provides trophic support [Research support, Non-U.S. Gov’t]. Hear Res. 2005 Jun;204(1–2):37–47.
  • Tong M, Brugeaud A, Edge AS. Regenerated synapses between postnatal hair cells and auditory neurons. J Assoc Res Otolaryngol. 2013 Jun;14(3):321–329. doi: 10.1007/s10162-013-0374-3
  • Sly DJ, Campbell L, Uschakov A, et al. Applying neurotrophins to the round window rescues auditory function and reduces inner hair cell synaptopathy after noise-induced hearing loss. Otol Neurotol. 2016 Oct;37(9):1223–1230.
  • Leake PA, Akil O, Lang H. Neurotrophin gene therapy to promote survival of spiral ganglion neurons after deafness. Hear Res. 2020 Sep 1;394:107955.
  • Wan G, Gomez-Casati ME, Gigliello AR, et al. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife. 2014 Oct 20;3. doi:10.7554/eLife.03564.
  • McGuinness SL, Shepherd RK. Exogenous BDNF rescues rat spiral ganglion neurons in vivo. Otol Neurotol. 2005 Sep;26(5):1064–1072. doi: 10.1097/01.mao.0000185063.20081.50
  • Suzuki J, Corfas G, Liberman MC. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci Rep. 2016 Apr 25;6(1):24907. doi: 10.1038/srep24907
  • Kempfle JS, Duro MV, Zhang A, et al. A novel small molecule neurotrophin-3 analogue promotes inner ear neurite outgrowth and synaptogenesis in vitro. Front Cell Neurosci. 2021;15:666706. doi: 10.3389/fncel.2021.666706
  • Kempfle JS, Nguyen K, Hamadani C, et al. Bisphosphonate-linked TrkB agonist: cochlea-targeted delivery of a neurotrophic agent as a strategy for the treatment of hearing loss. Bioconjug Chem. 2018 Apr 18;29(4):1240–1250. doi: 10.1021/acs.bioconjchem.8b00022
  • Yu Q, Chang Q, Liu X, et al. 7,8,3’-Trihydroxyflavone, a potent small molecule TrkB receptor agonist, protects spiral ganglion neurons from degeneration both in vitro and in vivo [Research support, N.I.H., Extramural]. Biochem Biophys Res Commun. 2012 Jun 8;422(3):387–392. doi: 10.1016/j.bbrc.2012.04.154
  • Szobota S, Mathur PD, Siegel S, et al. BDNF, NT-3 and Trk receptor agonist monoclonal antibodies promote neuron survival, neurite extension, and synapse restoration in rat cochlea ex vivo models relevant for hidden hearing loss. Plos One. 2019;14(10):e0224022. doi: 10.1371/journal.pone.0224022
  • Seiradake E, Jones EY, Klein R. Structural perspectives on axon guidance. Annu Rev Cell Dev Biol. 2016 Oct 6;32(1):577–608. doi: 10.1146/annurev-cellbio-111315-125008
  • Gillespie LN, Marzella PL, Clark GM, et al. Netrin-1 as a guidance molecule in the postnatal rat cochlea. Hear Res. 2005 Jan;199(1–2):117–123.
  • Bronfman FC, Escudero CA, Weis J, et al. Endosomal transport of neurotrophins: roles in signaling and neurodegenerative diseases. Dev Neurobiol. 2007 Aug;67(9):1183–1203.
  • Wise AK, Tu T, Atkinson PJ, et al. The effect of deafness duration on neurotrophin gene therapy for spiral ganglion neuron protection. Hear Res. 2011 Aug;278(1–2):69–76.
  • Kang WS, Nguyen K, McKenna CE, et al. Intracochlear drug delivery through the oval window in fresh cadaveric human temporal bones. Otol Neurotol. 2016 Mar;37(3):218–222.
  • Kang WS, Sun S, Nguyen K, et al. Non-ototoxic local delivery of bisphosphonate to the mammalian cochlea. Otol Neurotol. 2015 Jul;36(6):953–960.
  • Foster AC, Szobota S, Piu F, et al. A neurotrophic approach to treating hearing loss: translation from animal models to clinical proof-of-concept. J Acoust Soc Am. 2022 Jun;151(6):3937.
  • Iyer JS, Batts SA, Chu KK, et al. Micro-optical coherence tomography of the mammalian cochlea. Sci Rep. 2016 Sep 16;6(1):33288. doi: 10.1038/srep33288
  • Sidell D, Ward JA, Pordal A, et al. Combination therapies using an intratympanic polymer gel delivery system in the guinea pig animal model: A safety study. Int J Pediatr Otorhinolaryngol. 2016 May;84:132–136.
  • Warnecke A, Mellott AJ, Romer A, et al. Advances in translational inner ear stem cell research. Hear Res. 2017 Sep;353:76–86.
  • Feng L, Ward JA, Li SK, et al. Assessment of PLGA-PEG-PLGA copolymer hydrogel for sustained drug delivery in the ear. Curr Drug Deliv. 2014;11(2):279–286. doi: 10.2174/1567201811666140118224616
  • Yu D, Sun C, Zheng Z, et al. Inner ear delivery of dexamethasone using injectable silk-polyethylene glycol (PEG) hydrogel. Int J Pharm. 2016 Apr 30;503(1–2):229–237. doi: 10.1016/j.ijpharm.2016.02.048
  • Sewell WF, Borenstein JT, Chen Z, et al. Development of a microfluidics-based intracochlear drug delivery device. Audiol Neurootol. 2009;14(6):411–422. doi: 10.1159/000241898
  • Leong S, Aksit A, Feng SJ, et al. Inner ear diagnostics and drug delivery via microneedles. J Clin Med. 2022 Sep 17;11(18):5474. doi: 10.3390/jcm11185474